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Checking the radiometric calibration of satellite hyper-spectral sensors such as
the PACE Ocean Color Instrument (OCI) while they operate in orbit and
evaluating remote sensing reflectance, the basic variable from which a variety
of optical and biogeochemical ocean properties can be derived, requires
measuring upwelling radiance just above the surface (Lw) and downwelling
planar irradiance reaching the surface (Es). For this, the current HyperNav
systems measure Lw at about 2 nm spectral resolution in the ultraviolet to
near infrared, but Es in only four 10 nm wide spectral bands centered on 412,
489, 555, and 705 nm. In this study, the Es data acquired in these spectral bands in
clear sky conditions are used to reconstruct via a multi-linear regression model
the hyper-spectral Es signal at 0.5 nm resolution from 315 to 900 nm, the OCI
spectral range, allowing an estimate of Es at the HyperNav, OCI, and other
sensors’ resolutions. After correction of gaseous absorption and normalization
by the top-of-atmosphere incident solar flux, the atmospheric diffuse
transmittance is expressed as a linear combination of Es measured in those
4 spectral bands. Based on simulations for Sun zenith angles from 0 to 75° and a
wide range of (i.e., expected) atmospheric, surface, and water conditions, the Es

spectrum is reconstructed with a bias of less than 0.4% in magnitude and an RMS
error (RMSE) ranging from 0% to 2.5%, depending on wavelength. The largest
errors occur in spectral regions with strong gaseous absorption. In the presence
of typical noise on Es measurements and uncertainties on the ancillary variables,
the bias and RMSE become −2.5% and 7.0%, respectively. Using a General Additive
Model with coefficients depending on Sun zenith angle and aerosol optical
thickness at 550 nm improves statistical performance in the absence of noise,
especially in the ultraviolet, but provides similar performance on noisy data,
indicating more sensitivity to noise. Adding spectral bands in the ultraviolet, e.g.,
centered on 325, 340, and 380 nm, yields marginally more accurate results in the
ultraviolet, due to uncertainties in the gaseous transmittance. Comparisons
between the measured and reconstructed Es spectra acquired by the MOBY
spectroradiometer show agreement within predicted uncertainties, i.e., biases
less than 2% in magnitude and RMS differences less than 5%. Reconstruction can
also be achieved accurately with other sets of spectral bands and extended to
cloudy conditions since cloud optical properties, like aerosol properties, tend to
vary regularly with wavelength. These results indicate that it is sufficient, for many
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scientific applications involving hyper-spectral Es, to measure Es in a few coarse
spectral bands in the ultraviolet to near infrared and reconstruct the hyperspectral
signal using the proposed multivariate linear modeling.

KEYWORDS

HyperNav, downwelling planar irradiance, multivariate regression, generalized additive
model, ocean Color, MOBY, PACE

1 Introduction

Water-leaving radiance (Lw) and remote sensing reflectance
(Rrs, or the ratio of Lw and downwelling planar irradiance
reaching the air-water interface Es), Rrs � Lw/Es, are basic aquatic
optical variables from which properties of the water body can be
retrieved for a variety of scientific and societal applications (e.g.,
IOCCG, 2008; Frouin et al., 2019). System Vicarious Calibration
(SVC), an important procedure to ensure that satellite Lw estimates
meet requirements for biogeochemistry (Evans and Gordon, 1994;
Gordon, 1997; IOCCG, 2013), necessitates measuring Lw accurately
at the time of satellite overpass (Franz et al., 2007; Zibordi et al.,
2015). Inversion schemes to retrieve inherent optical properties
(IOPs) and biogeochemical characteristics of the water body
require Rrs (or similar normalized Lw variables) as input (e.g.,
Werdell et al. (2018)). Measurements of Rrs are therefore
essential to develop algorithms for inferring those properties/
characteristics, and to evaluate their retrieval. Diverse
instrumentation, installed on fixed platforms or deployed from
ships, has been used to measure Lw and Es (therefore Rrs)
spectrally, and deployment/measurement protocols defined to
provide best data quality with associated uncertainties (e.g.,
Mueller et al. (2003); Ruddick et al. (2019a) for Lw ; Ruddick
et al. (2019b) for Es).

For the upcoming PACE mission, which will carry into polar
orbit the Ocean Color Instrument (OCI), the HyperNav
spectroradiometer/float system (Barnard et al., 2024, this issue)
was designed to measure Lw at about 2 nm resolution (full width
at half maximum) from 250 to 900 nm. The system is also equipped
with a commercial (SeaBird, Inc.) cosine sensor that measures Es in
4 spectral bands about 10 nm wide centered on 412, 489, 555, and
705 nm. The Es measurements do not allow direct normalization of
Lw into Rrs over the entire spectral range and at the spectral
resolution of the Lw measurements, but this is highly desirable
for evaluating the PACE OCI hyper-spectral Rrs retrievals at 5 nm
resolution. Accurate reconstruction of the Es spectrum from
measurements in a few coarse spectral bands is possible,
however, because the solar irradiance reaching the surface is
strongly correlated spectrally, even though gaseous absorption
only modulates specific regions of the solar spectrum, which
requires proper treatment.

