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Buckling plays a critical role in the transport and dynamics of elasticmicrofilaments in
Stokesian fluids. However, previous work has only considered filaments with
homogeneous structural properties. Filament backbone stiffness can be non-
uniform in many biological systems like microtubules, where the association and
disassociation of proteins can lead to spatial and temporal changes into structure.
The consequences of such non-uniformities in the configurational stability and
transport of these fibers are yet unknown. Here, we use slender-body theory and
Euler-Bernoulli elasticity coupled with various non-uniform bending rigidity profiles
to quantify this buckling instability using linear stability analysis and Brownian
simulations. In shear flows, we observe more pronounced buckling in areas of
reduced rigidity in our simulations. These areas of marked deformations give rise
to differences in the particle extra stress, indicating a non-trivial rheological response
due to the presence of these filaments. The fundamental mode shapes arising from
each rigidity profile are consistent with the predictions from our linear stability
analysis. Collectively, these results suggest that non-uniform bending rigidity can
drastically alter fluid-structure interactions in physiologically relevant settings,
providing a foundation to elucidate the complex interplay between
hydrodynamics and the structural properties of biopolymers.
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1 Introduction

Elastic filaments such as actin and microtubules serve as the backbone of cells by providing
structural integrity to the intracellular matrix. Beyond this core function, fluid-structure
interactions between these elastic fibers and their surrounding fluid are essential to many
biological processes. One such example is cytoplasmic streaming, a process where motor
protein movement in filament networks can drive fluid flow within cells (Verchot-Lubicz and
Goldstein, 2010;Woodhouse and Goldstein, 2013; Suzuki et al., 2017). Advances in microfluidic
methods and the rich non-linear dynamics that arise from the fluid-structure interactions have
spurred many experimental, analytical and numerical investigations into the
elastohydrodynamics of single filament systems (Wiggins et al., 1998; Chelakkot et al.,
2010; Chelakkot et al., 2012; Kantsler and Goldstein, 2012; Harasim et al., 2013;
Chakrabarti et al., 2020a; Chakrabarti et al., 2020b).

Like the deformation of Euler beams, elastic filaments moving freely in viscous fluids can
undergo a buckling instability if the compressive forces acting upon the filament exceed the
internal restorative elastic forces. This phenomenon has been well characterized in cellular
(Young and Shelley, 2007; Wandersman et al., 2010; Quennouz et al., 2015), extensional
(Kantsler and Goldstein, 2012; Manikantan and Saintillan, 2015), shear (Becker and Shelley,
2001; Liu et al., 2018), and other flow profiles (Chakrabarti et al., 2020a; Chakrabarti et al.,
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2020b). Thermal fluctuations due to Brownian motion add additional
subtleties to this elastohydrodynamic problem: experiments have
demonstrated the rounding of this buckling instability (Kantsler
and Goldstein, 2012), which has been analytically substantiated as
well (Baczynski et al., 2008; Manikantan and Saintillan, 2015). This
well-characterized instability is crucial in dictating the transport of
these filaments. Bending and buckling allows fibers to move as random
walkers near hyperbolic stagnation points in a 2D cellular flow array
(Young and Shelley, 2007), whereas thermal fluctuations hinder the
transport of these fibers and trap them within the vortical cells
(Manikantan and Saintillan, 2013). More recently, filaments have
been shown to be trapped around circular objects due to flow-
induced buckling (Chakrabarti et al., 2020b).

However, in all of these studies, the bending stiffness or rigidity of
the filament backbone is assumed to be uniform. This may not hold
true in many physical systems. For example, protein adsorption onto
filaments can be highly non-uniform, following heterogeneous
condensation that has been linked to the Rayleigh-Plateau
instability (Hernández-Vega et al., 2017; Setru et al., 2021). This
non-uniformity has been characterized in recent experiments that
correlate regions of increased microtubular bending with enhanced
protein adsorption (Tan et al., 2019). Another example involves
chromatin fibers with highly non-uniform bending-stiffness profiles
that display anomalous segregation and depletion, playing a crucial
role in genome organization inside eukaryotic cells (Girard et al.,
2020). Some past studies have modeled filaments with heterogeneous
mechanical properties and predicted their resulting deformation and
fragmentation behavior (De La Cruz et al., 2015; Lorenzo et al., 2020),
but it is unclear what shapes and configurations these filaments can
assume. A platform to predict the expected filament shapes and
buckling thresholds of non-uniformly stiff filaments in fluid flow
has not yet been established. Moreoever, a quantitative analysis of the
growth of buckling modes is still missing. In this work, we present
results from linear stability analysis and non-linear simulations for
heterogeneously stiff filaments undergoing the buckling instability
in flow.

In what follows, we provide a mathematical description of
filaments with non-uniform and heterogeneous rigidity profiles
coupled to slender-body theory for viscous flows. In addition to a
constant bending rigidity traditionally used in conjunction with
slender-body theory, we analyze two examples of asymmetrical
rigidity profiles with analytical forms motivated by protein
attachment/detachment onto/from filaments. We also lay out the
process to determine fundamental modes or shapes for any rigidity
profile, and provide a consistent framework to extract amplitudes of
these modes from future simulations and experiments. We use this
platform to report qualitative and quantitative differences in linear
stability analyses and non-linear Brownian simulations across select
non-uniform stiffness profiles.

