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The first life was believed to emerge in the early Earth via a process involving

synthesis of organic compounds and formation of protocells. However, it is still

a puzzle how the protocell with hierarchal structure and desirable functions was

spontaneously generated in the non-living environment composed of mainly

water andminerals. In this work, using muscovite as an example of minerals, we

systemically studied the coacervation of poly (L-lysine) (PLL), quaternized

dextran (Q-dextran), and single-stranded oligonucleotide (ss-oligo) on

muscovite surface at varying mixing orders. Only when Q-dextran firstly

interacts with muscovite surface to form a coating layer, followed by the

addition of ss-oligo and PLL, the formed coacervates exhibit distinct and

versatile morphologies, including spherical PLL/ss-oligo droplets on the

surface, floating PLL/ss-oligo droplets above the Q-dextran/ss-oligo blanket,

and PLL/ss-oligo islands surrounded by the Q-dextran/ss-oligo sea. The kinetic

pathways to the resulting morphologies are specific in each case. There results

suggest that polysaccharide was probably the first biopolymer accumulated on

the mineral surface in early Earth. The sugar coating provided a “nest” for

protein/peptide and DNA/RNA to from sub-compartments and to further

develop advanced functions.
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Introduction

Coacervates are usually formed by oppositely charged polyelectrolytes via liquid-

liquid phase separations (LLPS) (Sing and Perry, 2020; Rumyantsev et al., 2021). It has

been demonstrated that most of the charged biopolymers, such as DNA/RNA, peptides,

proteins, lipids, and polysaccharides, are able to form coacervates of varyingmorphologies

and properties (Kruif et al., 2005; Turgeon et al., 2007; Koga et al., 2011; Wang andWang,

2014; Croguennec et al., 2017; Zhao andWang, 2017). The formed coacervates are able to

enrich molecules, catalyze reactions, and exchange materials with the external

environment (Koga et al., 2011; Williams et al., 2012; Black et al., 2014; Tang et al.,

2014; Martin et al., 2016; Nakashima et al., 2019; Poudyal et al., 2019). More importantly,

the coacervates share the same formation mechanism as the P-granules, Cajal bodies, and
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other membraneless organelles found in living cells (Brangwynne

et al., 2009; Brangwynne, 2013; Hyman et al., 2014; Feric et al.,

2016; Saha et al., 2016; Jiang et al., 2017; Nakagawa et al., 2018;

Gomes and Shorter, 2019; Sawyer et al., 2019). Therefore,

coacervates have been widely applied as membraneless

protocell models to explore the origin of life in early Earth

(Douliez et al., 2017; Kumar et al., 2018; Alberti et al., 2019;

Abbas et al., 2021; Ghosh et al., 2021; van Haren et al., 2021;

Yewdall et al., 2021). With a proper combination of the internal

components and the external stimuli, coacervate protocells have

achieved many living features, like division, evolution, and

metabolism (Dzieciol and Mann, 2012; Zwicker et al., 2016;

Nakashima et al., 2018; Spoelstra et al., 2019; Chen et al., 2020).

It is generally accepted that the life was emerged from the

non-living environment in the prebiotic Earth (Kee and

Monnard, 2016; Sahai et al., 2016). The non-living

environment in early Earth mainly consists of water, rocks

(minerals), and air (Dalai et al., 2016). Life was supposed to

originate in aqueous environment, in which process minerals

played key roles (Bernal, 1951; Wächtershäuser, 1992; Pontes-

Buarque et al., 2000; Franchi and Gallori, 2005; Gomez et al.,

2007; Wächtershäuser, 2007; Xu et al., 2013; Sand and Jelavić,

2018; Ertem, 2021). Growing evidences have demonstrated that

the mineral surface is able to concentrate organic molecules,

catalyze a variety of reactions, and even serve as reactant (Lahav

and Chang, 1976; Ertem and Ferris, 1996; Ferris et al., 1996;

Hazen et al., 2001; Ferris, 2002; Zhu et al., 2002; Huang and

Ferris, 2003; Miyakawa and Ferris, 2003; Hanczyc et al., 2007; Li

et al., 2009; Kawamura et al., 2011; Martra et al., 2014; Liao et al.,

2016; Dalai and Sahai, 2019). However, it is still a puzzle how the

biopolymers assemble into protocell with hierarchal structure

and desirable functions in an aqueous environment in the

presence of minerals. Most of the biopolymers are soluble in

water. Even though the mixing of the oppositely charged

polymers at elevated concentrations is able to generate

coacervate droplets via LLPS, it is difficult to modulate the

structure and properties of the coacervate as LLPS is a

spontaneous process. Accumulation of enough biopolymers

without hydrolysis is also a limiting step.