In the following, a methodology is presented and evaluated to
reconstruct Es at 0.5 nm resolution from 315 to 900 nm (the OCI
spectral range) in clear sky conditions from Es measurements in
10 nm bands centered on 412, 489, 555, and 705 nm. The
methodology is based on multi-linear regression and includes
uncertainty estimation via Monte Carlo propagation (Section 2).
Simulations for expected (realistic) atmospheric, surface, and
aquatic conditions and Sun zenith angles are described in Section

3. Performance is evaluated theoretically in the absence and presence
of noise in Section 4, as well as the merits of an additive varying
coefficient model with aerosol optical thickness and Sun zenith angle
as auxiliary variables. The methodology is checked experimentally
on Es spectral measurements collected at and near the MOBY site in
Section 5. The applicability to other sets of spectral bands, and the
advantage and drawback of including additional bands in the
ultraviolet, is discussed in Section 6, as well as the ability to
reproduce accurately Es at the HyperNav and OCI spectral
resolutions. The study is summarized in Section 7, with
conclusions on the accuracy of the reconstruction and the
possible extension to cloudy conditions since cloud properties,
like aerosol properties, tend to vary smoothly with wavelength,
and recommendations, in view of the applications, on the need
for hyper-spectral Es sensors instead of multi-band sensors.

2 Methodology

In clear atmosphere, the downwelling planar solar irradiance
reaching ocean surface, Es, can be modeled accurately as in Eq. 1
(e.g., Tanré et al., 1979):

FIGURE 1
Es’of the 50 cases simulated using ARTDECO with parameters
randomly selected, i.e., different aerosol models (maritime clean,
continental, urban, desert), aerosol optical thickness at 550 nm from
0 to 0.8, aerosol scale height from 0.5 to 5 km, relative humidity
from 60% to 90%, ozone amount from 250 to 450 Dobson, water
vapor from 0.1 to 7 g cm−2, surface pressure from 1,000 to 1,025 mb,
solar zenith angle from 0° to 75°, wind speed from 5 to 15 m s−1, and
chlorophyll concentration from 0.3 to 30 mg m−3. Dots represent the
Es’ values at 412, 489, 555, and 705 nm.
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Es � E0 cos θs( )TgTa/ 1 − SaA( ) (1)

where E0 is the extraterrestrial (top-of-atmosphere, TOA) solar
irradiance corrected for Earth Sun distance, θs is the solar zenith
angle, Tg and Ta denote the downward gaseous transmittance and
total (direct plus diffuse) atmospheric transmittance, respectively, Sa
is the spherical albedo of the atmosphere, and A is the
surface albedo.

The hypothesis that it is feasible to reconstruct Es at hyper-
spectral resolution using measurements at only a few bands is based
on the fact that Es after the correction of gaseous absorption and
normalization using the extraterrestrial solar irradiance,
i.e., E′

s� Es/(E0Tg ), essentially becomes Ta cos(θs)/(1 − SaA),
which varies smoothly with wavelength (Figure 1). However,
even though E′

s does not exhibit an irregular spectral
dependence, its reconstruction via interpolation/extrapolation of
measurements in a few bands may not be sufficiently accurate
(see Section 4). Therefore, we tested two different models:

1. Multivariate linear model with constant coefficients (Eq. 2).

E′
s λ( ) � a0 +∑

i
aiE

′
s λi( ) (2)

where a0 is a constant, λ represents wavelength, E′
s(λi) and ai are the

E′
s and the corresponding linear coefficients at λi, the center

wavelengths i of the 412, 489, 555, and 705 nm bands.

2. Generalized additive model (GAM; Hastie and Tibshirani,
1993) with coefficients as functions of geometric and/or
geophysical parameters (Eq. 3).

E′
s λ( ) � f 0 p1, p2, . . . , pn( ) +∑

i
f i p1, p2, . . . , pn( )E′

s λi( ) (3)

where p1, p2, . . . , pn represent the various geometric and/or
geophysical parameters to be used, and f are functions of these
variables. The parameters p are selected based on analysis of the
data. The f functions constitute the free parameters of the model and
will be estimated from the data. The shapes of f are largely
unspecified in the fitting procedure, while the resulting number
of degrees of freedom are controlled to avoid overfitting. This is
achieved via penalized smoothing splines.

Once E′
s is retrieved, Es can be derived from E′

s since E0 is
known and Tg can be accurately estimated (see Section 4).
Uncertainties of the two methods are quantified by
introducing noise to the input Es at the four wavelengths,
together with assigning noise to Tg , which will then be
propagated to estimate the uncertainties in reconstructed Es

using the Monte-Carlo method (e.g., JCGM, 2008; Bialek et
al., 2020. This requires the probability distribution functions
for the input components in the model equation (content of
gaseous absorbers in the multilinear model with constant
coefficients and, additionally, the auxiliary variables in the
additive varying coefficient model), from which many random
realizations are selected in the calculation of the output,
providing the uncertainty of the output value.

The reconstruction of Es described above is accomplished with
respect to the extraterrestrial solar spectrum E0 used in the radiative
transfer (RT) model. One has to be aware of this in calibration/
validation activities and make sure that the same E0 is used. Using a

different E0, however, does not require re-determining the
coefficients of the E′

s model (Eq. 2).