2 Problem description

Describing the dynamic conformations of flexible filaments in
flow requires solving the Navier-Stokes equation coupled to elastic
equations for the filament backbone. The length and time scales are
such that the Navier-Stokes equation reduces to the Stokes equation:
classic works on slender-body theory for low-Reynolds-number
hydrodynamics then describe the fluid dynamics of the problem if

the force distribution corresponding to the presence of a filament are
known (Batchelor, 1970a; Keller and Rubinow, 1976; Johnson, 1980).
For this work, we will use the local Brownian motion variation of
slender-body theory to couple microfilament dynamics with a viscous
fluid (Tornberg and Shelley, 2004; Manikantan and Saintillan, 2013;
Manikantan and Saintillan, 2015). This variation accounts for the
anisotropy of the filament based on its shape and orientation, but
neglects non-local hydrodynamic interactions between different
points on the filament.

2.1 Energy functional and force balance

We will consider an inextensible elastic filament of characteristic
thickness 2a and length L which is parameterized by arclength s. Here,
s is a material parameter for the filament that serves to discretize the
filament backbone from −L/2 to L/2 and thus is independent of time t.
The slenderness of the filament is captured by the slenderness ratio ε =
a/L≪ 1. The centerline coordinates of the filament are x(s, t) = (x (s, t),
y(s, t), z(s, t)); for the purposes of this work, we shall consider flow and
buckling in the 2D x–y plane. When a non-Brownian filament is
placed in flow, the competition between the external viscous forces and
internal elastic or tensile forces describes its dynamics. We follow the
approach used by Li et al. (2013) to derive a non-uniform force across
such a filament, starting with the energy functional:

E � 1
2
∫ −L/2

L/2
κ s( )x2ss + T s( ) xs · xs − 1( )( ) ds − ∫ −L/2

L/2
f s( ) · x s( ) ds. (1)

Here, κ(s) is the non-uniform stiffness or bending modulus of the
filament (κ(s) = E(s)I where E(s) is Young’s Modulus and I = πa4/4 is
the second moment of inertia of a rod), xss is the filament curvature, T
represents the line tension experienced by the filament which enters as
a Lagrange multiplier, and f is the force per unit length exerted on the
filament by the fluid. All subscripts on variables represent partial
derivatives with respect to the subscript unless otherwise stated.

Physically, the terms in the first integral of Eq. 1 corresponds to an
energetic penalty for bending and stretching, respectively. The last
integral term relates the energy to the force at a particular location on
the filament. To obtain this force, we can take variational derivatives of
the energy functional above via the Euler-Lagrange Equation:

zE
zx

− z

zs

zE
zxs

( ) + z2

zs2
zE
zxss

( ) � 0. (2)

This gives the dimensional force acting on the filament in the
absence of Brownian motion:

f s( ) � − T s( )xs( )s + κ s( )xss( )ss. (3)

2.2 Constitutive equations of motion

The filament is immersed in a fluid of viscosity μ with an imposed
velocity field U0(x(s, t), t). The velocity of the filament is then
approximated by the local version of the slender-body theory
centerline equation (Batchelor, 1970a; Keller and Rubinow, 1976;
Johnson, 1980; Tornberg and Shelley, 2004; Manikantan and
Saintillan, 2013; Manikantan and Saintillan, 2015; Chakrabarti
et al., 2020b):
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8πμ xt s, t( ) − U0 x, t( )( ) � −Λ f[ ]. (4)
Here, xt is the time derivative of the filament centerline, Λ is a local
operator that captures the filament’s anisotropic interaction with the
surrounding fluid, and f is the force per unit length acting on the
filament as given by Eq. 3. The local operator is given by

Λ[f] s( ) � c + 1( )I + c − 3( )xsxs( ) · f , (5)
where xsxs is the dyadic product of the unit vectors xs(s) that are locally
tangent to the filament centerline and c = ln(1/ε2).

In the absence of Brownianmotion, we non-dimensionalize Eqs. 3,
4 with length scales over L, time with the fluid flow strength _γ, and
forces with a characteristic elastic force κ/L2. These quantities collect
into a single dimensionless parameter:

�μ � 8πμ _γL2

κ/L2
, (6)

which can be interpreted as the ratio of viscous forces to elastic forces.
Non-dimensionalization of Eqs. 3, 4 respectively results in the
following dimensionless centerline velocity and force expressions.

�μ xt s, t( ) − U0 x s( ), t( )( ) � −Λ f[ ], (7)
f s( ) � − Txs( )s + B s( )xss( )ss, (8)

Where B(s) is now the dimensionless stiffness profile across the
filament. All variables hereafter are assumed to be dimensionless
unless otherwise stated.

2.3 Biologically motivated stiffness profiles

Protein attachment onto microtubules and other elastic filaments
can be highly non-uniform (Hernández-Vega et al., 2017; Tan et al.,
2019; Setru et al., 2021), resulting in heterogeneous structural
properties. We are interested in the stability and configurations of
filaments with non-uniform stiffness, which could shed light into their
transport across streamlines and in complex flows. Motivated by
protein adsorption or desorption that locally strengthens or
weakens the filament backbone, we use the following analytical
forms of bending stiffness profiles (Figure 1).