The mineral surfaces offer rich opportunities for

concentration of biopolymers and possibly their organization

into protocells of desirable structures. More than 400 minerals

are reported to exist before the origin of life in early Earth

(Hazen, 2013). The specific chemical component and the lattice

structure render each mineral surface unique physicochemical

properties, such as charge, hydrophobicity, functional groups,

and dynamic response to environmental conditions like pH,

temperature, and ionic strength (Sowerby et al., 2001;

Sverjensky, 2005; Sverjensky and Fukushi, 2006; Jonsson et al.,

2009). Therefore, a chosen mineral surface should be able

selectively absorb the biopolymers via attractive interactions,

and trigger the formation of protocells if the combination of

biopolymers is appropriate and they are mixed in correct order

(Hazen et al., 2001; Zaia, 2004; Gan et al., 2009). More

importantly, the relationship between the property of the

protocell and the mixing order of biopolymers should shed

light on the procedure of life’s emergence in chosen non-

living environment. To test this hypothesis, we chose

muscovite (KAl2(Si3Al)O10(OH)2) as an example of minerals,

and systematically studied the phase separation of poly (L-lysine)

(PLL), quaternized dextran (Q-dextran), and single-stranded

oligonucleotide (ss-oligo) on muscovite surface at varying

mixing orders.

Muscovite is the most abundant rock-forming mineral on

Earth and exists before the origin of life (Papineau, 2010; Hazen,

2013). It was proposed that life might originate in the space

between mica flakes, especially muscovite mica (Hansma, 2009,

2010, 2013, 2014). Furthermore, muscovite mica is often used as

a model mineral to study molecular adsorption, or a sample

substrate for atomic force microscopy, surface force apparatus,

and X-ray photoelectron spectroscopy (Binnig et al., 1986;

Israelachvili and McGuiggan, 1988; Dufrêne, 2002; Wilson

et al., 2002). It provides uniform and atomically flat surface

when cleaved along the basal plane (De Poel et al., 2014). Such

surface is a prerequisite for comparison of the coacervates under

varying conditions. PLL, Q-dextran, and ss-oligo are examples of

peptide, polysaccharides, and DNA, respectively. Results show

that the coacervates with the most distinct morphologies and

different dynamics are formed when Q-dextran firstly interacts

with muscovite surface, indicating that polysaccharide was

probably the first biopolymer synthesized and accumulated on

the mineral surface in early Earth.

Materials and methods

Materials

21-mer single-stranded oligonucleotides of random sequence

with and without Cy5 labeled on 5′-end were purchased from

Invitrogen Biotechnology Co., Ltd. (Shanghai, China). Poly-

L-lysine (PLL, MW = 30–70 kDa) with and without fluorescein

isothiocyanate (FITC) labeling were purchased from Sigma-

Aldrich (St. Louis, MI). Dextran (MW = 10 kDa) and

tetramethylrhodamine labeled dextran (TRITC-dextran, MW =

10 kDa) were purchased from Yuanye Biotechnology Co., Ltd.

(Shanghai, China) and Sigma-Aldrich (St. Louis, MO),

respectively. Quaternized dextran was synthesized in the lab

by following a procedure described elsewhere (Mason et al.,

2017). In brief, dextran was dissolved in NaOH solution,

followed by the addition of 3-chloro-2-

hydroxypropyltrimethylammonium chloride solution at 35°C.

The mixture was left to react overnight. The 1H NMR

measurement on the final product revealed that each glucose

carried 0.7 charge by average. Stock solutions of all samples were

prepared in 20 mM MES buffer at pH 6.0 and diluted to known
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concentrations before use. Muscovite mica was from Hebei,

China.

Coacervation on muscovite surface

A lab-built sample cell was used to study the coacervation of

PLL, ss-oligo, and Q-dextran. The freshly cleaved muscovite was

glued between a cover glass (0.17 mm in thickness) and a glass

chip of 5.0 mm in thickness. The glass chip was punctured with

circular holes of 6.0 mm in diameter beforehand. The cover glass

was the support of muscovite and also facilitated the observation

by microscope.