3 Simulations

Radiative transfer simulations were performed from 315 to
900 nm at 0.5 nm resolution with the Atmospheric Radiative
Transfer Database for Earth Climate Observation (ARTDECO)
code (Dubuisson et al., 2016) for a variety of geometric and
geophysical conditions. The ARTDECO radiative transfer model
accounts for scattering and absorption by air molecules, aerosols,
and cloud droplets, and interactions between scattering and
absorption. The radiative transfer equation is solved using the
discrete ordinate method. The atmosphere is assumed plane-
parallel and positioned above a wavy air-sea interface. In the
code, the high-resolution extraterrestrial solar spectrum is from
Chance and Kurucz (2010), mean Earth-Sun distance is used, and
gaseous absorption is accounted for by applying the correlated-k
technique (Lacis and Oinas, 1991) with appropriate k-distribution
coefficients. The optical properties of aerosols and clouds are
selected from the Optical Properties of Aerosols and Clouds
(OPAC) database (Hess et al., 1998). The vertical distribution of
the scatterers and absorbers can be specified. The bidirectional
reflectance of the wavy interface is modeled based on Fresnel
equations and the Cox-Munk wind-dependent wave slope
probability density distribution. The diffuse water reflectance
(Case 1 waters only) is assumed Lambertian and modeled as a
function of chlorophyll concentration according to Morel and
Maritorena (2001). This model, limited to the visible, was
extended to 300 nm using Hydrolight (Hedley and Mobley, 2019)
inherent optical properties. The water body is considered black at
wavelengths longer than 700 nm. This treatment is sufficient
because the impact of photons leaving the water that are
backscattered by the atmosphere to the surface is relatively small.

The total downwelling solar irradiance arriving at the ocean
surface Es was simulated from 315 to 900 nm with a 0.5 nm
resolution for a clear atmosphere (i.e., no clouds). The
corresponding extraterrestrial solar irradiance E0 was also output
in the simulations. In the code, the AFGL US standard atmosphere
profile (Anderson et al., 1986) was used and adapted to the input
concentrations of gases, i.e., ozone, water vapor, and oxygen. Note
that by explicitly varying the oxygen amount the absorption from
other gases including CH4, CO2, and N2O was considered since the
molar fraction of these gases are fixed with respect to oxygen in the
ARTDECO code. Since absorption from NO2 was not modeled in
ARTDECO, transmittance of NO2 was estimated based on
Schneider et al. (1987) and applied to the simulated Es. In this
study, the following three different datasets were generated.

1. Dataset for calibrating the models for Es reconstruction,
referred as the calibration dataset.

In this dataset, four different aerosol models from the OPAC
database were considered, i.e., maritime clean, continental clean,
urban, and desert, including both absorbing and non-absorbing
aerosols. The computations were conducted for total aerosol optical
thickness values (AOT550) ranging from 0 to 0.8 at 550 nm. The
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aerosol concentration was set to decrease with altitude according to
an exponential law with a typical scale height (SH) from 0.5 to 5 km.
The relative humidity (RH) in the atmosphere was set to randomly
vary from 60% to 90%. The amount of ozone (U_o3) and water
vapor (U_h2o) were from 250 to 450 Dobson and from 0.1 to
7 g cm−2, respectively. The oxygen amount is defined using surface
pressure (PS), which was varied from 1,000 to 1,025 mb. Simulations
were carried out for Sun zenith angles (SZAs) ranging from 0° to 75°

(view zenith and relative azimuth were fixed as 0° and 90°, since they
do not affect Es). The wind speed (U) was set to vary from 5 to
15 m s−1. The optical properties of the diffuse boundary marine
reflectance were specified for chlorophyll concentration (Chl)
varying from 0.03 to 30 mg m−3. A total of 10,000 simulations
were performed, with aerosol types, aerosol optical thickness,
scale height, humidity, ozone, surface pressure, water vapor, Sun
zenith angle, wind speed, chlorophyll concentration randomly
varied in the ranges described above. For each simulation with
gaseous absorption, the case of no gaseous absorption was also
generated to obtain Es0, i.e., Es after correction of gaseous
absorption (Es � Es0Tg ).

2. Dataset for developing the Look-Up Table (LUT) of Tg ,
referred as the LUT dataset.

In this dataset, the ranges of different geometric and
geophysical parameters are the same as those in the
calibration dataset. What is different is that the input amount
of ozone, water vapor and oxygen as well as Sun zenith angles
were set to be discrete values as below.

• SZA (degree): 0, 10, 20, 30, 40, 50, 60, 65, 70, and 75
• U_o3 (Dobson): 250, 300, 350, 400, 450
• U_h2o (g cm−2): 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4,
5, 6, 7

• PS (mb): 1,000, 1,005, 1,010, 1,015, 1,020, 1,025

Both simulations with and without gaseous absorption were
made. The aerosol properties and surface conditions have a small
impact on Tg , except in strong water vapor absorption bands, where
the coupling between aerosol scattering and water vapor absorption
becomes effective, but such bands occur above 900 nm. Therefore
these parameters were fixed for each simulation, i.e., AOT550 = 0.1,
RH = 90%, SH = 2 km, maritime aerosol, U = 5 m/s, and Ch1 =
0.1 mg/m3. The LUT has four axes, i.e., Sun zenith angle, ozone and
water vapor amounts, and pressure.