B1 s( ) � 1, (9)
B2 s( ) � 1 − 1

2
e−100 s+1

4( )2 , (10)
B3 s( ) � 2 + erf 10s( ). (11)

The constant stiffness profile B1(s) is traditionally used by slender-
body theory calculations, and we use this to test our predictions
against previous works (Manikantan and Saintillan, 2015; Chakrabarti
et al., 2020a). The asymmetrical stiffness profiles B2(s) and B3(s) reflect
potential protein adsorption patterns that locally modifies filament’s
stiffness. B2(s) was chosen to model the potential stiffness profile for a
locally weak and asymmetric backbone that results in the “fish hook”-
like microtubule in Tan et al. (2019)’s study. B3(s), on the other hand,
may represent a situation where one-half of a microtubule is weakened
(or, equivalently, stiffened) due to protein condensation. Note,
however, that the framework we develop below works for any
fitted or modeled form of B(s): the choices in Eqs. 9–11 are merely
illustrative examples that we use to demonstrate our methods.

2.4 Brownian motion

Microscopic objects suspended in a fluid medium are subjected to
Brownian forces: these thermal fluctuations are characterized by kBT
where kB is Boltzmann’s constant and T is the absolute temperature.
The elastic resistance of elongated structures to bending due to
fluctuations is characterized by the persistence length ℓp = κ/kBT.
Alternatively, ℓp ameasure of distance between two points on an object
at which the local tangent vectors become uncorrelated due to thermal
fluctuations. Microtubules have a persistence length of approximately
5 mm (Gittes et al., 1993), which is roughly O(100 − 1000) times
larger than their typical lengths. Actin filaments are more easily
deformed by Brownian fluctuations, with ℓp/L � O(1 − 10) (Gittes
et al., 1993).

The stochastic Brownian force enters as an additional term in the
dimensional force expression in Eq. 3:

f s( ) � − T s( )xs( )s + κ s( )xss( )ss + fBr s, t( ). (12)
We set up Brownian forces fBr to satisfy the fluctuation-dissipation
theorem of statistical mechanics that describes a fluctuating force with

FIGURE 1
Rigidity profiles examined in this work. (A) Constant rigidity B1(s). (B) Locally weak stiffness profile B2(s) to reflect structural degradation due to protein
attachment. (C) Asymmetrically rigid stiffness profile B3(s) to reflect higher resistance to bending due to selective protein attachment one-half of the filament.
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zero mean and finite variance proportional to kBT and the
hydrodynamic resistance:

〈fBr s, t( )〉 � 0, (13)
〈fBr s, t( )fBr s′, t′( )〉 � 2kBTM

−1δ s − s′( )δ t − t′( ). (14)
Here, 〈〉 represents an ensemble average, δ is the dirac delta

function, and M is the dimensional mobility tensor (8πμ)−1 ((c+1)
I+(c−3)xsxs) from Eq. 5. Non-dimensionalizing Eqs. 4, 12 now
requires recognizing the large scale separation between the flow
and Brownian time scales (Munk et al., 2006; Manikantan and
Saintillan, 2013; Manikantan and Saintillan, 2015). To
accommodate filament deflections at these Brownian time scales,
we use the relaxation time of the elastic filament 8πμL4/κ to non-
dimensionalize time scales associated with filament movement. The
external flow field is still scaled over L _γ, and lengths and forces are
non-dimensionalized like before. The resulting dimensionless
constitutive equations for Brownian motion are then.

xt s, t( ) − �μU0 x s( ), t( ) � −Λ f[ ], (15)

f s( ) � − Txs( )s + B s( )xss( )ss +
��
L

ℓp

√
ξ s( ). (16)

Where ξ(s) is the dimensionless Brownian force.

2.5 Computational methods

We employ numerical methods that have been previously
described in detail and tested across various flow geometries
(Tornberg and Shelley, 2004; Manikantan and Saintillan, 2013;
Manikantan and Saintillan, 2015; Chakrabarti et al., 2020b). Briefly,
Eqs. 7, 15 contain an unknown line tension that is first determined by
applying the identity (xs · xs)t � 0. The resulting differential equation
in T(s) is solved using tension-free boundary conditions: T|s=±1/2 = 0.
Then, the filament position is solved with the torque-free and force-
free boundary conditions (Landau and Lifshitz, 1986):

B s( )xss|s�−1
2
� B s( )xss|s�+1

2
� 0, (17)

B s( )xss( )s|s�−1
2
� B s( )xss( )s|s�+1

2
� 0. (18)

All spatial and time derivatives are approximated with second-
order finite difference approximations (Tornberg and Shelley, 2004).
However, the fourth derivative term in the elastic term in the
expression for the force exerted on the filament enforces a
stringent restriction on the time step size. This problem is
mitigated with a semi-implicit time marching scheme previously
developed by Tornberg and Shelley (2004). The work presented
here uses a slenderness ratio ε of 0.01.