The concentrations of PLL and Q-dextran were fixed at

1.0 mg/ml and 1.8 mg/ml, respectively. The concentrations of

ss-oligo were 1.5, 3.0, and 6.0 mg/ml, corresponding to the +/−

charge ratios (the number of amine groups over the number of

phosphate groups, also named as N/P ratio) of 0.5, 1.0, and 2.0,

after forming coacervates with PLL and Q-dextran at equal

volume. The charges from the muscovite surface were not

counted on the calculation of +/− ratios. Three different

routes were applied to vary the mixing orders of PLL, ss-oligo,

and ss-oligo.

Route 1: 20 μl Q-dextran was firstly applied on the muscovite

surface. 5.0 min later, ss-oligo of same volume was added to

formed complex or coacervate with Q-dextran. After incubated

for 15 min, 20 μl PLL was added to initiate the formation of

biphasic droplets on muscovite surface. The moment of adding

PLL was set as time zero. This route was denoted as Q-dextran←
ss-oligo ← PLL.

Route 2: The mixing procedure and the incubation time in

each step was the same as those in Route 1, except that the order

of adding PLL and Q-dextran was reversed. Therefore, this route

was denoted as PLL ← ss-oligo ← Q-dextran. The moment of

adding Q-dextran in the last step was set as time zero.

Route 3: Equal volumes of PLL and Q-dextran were premixed

in a centrifuge tube. 40 μl mixed solution was then applied to the

muscovite surface. After 5 min, 20 μl ss-oligo was added to

initiate the formation of biphasic droplet, and the moment of

addition was set as time zero. This route was denoted as PLL/

Q-dextran ← ss-oligo.

Confocal microscopy

The phase separation of Q-dextran, ss-oligo, and PLL on

muscovite surface was monitored by laser scanning confocal

microscope (LSCM, Nikon A1R-si). To enable observation by

fluorescence, 1.0 wt% FITC-PLL, 1.0 wt% TRITC-Q-dextran,

and 1.0 wt% Cy5-ss-oligo were premixed with the

corresponding solutions beforehand. The excitation

wavelengths for FITC, TRITC, and Cy5 were 490 nm, 557 nm,

and 649 nm, respectively. All the settings on LSCM were kept

constant during the experiments. The visualization and analysis

of the fluorescence images were conducted by using ImageJ

software. The average fluorescence intensity at selected

time points was calculated to quantitatively describe the

growth or dissociation rate of the phases. The fluorescence

intensity was normalized by the highest value to compare the

behaviors of different phases in one plot. The area occupied

by the phases normalized by the total area was also calculated

in certain cases.

Results and discussion

There are four different types of polyelectrolytes in the

system if treating muscovite surface as a 2D and rigid

polyanion. The charge density of PLL (4.8 mmol/g, as

calculated by the number of charges per molecular weight of

monomer) is almost doubled that of Q-dextran (2.7 mmol/g),

and its backbone is also more hydrophobic. Therefore, PLL has

the priority to form complex with ss-oligo or attach on the

muscovite surface under the same conditions. Similarly, the

muscovite surface contains 2.1×1014 charges per square cm

(Güven, 1971), far less than that of ss-oligo. It is inferior to

ss-oligo in forming complex with polycations. The total negative

charges on the muscovite bottom area of 6.0 mm in diameter is

5.9×1013, which is several orders lower than that provided by

20 μl ss-oligo at 1.5 mg/ml. Therefore, the muscovite surface

generates negligible effect on the +/− charge ratio. To enhance

the effect of muscovite surface on the phase separation process,

and also to better mimic the prebiotic condition under which the

biopolymers may interact with the mineral surface in sequence,

we designed three Routes (Q-dextran← ss-oligo← PLL, PLL←
ss-oligo ← Q-dextran, and PLL/Q-dextran← ss-oligo), allowing

Q-dextran, PLL, and their mixture to firstly contact with the

muscovite surface, separately, for 5 min, followed by the addition

of ss-oligo. In each route, all the conditions are kept constant

except that the ss-oligo concentration is varied, to tune the +/−

charge ratio from 0.5 to 2.0.

Route 1: Q-dextran ← ss-oligo ← PLL

In this route, 1.8 mg/ml Q-dextran was firstly applied to the

muscovite surface for 5 min. Since the diffusion coefficient and

the charge density of Q-dextran with Mw = 10 kDa are known

(Venturoli and Rippe, 2005; Goins et al., 2008), calculation shows

that about half of the negative charges on muscovite surface are

neutralized. Ss-oligo at different concentrations is then added to

form complex with Q-dextran in the solution and on the surface.