3. Dataset for validating the models for Es reconstruction,
referred as the validation dataset.

Instead of using the four different OPAC aerosols, this dataset
uses mixed aerosols, i.e., all aerosol species were mixed up for each
simulation. The aerosol species include black carbon (OPAC urban),
dust (OPAC Desert), organic carbon (OPAC continental), and sea
salt (OPAC maritime). Global hourly MERRA-2 reanalysis data
(Gelaro et al., 2017) for the entire year 2006 were acquired to extract
the optical thickness corresponding to each aerosol species, which
were then randomly selected (covering global ocean) and input to
ARTDECO. Other parameters were set in the same predefined

ranges as in the calibration dataset but with totally different
values. There are 10,000 simulations with gaseous absorption and
another 10,000 without gaseous absorption. Noise was also added to
this dataset to evaluate the sensitivity of the models to noise, of
which the details are described in Section 4.

For the calibration and validation datasets, the Es and Es0

simulations at 0.5 nm resolution were further processed into the
values in the 412, 488, 555, and 705 nm bands by using the average
within ±5 nm of the center wavelengths (the exact spectral response
of the bands was unknown).

4 Theoretical results

The LUT developed in Section 3 was used to estimate Tg for
the 10,000 cases in the calibration dataset and another
10,000 cases in the validation dataset using the prescribed
solar zenith angle, ozone, amount, surface pressure, and water
vapor amount as input and linearly interpolating within the LUT.
Figure 2 shows that the LUT method produces accurate
estimation of Tg , with the bias ranging from −0.6% to 0.3%
and from −2.5% to 0.4% and RMS error (RMSE) within 2.5% and
within 3%, for the calibration and validation dataset, respectively.
The bias and RMSE for the calibration and validation dataset are
different because the input parameters to the LUT are not exactly
the same. Remember that −2.5% bias is equivalent a bias
of −0.004, which is very small. As expected, degradation of
accuracy is found at the wavelengths with gaseous absorption,
for example, the ultra-violet (UV) and 500–700 nm with ozone
absorption, ~688 nm and ~760 nm with strong oxygen
absorption, and near-infrared with water vapor absorption,
while at the wavelengths almost without gaseous absorption
the bias and RMS error are close to 0. This is with the
assumption that the amount of ozone, surface pressure, and
water vapor are perfectly known. In practice, noise in these
quantities will introduce uncertainties in the estimated Tg and
the impact on the Es reconstruction is investigated, as described
in the text below.

E′
s at 0.5 nm resolution from 315 nm to 900 nm can be

accurately reconstructed using the values at 412, 489, 555, and
705 nm using multivariate linear regression (Figure 3). The a0
and ai coefficients in Eq. 2, are irregular spectrally (Figure 4), an
indication that simple interpolation/extrapolation would not
capture spectral E′

s variability as well as the multilinear model.
Bias is 0 for all the wavelengths, which is not surprising because
the model is supposed to be unbiased. The RMSE is less than 0.1%
starting from 400 nm and increases to 0.6% in the UV wavelengths.
The relatively high error in the UV is probably due to the fact that
the input four wavelengths are from 400 to 700 nm, which may fail
to properly capture some of the spectral characteristics at the UV.
The Es spectra were computed using E0 and the estimated Tg . The
bias, ranging from −0.2% to 0.4%, and RMSE, from 0% to 2.5%, are
basically the total of Tg and E′

s errors, although some compensation
occurs so that the values are slightly lower.

The prescribed E′
s was further modeled as a function of all other

variables, including the estimated E′
s (Es,est

′ ), SZA, AOT550, SH,
aerosol model (A), Chl, U, RH, and PS, following the procedure of
Bisson et al. (2021) using a Bayesian approach to multivariate
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FIGURE 2
Percent bias (A) and RMSE (B) of Tg estimation using the calibration (blue) and validation (red) dataset.

FIGURE 3
Percent bias (A) and RMSE (B) of E′

s (red dashed) and Es (blue solid) estimation using the calibration dataset and multivariate linear regression.

FIGURE 4
Coefficients of the multilinear model (see Eq. 2).
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regression analysis. U_o3 and U_h2o were not included because E′
s

is the quantity after gaseous absorption. The regression model is
assumed to follow a normal distribution with the mean μmodeled as
in Eq. 4

μ � β0Es,est
′ + β1SZA + β2AOT550 + β3SH + β4A + β5Chl + β6U

+ β7RH + β8PS + α

(4)
Each variable was standardized by subtracting the mean and

dividing by the standard deviation to shift the distribution to have a
mean of zero and a standard deviation of one. By doing so, the intercept
bias α essentially becomes zero and the slope coefficients βi illustrate a
one-to-one correspondence between the dependent and independent
variables. In the model, the prior distribution of βi is assumed weakly

informative, with mean of zero and a standard deviation of 100. For
example, at 320.25 nm, the slope coefficient β0 is very close to 1,
i.e., ~0.997 (Figure 5), indicating strong correspondence between E′

s and
Es,est
′ . The β for other variables all deviate from 0, although the deviations

are small, indicating their contribution to residual errors. Based on the
magnitude of the β values, the three variables with the highest absolute
values are SZA, AOT550, and Chl. Large percent errors are typically
found to be associated with small E′

s, which is not easy to model
accurately. When SZA is large, it means longer travelling path and more
interactions of the light with aerosols and molecules in the atmosphere.
The larger AOT550, the more aerosol scattering and absorption,
depending on the aerosol types. Both variables lead to small E′

s and
may explain their relatively large contributions in the residual errors. The
variations in chlorophyll concentration affect the ocean surface albedo.
In the UV, when chlorophyll concentration is small, the ocean surface
albedo becomes relatively large and the spherical albedo of the
atmosphere is increased, hence the surface impact introduced by the
term 1/(1 − SaA) may cause perturbations in E′

s and inaccuracy in
the modeling.