Brownian forces are calculated from Eq. 16 using previously
established methods (Manikantan and Saintillan, 2013;
Manikantan, 2015). We numerically evaluate ξ(s) as:

ξ s( ) �
�����
2

ΔsΔt

√
B · ω. (19)

Here, ω is a random vector from a Gaussian distribution of zero mean
and unit variance, Δs is the grid spacing of the filament, Δt is the time
step size, and B is the tensor square root ofM−1 such that B ·BT =M−1.
We verify our results with the uniform stiffness profile against
established past works involving non-Brownian (Tornberg and

Shelley, 2004) as well as Brownian (Manikantan and Saintillan,
2015) filaments in shear flow.

3 Results

We will first present our numerical results of non-linear
simulations of a non-Brownian fiber. We then use linear stability
analysis to help explain our numerical findings and establish key
differences between the stiffness profiles. Following this, we compare
our linear mode predictions from stability analyses with the filament
shapes observed at the onset of instability in non-linear and Brownian
simulations.

3.1 Simulation results

We begin by describing our observations from non-Brownian
simulations of a filament with the three different bending stiffness
profiles shown in Figure 1. We initially orient a filament along a
straight line at an angle of θ = 8π/9 relative to the horizontal and
supply a perturbation of magnitude O(10−4) to the filament’s y-
component to induce buckling in shear flow U0 = (y, 0) (Figure
2A). In this configuration, the filament is placed in the compressive
quadrants of shear flow, coinciding with a negative parabolic filament
tension (Figure 2B). As the filament rotates, the compressive forces
acting upon the filament eventually overcome the internal elastic
resistance to bending, causing the filament to buckle. During this
process, the filament tension loses its parabolic profile. Once the
filament is in the extensional quadrants, the internal filament
tension is positive and stretches the filament: the rightmost panels
in Figure 2 show the configuration at θ = π/9, approximately at t =
5.464. This behavior in shear flow has been well studied and
documented for a constant stiffness profile (Tornberg and Shelley,
2004). We observe qualitative differences between the filament
configuration and tension by comparing the case of constant
stiffness with the locally weak stiffness profile B2(s) and the
asymmetrically rigid stiffness profile B3(s): As expected, the
magnitude of tension fluctuations and deformations are larger for
the locally weak profile.

These differences among the stiffness profiles can be better
quantified by comparing the effective compression or the filament
end-to-end length deficit in Figure 3A. This quantity is defined as
Lee* � 1 − Lee/L, where Lee is the end-to-end distance. A locally weak
filament is more compressed relative to a uniformly stiff filament,
whereas the asymmetrically stiffer filament is more resistant to end-to-
end compression. The same trends can be quantified by comparing the
filament elastic energy Eelastic � 1/2∫L/2

−L/2 B(s)x2ss ds. We observe that
the filament compression trends are analogous to the trends in elastic
energy in Figure 3B.

These deformations and storage or dissipation of elastic energy
introduces rheological signatures in the suspended fluid (Batchelor,
1970b; Tornberg and Shelley, 2004; Chakrabarti et al., 2021). To
quantify the effects of these different stiffness profiles on the stress
system of the fluid containing the filament, we calculate the particle
extra stress tensor (Batchelor, 1970b):

σ � 1
2
∫ L/2

−L/2
f s( )x s( ) + x s( )f s( )[ ] ds. (20)
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We show the evolution of the first and second normal stress
differences, N1 = σxx−σyy and N2 = σyy−σzz respectively, in Figures
4A, B. The first normal stress difference is zero for a rigid rod rotating
in shear flow and non-zero for buckled filaments over a full rotation.
(Becker and Shelley, 2001; Tornberg and Shelley, 2004; Chakrabarti
et al., 2021) To confirm this, we quantify the total extra stress during a

full deformation cycle by integrating the area under the curves from t =
0 to t = 5.464, such that the filament is approximately oriented at π/2
from the horizontal halfway through this period (Table 1).We obtain a
small but negative value for N1,tot for a rigid rod (dotted pink line in
Figure 4A). This could be attributed to our chosen initial filament
orientation, choice of parameters, or absence of the non-local operator

FIGURE 2
(A) Snapshots of filament buckling behavior in non-Brownian shear flow at various time points based on the three different rigidity profiles, all for flow
strength �μ � 5 × 105 (B) The filament tension profile at the same timepoints as a function of the arclength s.
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FIGURE 3
(A) Measured filament compression Lee* and (B) elastic energy for the duration of the simulation of the three stiffness profiles in Figure 2. The magenta
dotted line in each panel represents a rigid, unperturbed filament. The gray dash-dot vertical line represents the time at which a rigid filament is oriented at θ =
π/2 relative to the horizontal.