Images are taken after incubation for 15 min.With decreasing ss-

oligo concentration from 6.0 to 1.5 mg/ml, the coacervation of

Q-dextran and ss-oligo on the muscovite surface becomes

stronger as demonstrated by the fluorescence intensity and the
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size of the coacervates (Figure 1). It is reasonable as the +/−

charge ratio of the Q-dextran/ss-oligo coacervates increases from

0.25 to unity. The neutralization of the charges results in the

formation of coacervates with larger size and higher chain

density (Luo and Wang, 2014).

1.0 mg/ml PLL was applied to initiate the formation of

biphasic droplets. The process is highly dependent on the ss-

oligo concentration or the overall +/− charge ratio. In the

case of 6.0 mg/mL ss-oligo, the +/− ratio increases from

0.25 to 0.50 after the addition of PLL. The interaction of

PLL with the extra ss-oligo molecules results in a heavy

coacervation of both PLL/ss-oligo phase and Q-dextran/ss-

oligo phase, as demonstrated by the fast growth of the two

phases (Figure 2A, 2B, and Movie S1, S2). Note that each

phase contains all the three components. For simplicity, only

the two major components are mentioned to distinguish the

phases. Fluorescence intensity indicates that concentration

of ss-oligo is much higher in PLL-rich phase (Figure 2A).

FIGURE 1
Coacervation of Q-dextran and ss-oligo on muscovite surface. The concentrations of ss-oligo were (A) 6.0 mg/ml, (B) 3.0 mg/ml, and (C)
1.5 mg/ml. Q-dextran at 1.8 mg/ml was applied 5.0 min earlier than ss-oligo. The orange and red color denote the traces of TRITC-Q-dextran and
Cy5-ss-oligo, respectively. The contract of the right corner in (B) is enhanced to show the distribution of ss-oligo. Scale bars, 20 μm.

FIGURE 2
Coacervation on muscovite surface via Q-dextran ← ss-oligo ← PLL. The concentrations of ss-oligo, Q-dextran and PLL are 6.0, 1.8, and
1.0 mg/ml, respectively. The final +/− ratio is 0.5. (A) Time series of images showing the phase separation by overlay of FITC-PLL/TRITC-Q-dextran
(green and orange), TRITC-Q-dextran (orange), and Cy5-ss-oligo phase (red), scale bars: 20 μm. (B) Time dependence of the normalized intensity of
PLL and Q-dextran.
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FIGURE 3
Coacervation on muscovite surface via Q-dextran ← ss-oligo ← PLL. The concentrations of ss-oligo, Q-dextran and PLL are 3.0, 1.8, and
1.0 mg/ml, respectively. The final +/− ratio is 1.0. (A) Time series of images showing the phase separation by overlay of FITC-PLL/TRIRC-Q-dextran
(green and orange), TRIRC-Q-dextran (orange), and Cy5-ss-oligo phase (red). Scale bars: 20 μm. (B) Time dependence of the normalized intensity of
PLL and Q-dextran.

FIGURE 4
Coacervation on muscovite surface via Q-dextran ← ss-oligo ← PLL. The concentrations of ss-oligo, Q-dextran and PLL are 1.5, 1.8, and
1.0 mg/ml, respectively. The final +/− ratio is 2.0. (A) Time series of images showing the phase separation by FITC-PLL/(green), TRITC-Q-dextran
(orange), Cy5-ss-oligo phase (red), and overlay of PLL andQ-dextran. Scale bars: 20 μm. (B) Time dependence of the normalized intensity of PLL and
Q-dextran. (C) Time dependence of the normalized area of PLL and Q-dextran.
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Because Q-dextran is coated on the muscovite surface

beforehand, the Q-dextran/ss-oligo phase is continuous,

while the PLL/ss-oligo phase is isolated. Another

interesting feature is that the continuous Q-dextran/ss-

oligo phase is not uniform in component distribution, but

forms wrinkles around the PLL/ss-oligo phases especially at

the later stage (Movie S2). We attribute it to the elevated ss-

oligo concentration in PLL/ss-oligo phase, which generates a

strong coacervation of Q-dextran and ss-oligo in the

periphery of the PLL/ss-oligo phase.