The variables SZA, AOT550, aerosol type, SH, Chl, U, RH, and
PS were then tested in the GAM model. These variables were
introduced one by one and only those that brought in significant
model improvement were selected, i.e., SZA and AOT550 in this
study. The GAM model therefore becomes Eq. 5:

E′
s λ( ) � f 0 SZA,AOT550( ) +∑

i
f i SZA,AOT550( )E′

s λi( ) (5)

With the coefficients as a function of SZA and AOT550 instead of
assumed constant, the accuracy of E′

s reconstruction is improved
(Figure 6). The bias is not discussed here because both models are
unbiased. The change of percent RMSE with wavelength shows a
pattern similar to that obtained using multivariate linear regression,
i.e., the closer the wavelength is to one of the input four bands the
smaller the RMSE. Overall, the magnitude is lower for GAM as
opposed to the linear model, especially in the wavelengths shorter
than 400 nm and those longer than 700 nm. For example, the error
drops from 0.6% to 0.2% in the UV and from 0.1% to 0.06% at
900 nm. An even stronger decrease of RMSE in the UV and from
850 to 900 nm is observed for the Es reconstruction when using
GAM. The terms of the five components (i.e., the functions f 0, f 1, f 2,

FIGURE 5
Forest plot of the slope coefficients for wavelength 320.25 nm.
The y axis shows the coefficients β for each explanatory variable,
i.e., estimated E′

s (Es,est
′ ), solar zenith angle (SZA), aerosol optical

thickness (AOT550), aerosol model (A), scale height (SH),
chlorophyll concentration (Chl), wind speed (U), relative humidity (RH),
and surface pressure (PS), and the x axis shows the scale of the
coefficients. The circle presents the mean of the posterior and the
error bar represents the standard deviation of the distribution.

FIGURE 6
Percent RMSE of E′

s (A) and Es (B) estimation using the calibration dataset with both models: (blue) multivariate linear regression and (red) GAM.
Percent bias is not shown as both models result in almost identical bias for E′

s and Es .
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f 3 and f 4) of the GAM model at 320.25 nm and 410.25 nm are
displayed in Figures 7, 8, respectively. It is thus clear that the
intercept as well as the coefficients for E′

s at the four wavelengths
are not constant and the contours show how the values of f i change
with SZA and AOT550. The gradients of the component smooth
functions f i at 410.25 nm are much smaller than those at 310.25 nm,
which is expected as the residual errors in E′

s attributed to SZA and
AOT550 are more pronounced in the UV. At 320.25 nm the
gradient of each f i changes with SZA, while the impact
AOT550 is more obvious on f 1, f 2, and f 3 and becomes less
important for f 0 and f 4. This is the same with 410.25 nm,
i.e., the changes in f i with respect to AOT550 decrease with
wavelength, probably due to that aerosol scattering is stronger at
shorter than longer wavelengths. Although the impact of
AOT550 may be small and negligible depending on the smooth
functions and the wavelength, AOT550 is kept in the GAMmodel so
that we do not need to optimize the model for each wavelength,
which is out of the scope of this study.

Performance of both models in reconstructing E′
s and Es with the

validation dataset are very similar to those with the calibration dataset
(Figure 9). For E′

s reconstruction, the percent bias is from −0.15% to
0.03% for the multivariate linear model and from −0.01% to 0.02% for
the GAMmodel, and the precent RMSE from 0% to 0.55% and from 0%
to 0.15%, respectively. The bias and RMSE of Es are higher than those
with the calibration dataset (Figure 2), from −2.5% to −0.5% and from
0% to 3%, respectively, mainly attributed to the errors in Tg estimation
(Figure 2). Figure 10 shows that simply using interpolation/extrapolation
to reconstruct the hyperspectral E′

s from only four values typically yield
much larger errors when compared to the multivariate linear model and
GAM, especially in the ultraviolet wavelengths and at high Sun
zenith angles.

In practice the in-situ measurements may be biased due to
instrument calibration uncertainty and other uncertainties, (e.g., data

processing). It is important to check the in-situ dataset against radiative
transfer calculations before performing the spectral reconstruction,
which can be accomplished by comparing measurements and
modeled values in ideal conditions, i.e., very clear atmosphere with
low aerosol content. Assuming such check has been performed and
environmental uncertainty is negligible, the remaining noise, i.e., which
defines the Es calibration uncertainty, is about ±1%, according to Bialek
et al. (2020) for an ideal case with no bias.