FIGURE 4
Calculated partcle extra stress contributions for the three different rigidity profiles during from Figure 2: (A) First normal stress difference N1, (B) second
normal stress difference N1, and (C) shear stress σxy. The magenta dotted line in each panel represents an unperturbed filament that rotates as a rigid rod. The
gray dash-dot vertical line represents the time at which a rigid rod is oriented at θ = π/2 relative to the horizontal.
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in Eqs. 7, 8. Nonetheless, a buckled filament with a uniform stiffness
profile yields a positive non-zero first normal stress difference, in
agreement with previous studies. (Becker and Shelley, 2001; Tornberg
and Shelley, 2004; Chakrabarti et al., 2021) Interestingly, N1,tot for a
locally weak B2(s) stiffness profile is larger than that for a uniformly
stiff filament. In a confined flow geometry where the fluid is entrapped
between walls, this corresponds to the fluid exerting more stress on the
walls. N1,tot for a asymmetrically rigid B3(s) stiffness profile is also
positive and non-zero, but smaller in magnitude than the other
stiffness profiles. These results suggest that the extent of filament
buckling is correlated with the magnitude of the first normal stress
difference. Modifying the filament stiffness profile to favor buckling
deformations will increase N1,tot. The N2,tot trends are analogous to
those of N1,tot, where the total stress difference is the highest for a
locally weak filament backbone.

Plotting the evolution of shear stresses, σxy, over the duration of
the simulation also reveals differences between the three stiffness
profiles in Figure 4C. Tornberg and Shelley (2004) reported that
filament buckling reduces the shear stress in comparison to a rigid,
unbuckled filament. Excess local buckling, associated with a higher
end-to-end length deficit and elastic energy in our simulations, could
further reduce the shear stress perceived by the filament. To confirm
this, we compute the total shear stress for each stiffness profile during
the same time period as for the stress differences and report the values
in Table 1. With our chosen stiffness profiles, more buckling is
correlated with lower shear stress.

3.2 Linear stability analysis

To help explain these observed differences from our simulations,
we turn our attention to linear stability analysis for a heterogeneously
stiff filament in extensional flow; we expect quantitative features from
such an analysis to carry over to shear flow which is combination of
extension and rotation. An unperturbed filament resting in along the
x-axis of a 2D extensional flow profile of U0 = (−x, y) adopts an
unperturbed parabolic tension profile of the form T(s) �
�μ(1/4 − s2)/4c (Batchelor, 1970a; Kantsler and Goldstein, 2012).
We define the unperturbed configuration of the filament as x(s, t) =
(s, 0). Acknowledging that c≫ 1 for slender fibers where c = ln (ε2e), we
simplify Eq. 7 as

�μ xt − U0( ) � c I + xsxs( ) · f . (21)
Perturbing Eq. 21 with small vertical displacement h(s, t) and

neglecting higher order terms yields a linearized equation for
perturbations:

�μ ht − h( ) � c −2Tshs − Thss + Bsshss + 2Bshsss + B s( )hssss( ). (22)

In contrast with previous linear stability analyses, Eq. 22 accounts
for any modeled or fitted stiffness profile B(s). We perform a normal
mode analysis by setting h(s, t) � ĥ(s)eσt where ĥ(s) is the mode
shape and σ is the associated complex growth rate. Substituting the
normal modes into Eq. 22 yields the an eigenvalue-eigenfunction
(growth rate and mode shapes, respectively) problem:

B s( ) z
4ĥ

zs4
+ 2Bs

z3ĥ

zs3
+ Bss − �μ

4c
1
4
− s2[ ]( ) z2ĥ

zs2
+ �μs

c

zĥ

zs
− �μ

c
σ − 1( )ĥ � 0.

(23)
This problem is numerically solved by applying the torque-free

and force-free boundary conditions of Eqs. 17, 18. Like our
simulations, we approximate the derivatives with second-order
finite differences. The eigenspectrum maps in Figure 5 plot the real
component of the growth rate σ as a function of the flow strength �μ to
describe the stability of mode shapes for each stiffness profile. We
define the mode number of the filament shapes realized in our analysis
as the number of inflections in the mode shape at the onset of
instability and track them over a range of �μ values, but these
patterns can drastically change, as we illustrate below.

In the case of a uniform stiffness profile, plotting the growth rate as
a function of the flow strength reveals a familiar and well-studied
landscape (Young and Shelley, 2007; Guglielmini et al., 2012):
increasing the flow strength sequentially destabilizes higher
buckling modes. The first mode is typically “U” shaped and
appears at the threshold �μ ≈ 1, 258 (Table 2). This onset of
instability is consistent with previous findings (Young and Shelley,
2007; Guglielmini et al., 2012; Kantsler and Goldstein, 2012;
Chakrabarti et al., 2020a). Increasing �μ to approximately
6,358 destabilizes the second mode, typically “S” shaped. The third
mode, typically “W” shaped, becomes unstable at �μ ≈ 15, 850. The
stability curves for odd-numbered modes (first mode, third mode, etc.)
have a tendency to merge with each other, physically corresponding to
an additional “bump” appearing in the shape. For instance, the “U”
shape develops a bump in the center around the merger with the “W”

shape; likewise, even-numbered modes merge with each other
(Figure 5A). When these merger events happen, we label the
resulting shape with the higher numbered mode.