FIGURE 5
Coacervation of PLL and ss-oligo on muscovite surface. The concentrations of ss-oligo were (A) 6.0 mg/ml, (B) 3.0 mg/ml, and (C) 1.5 mg/ml.
The right corner in the selected panels shows the same image but intensified 10 times to reveal the phases. PLL at 1.0 mg/ml was applied 5.0 min
earlier than ss-oligo. The green and red color denote the traces of FITC-PLL and Cy5-ss-oligo, respectively. Scale bars, 20 μm.

FIGURE 6
Coacervation onmuscovite surface via PLL← ss-oligo←Q-dextran. The concentrations of ss-oligo, Q-dextran and PLL are 1.5, 1.8, and 1.0 mg/
ml, respectively. The final +/− ratio is 2.0. (A) Time series of images showing the phase separation by (A) overlay of FITC-PLL/TRITC-Q-dextran
(green/orange), (B) TRITC-Q-dextran (orange), and (C) Cy5-ss-oligo phase (red). Scale bars: 10 μm.
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In the case of 3.0 mg/ml ss-oligo, the addition of PLL

increases the +/− ratio from 0.50 to 1.0, indicating that the

excess ss-oligo molecules form complex with PLL at unified +/−

ratio. Spherical PLL/ss-oligo coacervates are formed and float in

the solution instead attaching on the surface (Movie S3).

Both the size and the number of such coacervates increase

with time. The spherical shape is maintained throughout the

studied time period (Figure 3A). The Q-dextran/ss-oligo

phase exhibits quite different behavior. A fast growth and

spreading on the muscovite surface occur with time

(Figure 3A, 3B and Movie S4). Some spherical droplets

are also shown in Q-dextran channel, especially in the

later stage, but these are the same droplets observed in

PLL channel. It is normal to form spherical droplets

containing both PLL and Q-dextran at elevated

concentrations at +/- = 1.0. Again, ss-oligo molecules

mainly stay with PLL (Figure 3A).

In the case of 1.5 mg/ml ss-oligo, all ss-oligo molecules

form coacervates with Q-dextran. The addition of PLL

increases the +/− ratio from 1.0 to 2.0, and polycations

are in excess. A fast growth of both PLL/ss-oligo phase

and Q-dextran/oligo phase on the muscovite surface

occurs at early stage. As the content of PLL reaches a

certain value, the Q-dextran/ss-oligo phase is not stable. It

undergoes a swelling and dissociation process to detach from

the muscovite surface, followed by escaping of the majority

FIGURE 7
Coacervationonmuscovite surface via PLL← ss-oligo←Q-dextran. The concentrations of ss-oligo, Q-dextran and PLL are 3.0, 1.8, and 1.0 mg/ml,
respectively. The final +/− ratio is 1.0. (A) Time series of images showing the phase separation by overlay of FITC-PLL/TRITC-Q-dextran (green/orange),
TRITC-Q-dextran (orange), and Cy5-ss-oligo phase (red). Scale bars: 20 μm. (B) Time dependence of the normalized intensity of PLL and Q-dextran.

FIGURE 8
Coacervation on muscovite surface via PLL ← ss-oligo ←Q-dextran. The concentrations of ss-oligo, Q-dextran and PLL are 6.0, 1.8, and
1.0 mg/ml, respectively. The final +/− ratio is 0.5. Time series of images showing the phase separation by overlay of FITC-PLL/TRITC-Q-dextran
(green/orange), TRITC-Q-dextran (orange), and Cy5-ss-oligo phase (red). Scale bars: 20 μm.
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of Q-dextran and less amount of ss-oligo (Figure 4A, 4B and

Movie S5, S6). The PLL/ss-oligo phase still grows but at a

much lower rate during the release of Q-dextran/ss-oligo

phase. As more ss-oligo molecules are captured, the PLL/ss-

oligo phase shrink into spherical shape (Figure 4C and Movie

S6, S7). The amount of Q-dextran reaches minimum and

mainly stays as the minor component of the PLL/ss-oligo

phase.