This noise was added to Es in the validation dataset based on
Eq.6 displayed below,

Es,noisy � Es 1 + e( ) (6)

where e is a gaussian distributed variable with standard deviation of 0.01.
Note that there are other sources of uncertainty in the Es, such as that
caused by converting the 0.5 nm simulatedEs tomultispectral values, but
here only the calibration error e is considered. In addition, noise was
added to U_o3, U_h2o, and PS, i.e., ±10 Dobson, ±20%, and ±5mb,
respectively, to account for the uncertainty in the MERRA-2 data. No
uncertainty in Eo and in the radiative transfer modeling was considered.
The Monte Carlo approach described in JCGM (2008) was used to
quantify the final uncertainties in the reconstructed Es. A total of
100 hyperspectral Es were reconstructed with random realizations of
noise specified above and the bias and RMSE were calculated against the
prescribed values.

When using the multivariate linear model on the noisy data,
the percent bias and RMSE in E′

s could reach 0.3% and about
2.0%, respectively (Figure 11), which generally increase in the UV
and near infrared and decrease (i.e., less than 0.1% and 0.5%,
respectively) in the visible. The errors in Es are larger, with the
largest bias and RMSE being −2.5% and 7.0% respectively.
Relatively large errors are typically found in the spectral
region of the gaseous absorption bands and at UV
wavelengths. The GAM model produces very similar level of

FIGURE 7
The five component smooth functions (f0 , f1 , f2, f3 , and f4) of the GAM model fitted on the calibration data at 320.25 nm.
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bias and RMSE in the E′
s estimation. Considering that the GAM

model is more accurate than the multivariate linear model,
especially in the UV, as well as that the uncertainty of GAM
estimated E′

s was calculated assuming AOT550 is perfectly
known, the results suggest that the GAM model is slightly
more sensitive to noise, as the bias and RMSE between the
two models become closer after introducing noise. In fact, the
bias and RMSE for Es are very similar for both models and much
larger than those for E′

s, indicating the large impact from the
noise in Tg .

5 Evaluation against in situ
measurements

The performance of Es reconstruction when applied to in-
situ measurements was evaluated. Only the multivariate linear
model was used since it is sufficiently accurate and slightly less
sensitive to noise. In this study, two different in-situ datasets
were used. The first one is the MOBY dataset, which has been
collected off Lanai, Hawaii since 1997 (Clark et al., 1997; Clark
et al., 2002) and used for vicarious calibration of many NASA,
NOAA, and international satellite programs. MOBY is a spar
buoy tethered to a slack-line moored buoy and has 3 underwater
arms fixed at approximately 1, 5, and 9 m to take measurements
of upwelling radiance and downwelling irradiance. Above-water
downwelling irradiance is also measured using the Es

sensor mounted on top of the buoy, which is about 2.5 m
above the surface float. For more details see Clark et al.,
1997; Clark et al., 2002. The MOBY Es data is hyperspectral
and sampled every 0.8 nm from 344 nm to 750 nm, with the
spectral resolution of approximately 0.9 nm for the blue

(<620 nm) and 1.2 nm for the red (>620 nm). The data is publicly
available at https://www.star.nesdis.noaa.gov/socd/moby/filtered_spec/.
October 2016 reprocessing was applied. Note that the Es data
below 380 nm is affected by stray light in the spectrometer
(Feinholz et al., 2009). Only the data flagged as good were
used in this study and there are a total of 7,036 data files
available. In each data file, three columns of Es are provided,
to match the measurements taken at the three underwater arms.
The three Es values are very similar since they were taken in a
short time period and only Es corresponding to the times of
measurements by the middle arm were used. These MOBY data
were checked against ARTDECO simulations made using
MERRA-2 data corresponding to the MOBY observation time
and a minor wavelength shift, i.e., 0.3 nm toward short
wavelengths, was noticed. Since the MOBY data are very close
to the ARTDECO simulations (i.e., within uncertainties in the
modeling), no bias adjustment was made, but the wavelength
shift was corrected for each measurement.

Figure 12 displays one example of the reconstructed MOBY Es

on 27 May 2017. The measured and reconstructed Es are in very
good agreement with the relative percent difference mostly
within 10% over the entire wavelength range and less than 5%
above 450 nm. The reconstruction at the UV wavelengths is
noisier, attributed to the model noise and the stray light issue
of the MOBY Es sensor. The relative error is also higher in the
gaseous absorption bands. Uncertainties of the reconstructed Es

were calculated by introducing the typical uncertainties in MOBY
Es, i.e., approximately ±1.5% for the laboratory and ±3.0% for
the field (Voss et al., 2015), ±10 Dobson for U_o3, ±20% for
U_h2o, ±5 mb for PS, as well as the model noise shown in
Figure 3 (blue line, right panel). After that, 100 random
realizations were generated, and the final uncertainty, i.e., the

FIGURE 8
Same as Figure 7, but for 410.25 nm.
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standard deviation of Es with noise, was calculated using all
realizations. The measured values are generally within the
uncertainties of the reconstructed Es (Figure 13). For all the
7,036 cases, the reconstructed Es are in very good agreement with
the measured values, with the bias less than 2% and RMSE less
than 5% (Figure 14). The bias and RMSE at wavelengths affected
by gaseous absorption are larger. For example, at 688 nm and
720 nm, corresponding to oxygen and water vapor absorption,
the corresponding bias and RMSE are 2.2% and 3.6%, and −4.2%
and 6.3%, respectively. Such uncertainties are higher than those
obtained using the theoretical data (Figure 11, bottom panel),
which may be due to noise that are not accounted for when
evaluating the model performance using the theoretical data.