The non-uniform filament stiffness profiles lead to noticeable
changes in their respective eigenspectrum maps. The locally weak
B2(s) stiffness profile is characterized by a decrease in the rigidity
on one side of the filament, potentially decreasing the overall
stability of the filament. On the other hand, the asymetrically
rigid B3(s) stiffness profile is characterized by a rapid increase in
the rigidity on one side of the filament, potentially strengthening
the filament against buckling. Such changes to the stiffness profiles
result in an earlier or delayed onset of instability of the buckling
modes as shown in Table 2, confirming our initial hypotheses about
filament stability.

To examine the evolution of the predicted mode shapes between
the different stiffness profiles, we compare ĥ(s) for each stiffness
profile at various �μ values. Examining the first mode shape at its onset
of instability reveals minute differences in the shape between the
different stiffness profiles (Figure 6A). However, we start to see
differences in the shape of the first mode and visible effects of
asymmetry upon increasing the flow strength significantly beyond
the critical �μ corresponding to that mode (Figure 6B). Similarly,
comparing the third mode (Figures 6C, D), we see that the

TABLE 1 Total value of stress types by integration of area under the curve in
Figure 4 for each stiffness profile. The unperturbed column represents a filament
without a supplied perturbation so it rotates like a rigid rod in shear flow
(corresponding to the dotted magenta lines in Figure 4.

Stress Type Unperturbed B1(s) B2(s) B3(s)

N1,tot −20.0 84.2 135.9 27.8

N2,tot −3.1 12.6 14.7 1.90

σxy,tot 2,276.9 1,909.2 1,859.5 2,138.9
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difference in stiffness profiles results in minute differences near critical
thresholds, whereas ramping up the flow strength reveals dramatic
changes and asymmetries in the mode shape.

For all the discussion so far, we must note that linear stability
analysis predicts the most dominant mode shapes and mode
numbers at specific �μ values in a deterministic simulation. The
non-linear shapes seen in the simulations, however, depend on the
perturbations applied to the filament. In particular, real
microfilaments are subject to Brownian fluctuations and so we
can at best make statistically expected predictions of buckling
shapes or thresholds. Indeed, Brownian fluctuations are a source
of constant perturbations and excite all modes equally (Kantsler
and Goldstein, 2012), although excited modes are expected to be
consistent with the deterministic predictions (Manikantan and
Saintillan, 2015). In what follows, we develop a framework to
address stochastic buckling of Brownian microfilaments and to
quantify the role of thermal fluctuations and non-uniform rigidity
on the statistically expected stability and shape.

3.3 Comparison of simulations with stability
analysis

We will compare the predictions of the stability analyses with
filament shapes that emerge in non-linear and Brownian
simulations at short times. As an illustration, we perform
Brownian ensemble simulations (statistical averages across
200 simulations for each data point) for a moderately rigid
filament (ℓp/L = 100) with the three different stiffness profiles in
extensional flow. All modes are excited by thermal noise, and thus

one way to extract growth rates is by projecting the deflections
obtained in numerical simulations on a complete basis of
orthogonal shape functions. However, the linear operator in Eq.
23 is not self-adjoint and the eigenfunctions associated with the
normal mode analysis do not form an orthogonal basis
(Guglielmini et al., 2012; Chakrabarti et al., 2020a). Eq. 23 can
be written as a classic eigenvalue-eigenfunction problem

�μ

c
λϕ � L[ϕ], (24)

where the linear operator is

L[ϕ] � B s( ) z
4ϕ

zs4
+ 2Bs

z3ϕ

zs3
+ Bss − �μ

4c
1
4
− s2[ ]( ) z2ϕ

zs2
+ �μs

c

zϕ

zs
+ �μ

c
ϕ

(25)
andL satisfies the boundary conditions for the linear stability problem
(Section 3.2). Then, the family of eigenfunctions ϕ do not form an
orthogonal basis for the shapes that the filament can take. Here, we use
ϕ to denote the eigenfunctions of the linear operator and are identical
to the mode shapes ĥ of linear stability analysis. We denote λ as the
eigenvalues associated with this problem, which are identical to the
growth rate σ from linear stability analysis.

Thus, we seek the adjoint L† of the linear operator L. Borrowing
notation from Chakrabarti et al. (2020a), the adjoint operator L† is
defined as:

〈v,L w[ ]〉� 〈L† v[ ], w〉, (26)
〈v,L w[ ]〉 � ∫ +1/2

−1/2
vL w[ ] ds. (27)

Here, w represents eigenfunctions that satisfy the boundary
conditions for the linear stability problem (Section 3.2), and v
represents eigenfunctions that are adjoint to w. Repeated
integration by parts to satisfy Eq. 26 reveals the following adjoint
operator:

L† Φ[ ] � B s( ) z
4Φ
zs4

+ 2Bs
z3Φ
zs3

+ Bss − �μ

4c
1
4
− s2[ ]( ) z2Φ

zs2

+ �μ

2c
Φ,

(28)

with corresponding boundary conditions:

FIGURE 5
Eigenspectrum stability maps for three different rigidity profiles that highlight the stability of eachmode as a function of the elastoviscous number �μ. (A) is
constant rigidity B1(s), (B) is locally weak stiffness profile B2(s), and (C) is asymmetrically rigid stiffness profile B3(s). Positive growth rates (R(σ)>0) correspond
to unstablemodes. Modes are color-coded based on their mode number with “Other Mode Number” indicating fourth and higher modes. Data plotted on the
graphs are plotted in increments of 1,000 �μ. Insets show stiffness profiles corresponding to each eigenspectrum map.