Route 2: PLL ← ss-oligo ← Q-dextran

PLL at 1.0 mg/ml is firstly applied on muscovite surface,

followed by the addition of ss-oligo 5.0 min later. PLL and ss-

oligo form spherical coacervate on the mineral surface at all the

studied +/− ratios, with the heaviest coacervation occurring at +/

− = 1.0 (Figure 5). Different from the behavior of Q-dextran/ss-

oligo (Figure 1), the PLL/ss-oligo coacervate does not form an

FIGURE 9
Coacervation on muscovite surface via PLL/ss-oligo←Q-dextran. The concentrations of ss-oligo, Q-dextran and PLL are 1.5, 1.8, and 1.0 mg/
ml, respectively. The final +/− ratio is 2.0. (A) Time series of images showing the phase separation by overlay of FITC-PLL/TRITC-Q-dextran (green/
orange), TRITC-Q-dextran (orange), and Cy5-ss-oligo phase (red). Scale bars: 20 μm. (B) Time dependence of the normalized intensity of PLL and
Q-dextran.

FIGURE 10
Coacervation on muscovite surface via PLL/ss-oligo←Q-dextran. The concentrations of ss-oligo, Q-dextran and PLL are 3.0, 1.8, and 1.0 mg/
ml, respectively. The final +/− ratio is 1.0. Time series of images showing the phase separation by overlay of FITC-PLL/TRITC-Q-dextran (green/
orange), TRITC-Q-dextran (orange), and Cy5-ss-oligo phase (red). Scale bars: 20 μm.
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effective coating. We attribute it to the hydrophobicity of PLL/ss-

oligo, which reduces its wetting ability on the hydrophilic

muscovite surface.

The addition of Q-dextran 15 min later initiates the

formation of biphasic coacervates. The process is dependent

on the concentration of ss-oligo or +/− charge ratio. In the

case of 1.5 mg/ml ss-oligo, all ss-oligo molecules basically form

coacervates with PLL in the first place. Because ss-oligo has the

priority to form complex with PLL, the addition of Q-dextran

does not generate prominent effect on the coacervation on

FIGURE 11
Coacervation on muscovite surface via PLL/ss-oligo←Q-dextran. The concentrations of ss-oligo, Q-dextran and PLL are 6.0, 1.8, and 1.0 mg/
ml, respectively. The final +/− ratio is 0.5. Time series of images showing the phase separation by overlay of FITC-PLL/TRITC-Q-dextran (green/
orange), TRITC-Q-dextran (orange), and Cy5-ss-oligo phase (red). Scale bars: 20 μm.

FIGURE 12
Coacervates on themuscovite surfaces at the ending stage as formed by different mixing orders and at +/− ratios of 0.5, 1.0, and 2.0. The green,
red, and orange color denote the traces of PLL, ss-oligo and Q-dextran, respectively. Scale bars, 20 μm.
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muscovite surface as indicated by the fluorescence intensity

(Figure 6B). However, the deviation of +/− ratio from unity to

2.0 results in a slow dissociation of larger size PLL/ss-oligo

coacervates (indicated by the arrow in Figure 6A), together

with the formation of spherical droplets floating in the

solution (Figure 6A and 6B, Movie S8).

In the case of 3.0 mg/ml ss-oligo, the addition of Q-dextran

increases the +/− ratio from 0.50 to 1.0, indicating that all the ss-

oligo molecules form complex with PLL or Q-dextran. A fast

growth of both PLL/ss-oligo and Q-dextran/ss-oligo occurs with

time (Figure 7A and 7B). The Q-dextran/ss-oligo phase has the

tendency to spread all over the muscovite surface (Movie S9),

while the PLL/ss-oligo phase forms cluster structure via growth

and fusion on the top of the continuous Q-dextran/ss-oligo phase

(Movie S10). The decrease of the fluorescence intensity for all the

three components in the ending stage (40.3 min) is probably

caused by the mingling of the two phases.

In the case of 6.0 mg/mL ss-oligo, the amount of ss-oligo is in

excess before and after the addition of Q-dextran, indicating

that all PLL and Q-dextran form complex or coacervates with

ss-oligo. Similar as the phase separation in 3.0 mg/mL ss-

oligo (Figure 7), the Q-dextran/ss-oligo phase spreads on the

muscovite surface, while the PLL/ss-oligo phase forms

clusters and then network on the top of the continuous

Q-dextran/ss-oligo phase (Figure 8, Movie S11, S12). The

borderline between the two phase are more distinct than that

in 3.0 mg/mL ss-oligo.

Route 3: PLL/Q-dextran ← ss-oligo

The above results indicate that PLL and ss-oligo form stable

coacervates under all the studied conditions, as demonstrated by

their coincident fluorescence intensity, while Q-dextran/ss-oligo

phase exhibits stronger capacity to coat the muscovite surface.