The second Es dataset used for evaluation was acquired with a
Sea-Bird Scientific HyperOCR radiometer from June 10 to
16 June 2021 within sight of the MOBY buoy in Hawaii (20°

49′ 54.582″ N, 157° 11′ 19.062″ W). The measurements were
made from the top of a 30 feet fishing vessel with an unobstructed
view of the sky between 10:00 and 14:00 local time. The
HyperOCR radiometer was calibrated by Sea-Bird
Scientific with an FEL lamp pre and post deployment. The
HyperOCR Es ranges from 349 to 801 nm and is sampled
every 3 nm, with a spectral resolution of 10 nm. Only the data
collected during clear sky conditions were used, which resulted in
only one measurement on 16 June 2021. A check with ARTDECO
code corresponding to the field observation time and conditions
(obtained from MERRA-2 data) suggested that the HyperOCR Es

values are biased, with the difference up to about 20 μW/cm2/nm
(Figure 15). After adjusting the Es at the four wavelengths to the
simulated values, the reconstruction was performed, with
the uncertainties quantified in the same way as for the
MOBY data. The measured values are mostly outside the
uncertainty of the reconstructed Es, confirming the possible
bias existing in the measurements. The relative errors between
the reconstructed and simulated Es using the 4 spectral bands are
within 5% from 380 to 800 nm and go up to ~9% at 350 nm. It is
within expectation that the relative differences between the
reconstructed and measured 10-nm resolved HyperOCR Es are
lower than those with MOBY data, which has approximately
1 nm resolution.

6 Discussion

As demonstrated in the previous sections, both the
multivariate linear and GAM models are capable of accurately
reconstructing Es at 0.5 nm from four 10 nm wide spectral bands
centered on 412, 489, 555, and 705 nm. The multivariate linear
model is straightforward, easy to interpret, and well suited for the
problem in this study, i.e., Es, after normalization of the incoming
TOA solar irradiance and correction of gaseous absorption,
exhibits a smooth wavelength-dependent behavior. Conversely,
the GAM model is more sophisticated and has advantages in
complex nonlinear relationships. By varying the coefficients as

FIGURE 9
Percent bias and RMSE in the reconstructed of E′

s (A) and Es (B) using the multivariate linear model (blue) and GAM (red) with the validation data set.
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functions of SZA and AOT550 in the GAM, the accuracy in
reconstructing Es is slightly improved. This is consistent with the
analysis of the correspondence between E′

s and different variables
(Figure 5). This analysis suggests that only small residual errors
exist between the E′

s and Es,est
′ , which indicates that the relation

between the E′
s to be reconstructed and the E′

s at the four 10-nm
bands is almost linear, and such residual errors can be explained
by parameters including SZA and AOT550, the two parameters
with the highest β compared to other geophysical parameters.
Moreover, it is worth noting that the GAM model is more
sensitive to noise. As a result, it is concluded that multivariate
linear model is a more suitable choice in this study in terms of
model accuracy and sensitivity.

Instead of just utilizing the four multi-spectral bands at 412,
489, 555, and 705 nm, it is also possible to use other sets of
wavelengths. For example, if we incorporate three additional
wavelengths at UV, i.e., 325, 340, and 380 nm, the optional
wavelengths that can be customized to the commercial Sea-
Bird, Inc. OCR multi-spectral (7-band) radiometer, the RMSE
of E′

s at UV exhibits significant reduction, with the maximum
dropped from 0.6% to 0.02% and mostly remaining below 0.01%
(Figure 16). The errors at other wavelengths also decrease to a
certain extent, but not as much as in the UV. One may also be
tempted to add more bands in the near infrared so that the RMSE

can be further reduced in this range. However, one needs to have
in mind that the major uncertainty comes from the estimation
of Tg .

In the evaluation of the model sensitivity to noise, it is found
that the instrument calibration noise is the major contributor to
the uncertainties in E′

s. For example, at 320.25 nm, with no noise
the percent bias and RMSE in E′

s are −0.01% and 0.50%,
respectively; the percent RMSE increases to 1.82% if added
noise and the percent bias remains the same. The noise in the
input PS, U_o3, and U_h2o affect the estimation of Tg , and this is
another important source of uncertainties in the final restitution
of Es, especially at wavelengths affected by gaseous absorption.
When Tg noise is included, the percent RMS of Es increases from
1.86% to 1.94% at 320.25 nm, but changes from 2.78% to 3.60% in
the oxygen band near 760 nm. To ensure accurate Es

reconstruction, it should be verified that the input
multispectral Es is not biased, for example by checking against
radiative transfer simulations during very clear sky conditions
(i.e., with small aerosol content), as indicated in Section 2. If the
input Es is biased, one may expect that the reconstructed Es will
be biased and the uncertainties could be large.