TABLE 2 Critical flow strengths representing the onset of instability (σ =0) for the
first three modes for each rigidity profile.

Mode Number B1(s) B2(s) B3(s)

1 1,258 1,112 2,005

2 6,358 5,135 11,245

3 15,851 13,740 26,321
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s � −1/2: B s( )Φss � −B s( )Φsss − �μ

4c
Φ � 0, (29)

s � +1/2: B s( )Φss � −B s( )Φsss + �μ

4c
Φ � 0, (30)

where Φ is the adjoint eigenfunction. Throughout this formulation,
both ϕ and Φ share the same eigenvalues. And, by definition,
eigenfunction pairs ϕi and Φi are orthogonal; we can calculate the
normalization constant Ci between the two eigenfuctions by defining
an inner product:

∫ 1/2

−1/2
ϕiΦjds � Ciδij, (31)

where δij is the Kronecker delta.
Between the family of eigenfunctions ϕ and the orthogonality

condition in Eq. 31, we now have a complete basis and orthogonality
condition on which we can project any perturbed filament shape. We
do this by writing the shape of the filament ĥsim obtained during
extensional flow from non-linear simulations as a linear combination
of all the eigenfunctions weighted by an amplitude ai:

ĥsim � ∑∞
i�1

ai t( )ϕi s( ). (32)

The amplitude corresponding to each eigenfunction can be
extracted using the orthogonality condition of Eq. 31:

ai � 1
Ci
∫ L/2

−L/2
ĥsimΦi ds. (33)

In the linear short-time regime, these amplitudes grow as

ai t( ) � Aie
σ i t, (34)

where Ai is a constant. This formulation allows us to: 1) Formally
quantify the most unstable mode in Brownian non-linear simulations
based on the extracted σ i values, and 2) compare these growth rates
from simulations with the linearized and deterministic predictions of
our stability analysis.

Before such a comparison can be made, we must note
that Brownian fluctuations excite all of these orthogonal
modes (Kantsler and Goldstein, 2012; Manikantan, 2015). The
buckling amplitudes due to flow can only be reasonably
extracted above a Brownian noise floor. We thus need a
statistical estimate of the filament’s amplitude due to Brownian
fluctuations alone. We can approximate this noise floor as the
expected value of Brownian fluctuations in an extensional flow. We
follow Kantsler and Goldstein (2012) notations to represent the
elastic and tension energy of a filament due to small fluctuations
h(s) as:

E � 1
2
∫ L/2

−L/2
κ s( )h2ss + T s( )h2s( ) ds, (35)

where the tension is of the form:

FIGURE 6
Comparison of the first and third mode shapes for each rigidity profile at various �μ values. (A) and (C): The first and third mode shapes at the onset of
instability, respectively (see Table 2 for critical �μ values). (B) and (D): The first and third mode shapes at flow strengths much larger than these critical values, at
�μ � 18,000 and at �μ � 30,000 respectively. All mode shapes are normalized to a max amplitude of 1.
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T s( ) � 2πμ _γ
ln 1/ε2e( ) L2

4
− s2[ ]. (36)

In Eq. 35, we assume the rigidity of the filament κ(s) to be constant and
uniform to estimate a baseline noise floor. Integrating Eq. 35 by parts
repeatedly using the force-free and torque-free boundary conditions
and projecting h(s) onto the orthogonal eigenfunction ϕi(s) basis as
h(s) � ∑∞

n�1anϕn(s) with eigenvalues λn gives (Manikantan, 2015)

E � L

2
∑∞
n�1

a2nλn. (37)

From the equipartition principle, each independent mode in the
summation then contributes kBT/2 towards the total energy. Rescaling the
eigenvalues toΛn = λL4/π4κ and using the persistence length ℓp = κ/kBT gives:

〈aman〉 � δmn
L2

Λnπ4

L

ℓp
(38)

The values of Λn are approximated as (n+0.5)4 from numerical
calculations (Wiggins et al., 1998; Kantsler and Goldstein, 2012;

Manikantan, 2015), providing a statistical estimate for the
amplitude due to thermal fluctuations alone. We filter for extracted
amplitudes ai above the first mode’s noise floor.

Next, we individually fit each ensemble’s amplitude above this noise
floor to an exponential in time. The linear stability analysis and
corresponding growth rates use the flow rate _γ as the characteristic
time scale, whereas the Brownian simulations use the much smaller
filament relaxation timescale. To accommodate this change, the
appropriate exponential fit for the amplitude from simulations that
match the linear stability predictions must be of the form ai ~ exp
(σiτ), where τ � �μtBr and tBr is the dimensionless Brownian time scale
in simulations. We fit ln (|ai|) versus τ and select for modes whose
amplitudes linearly grow with time (R2 ≥ .60 where R2 is the coefficient
of determination from the linear fits) and calculate their respective growth
rates. This fit is only done for short times, as defined by τ ≤ .75. The
distribution of the fastest growing mode across a spectrum of flow
strengths for each bending stiffness profile is summarized in Figure 7.
Themost dominant shapes observed in our simulations are consistent with
the deterministic predictions from stability analysis, with the lower modes
becoming less dominant at higher flow strengths in favor of higher modes.