The strong coating ability is attributed to the hydrogen bonding

between Q-dextran and the muscovite surface (Jucker et al., 1997;

Kwon et al., 2006). As the mixture of PLL and Q-dextran is firstly

applied on the muscovite surface, followed by the addition of ss-

oligo 5 min later, the phase separation process is determined by

property of both PLL and Q-dextran.

In the case of 1.5 mg/ml ss-oligo, the charge ratio is 2.0, and

polycations are in excess. Because Q-dextran is coated on the

muscovite surface beforehand and concentrated, ss-oligo has the

tendency to form coacervate with the Q-dextran coating

(Figure 9, Movie S13). Besides being the minor component of

the Q-dextran/ss-oligo phase (Figure 9B,Movie S14), PLL and ss-

oligo mainly form spherical droplets which float in the solution.

In the case of 3.0 mg/ml ss-oligo, the ± charge ratio is unity.

Similar situation is observed. Heavy coacervation of Q-dextran

and ss-oligo occurs on the muscovite surface because of the

coating beforehand (Figure 10). Meantime, PLL and ss-oligo

form spherical droplets and stay mainly in the solution. In the

later stage, however, a few PLL/ss-oligo droplets attach on the

coated Q-dextran/ss-oligo phase (Figure 10 and Movie S15).

In the case of 6.0 mg/ml ss-oligo, the +/− charge ratio is 0.5.

All PLL and Q-dextran form coacervate with ss-oligo. The excess

ss-oligo renders the Q-dextran/ss-oligo complex negative in

nature, leading to weak Q-dextran/ss-oligo coating on the

muscovite surface (Figure 11). PLL and ss-oligo mainly form

spherical droplets in the early stage. Driven by gravity, the PLL/

ss-oligo droplets fall on the muscovite surface and fuse into a

“blanket”, covering most of the surface (Figure 11).

Conclusion

The coacervates of PLL, ss-oligo, and Q-dextran exhibit

different morphologies on the muscovite surface, which is

highly dependent on the mixing order and the +/− ratios. It is

the interplay of the four charged components (muscovite surface

is treated as a polyanion) that determines the kinetics and the

structure of the coacervates. Clearly, the charge density and

hydrophobicity play key roles during the coacervation process.

A comparison of the size and intensity of the coacervates

(Figure 12) indicates that the Route 1, in which Q-dextran

firstly interacts with the muscovite surface, generates the most

distinct and versatile morphologies, including the spherical PLL/

ss-oligo droplets on the surface at +/− = 2.0, floating PLL/ss-oligo

droplets above the Q-dextran/ss-oligo blanket on the surface

at +/− - = 1.0, and PLL/ss-oligo islands surrounded by the

Q-dextran/ss-oligo sea at +/− = 0.5. Moreover, the kinetic

path of each morphology is specific as indicated the

supplementary movies. For example, the PLL-ss-oligo droplets

on the surface is formed by forced dissociation of Q-dextran/ss-

oligo phase, with Q-dextran being expelled and ss-oligo being

captured (Figure 4 and Supplementary Movies S5~S7). In Route

two and Route 3, the coacervations on the muscovite surface are

much weaker in most of the cases as indicated the fluorescence

intensity. The coacervates at different charge ratios are also

formed by similar path way: the intensity of both PLL and

Q-dextran monotonously increase with time.

Formation of protocell with hierarchical structures and

desirable biofunctions is the bridge from non-living matter to

life. Themorphologies (Figure 12) and the formation pathways of

the coacervates on muscovite surface suggest that polysaccharide

is probably the first biopolymer synthesized and accumulated on

the mineral surface, which provides a “nest” for protein/peptide

and DNA/RNA to from sub-compartments and to further

develop advanced functions. Different from peptide and DNA,

polysaccharides possess hydrophilic backbone and cannot be

hydrolyzed in aqueous solution at normal conditions. On one

hand, polysaccharides can reach much higher concentration in

water. On the other hand, polysaccharides can retain large

amount of water in the presence of hydrophobic biopolymers,

such as peptides and lipids. More importantly, polysaccharides
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can wet the mineral surface in most of the cases, serving as a

lubricate or protecting layer to ensure the integrity and mobility

of other biopolymers. Taken together, our work provides a

further understanding of the functions of biopolymers and

their evolution pathway into protocell and possibly first life in

the early Earth.
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