Since the presented method is capable of accurately
reconstructing Es at 0.5 nm resolution, it can be easily adapted
to different sensors with varying spectral characteristics. One

FIGURE 10
Comparison of the reconstructed E′

s using interpolation/extrapolation, multivariate linear model, and GAM for three cases in the calibration dataset
with solar zenith angle (SZA) of 30°, 60°, and 75°. E′

s difference is defined as the prescribed minus the reconstructed value.
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potential and important use in the context of the upcoming
PACE mission (scheduled to launched in February 2024) is
reconstructing the OCI hyper-spectral Es signal using
measurements in the four multi-spectral measurements of the
current HyperNav system. Figure 17 illustrates an example of
reconstructed Es at OCI wavelengths using simulated HyperNav
Es measurements for a clear day. Results show that the OCI Es can
be reconstructed accurately, with the relative differences within

1% from 360 nm to 900 nm. In the UV, the errors increase with
wavelength, with the highest values of ~4% and ~7%, depending
on the Sun zenith angle (high Sun zenith angle means low Es and
relatively large uncertainties). With such reconstructed Es data,
the HyperNav system is able to provide hyper-spectral Rrs by
normalizing the measured hyper-spectral Lw against Es, which
has great significance for the calibration and validation of the
PACE mission.

FIGURE 11
Same as Figure 9, but with noise added to Es in the validation dataset and typical noise added to U_h2o, U_o3, and PS in Tg estimation. See text for
more details.

FIGURE 12
(A)Measured and reconstructed MOBY Es on 27 May 2017, and (B) percent relative error between the measured and reconstructed Es . Green, blue,
and red dashed lines correspond to 0, 5, and 10% errors, respectively.
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7 Summary and conclusion

Spectral Es at 0.5 nm resolution can be reconstructed accurately
from Es measurements in 4 spectral bands 10 nm-wide centered on
412, 489, 555, and 705 nm, such as those by an OCR SeaBird, Inc.
planar irradiance sensor mounted on the HyperNav
spectroradiometer/float system, using a multivariate linear model
with constant coefficients or a GAM with coefficients dependent on
SZA and AOT550. The models require as input, in addition to the
4 Es measurements, the content of gaseous absorbers (vertically
integrated content for ozone and water vapor and surface pressure
for oxygen and other gases). In the absence of noise, both models
yield biases less than 0.4% in magnitude and RMSEs less than 2.5%.
The largest errors are obtained in regions of strong absorption
bands. Errors are smaller in the UV with the GAM model,
i.e., 0.2% instead of 0.6%. In the presence of typical noise on
the input variables, biases and RMSEs are generally less than 1.5%
in magnitude and 3.5%, respectively, except in the center of the
oxygen A-band (−2.7% and 5.3%). The GAM model is more
sensitive to noise, i.e., the gain in accuracy in the UV in the
absence of noise is practically lost in the presence of noise. The
complexity of the GAM model, therefore, may not be justified,
unless the typical noise in the input variables can be reduced.

Using additional bands in the UV, i.e., at 325, 340, and
380 improves theoretical performance in the UV without
noise, but marginally in practice because the Es error is
dominated by Tg uncertainties.

Evaluation of the multivariate linear model with constant
coefficients against in-situ hyper-spectral Es measurements at the
MOBY site revealed Es spectra reconstructed with biases less than
2% in magnitude and RMSE ranging from 1% to 2% in the visible to
5% in the UV, in agreement with theoretical uncertainties estimated
using the Monte Carlo method. It is important, however, before
doing any reconstruction, to check whether the multi-band Es
measurements are not biased (e.g., due to exposure, calibration,
or processing errors), which can be accomplished by comparing the
measurements to accurate radiative transfer calculations under
favorable conditions. This revealed a significant bias in the
HyperOCR Es data acquired near the MOBY site.

The methodology, by providing a way to accurately reconstruct
Es at 0.5 nm resolution from Es measurements at a few 10 nm-wide
spectral bands, as demonstrated theoretically and experimentally,
allows normalization of hyper-spectral Lw data acquired by
HyperNav systems for validation activities of the PACE mission.
The modeling does not replace hyper-spectral Es measurements,
such as those made by the MOBY system, but is adequate in many

FIGURE 13
Comparisons between measured and reconstructed MOBY Es on 27 May 2017 at (A) 340–450 nm, (B) 450–550 nm, (C) 550–650 nm, and (D)
650–750 nm. Shaded areas indicate the uncertainties of the reconstructed Es.
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aquatic optics applications, for which the acquisition of a relatively
expensive hyper-spectral Es sensor, costly to maintain and
calibrate, may therefore not be necessary. The methodology is
applicable to other sets of spectral bands, i.e., those of other

multi-band radiometers than the Seabird Inc. OCR used here, but
accuracy of the reconstruction will depend on the bands position
in the solar spectral range. Now, because the optical properties of
clouds, like those of aerosols, and their effects on Es vary

FIGURE 14
Comparisons between measured and reconstructed MOBY Es at 380, 480, 580, and 680 nm.

FIGURE 15
(A) Measured (blue solid) HyperOCR Es on 16 June 2021. ATDECO simulations (black solid) show that the HyperOCR Es is off and needs to be
adjusted. The reconstructed Es after adjustment (red solid) shows good agreement with the ARTDECO simulated values. Shaded areas indicate the
uncertainties of the reconstructed Es. (B) Percent relative error between the ARTDECO simulated and the reconstructed Es after adjustment. Green and
blue dashed lines correspond to 0% and 5% errors, respectively. Blue and black dots represent the Es measured before and after adjustment.
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relatively smoothly with wavelength in the UV to near infrared,
the modeling can be extended to estimating spectral Es in all sky
conditions, although the coupling between absorption by gases
and scattering by cloud droplets may complicate the treatment of
Tg in some spectral regions. Such extension is envisioned in
future work.
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