FIGURE 7
Distribution of the most unstable mode in extensional Brownian simulations in instances where the filament crossed the Brownian noise floor threshold
for (A) B1(s), (B) B2(s), and (C) B3(s). The dot-dashed lines on each graph, denoted with (2), (3), or (4) represent the calculated onset of instability for the second,
third, and fourth modes respectively (see Table 2 for the critical �μ values).

FIGURE 8
Comparison of the predicted growth rates obtained from linear stability analysis against the calculated growth rates from the Brownian extensional
simulations at ℓp/L =100 along with their corresponding mode number classifications for (A) B1(s), (B) B2(s), and (C) B3(s). The highest growth rates from either
stability analysis or simulations are plotted. Lines represent the stability analysis predictions. Diamond points represent the extracted growth rate from the
simulations.
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Additionally, we see effects of the rounded transitions of the shapes due to
thermal fluctuations, consistent with previous findings (Baczynski et al.,
2008; Manikantan and Saintillan, 2015). Note, however, the effects of the
rounded mode transitions and evolution of most modes are limited by the
number of ensembles (200 simulations each) and resolution of evaluated �μ

values (shown in increments of 5,000).
To quantitatively compare stability analysis with simulations, we

average out our ensemble data by computing the root-mean-squared
amplitude across ensembles and extracting a growth rate like above.
Like our previous analysis, we filter for amplitude values above the
noise floor and on short time scales. Figure 8 shows the growth rate of
the most unstable mode from the average ensemble simulation data
plotted along with the maximum growth rate from our linear stability
analyses. Again, we see that stability predictions and stochastic non-
linear simulations are fairly consistent in the mode that is most excited
as well as in the magnitude of the growth rate.

4 Conclusion

In summary, we have developed a framework for slender-body theory
to incorporate non-uniform bending stiffness of flexible filaments.We use
this platform to examine the flow-induced buckling behavior of realistic
microfilaments with a non-uniform elastic backbone. As a demonstration
of the method and mathematical tools, we model the adsorption or
desorption of proteins to result in a locally or asymmetrically weaker or
stiffer microfilament. We study the effects of the altered stiffness profiles
in simple shear flow, where regions of modified filament backbone give
rise to differences in the buckling patterns, tension, elastic energy, and
stress tensor components. By comparing the short-time evolution of our
Brownian and non-linear simulations to linear stability analyses for each
of the κ(s) profiles, we are able to highlight features of enhanced or
reduced local filament stiffness.

The model stiffness profiles considered in this work allowed us to
arrive at tractable filament shapes and illustrate a consistent set of
steps to extract mode shapes from simulations. However, we
emphasize that the mathematical machinery developed here is
applicable to any modeled or experimentally measured profile of
the filament rigidity. We have established the fundamental basis for
this direction of analysis of stiff biopolymers such as microtubules with
non-uniform protein condensation (Hernández-Vega et al., 2017;
Setru et al., 2021). It remains to be seen how this description
carries over to more complex flows or to substrate attachments

that arise in the experimental tracking of such microtubules (Tan
et al., 2019), and how these differences in buckling behavior translate
to large-scale filament dispersion (Manikantan and Saintillan, 2013) or
cross-streamline migration (Xue et al., 2022). Our model can be
readily extended to temporal variations in filament stiffness as well,
setting the stage for future work on finite-time kinetics of protein
adsorption/desorption and the elastohydrodynamics associated with
such a process. We anticipate that the tools and insights gathered in
the current work will support these future research directions.

Data availability statement

The raw data supporting the conclusion of this article will be made
available by the authors, without undue reservation.

Author contributions

TN and HM designed research, performed analysis and
simulations, and wrote the manuscript.

Acknowledgments

We acknowledge financial support from a GAANN fellowship
(TN) and a Hellman Foundation fellowship (HM).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Baczynski, K., Lipowsky, R., and Kierfeld, J. (2008). Stretching of buckled filaments by
thermal fluctuations. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 76, 061914–061919.
doi:10.1103/physreve.76.061914

Batchelor, G. K. (1970). Slender-body theory for particles of arbitrary cross-section in
Stokes flow. J. Fluid Mech. 44, 419–440. doi:10.1017/s002211207000191x

Batchelor, G. K. (1970). The stress system in a suspension of force-free particles. J. Fluid
Mech. 41, 545–570. doi:10.1017/s0022112070000745

Becker, L. E., and Shelley, M. J. (2001). Instability of elastic filaments in shear flow yields first-
normal-stress differences.Phys. Rev. Lett. 87, 198301–198304. doi:10.1103/physrevlett.87.198301

Chakrabarti, B., Liu, Y., LaGrone, J., Cortez, R., Fauci, L., du Roure, O., et al. (2020).
Flexible filaments buckle into helicoidal shapes in strong compressional flows. Nat. Phys.
16, 6891910689–6891910694. doi:10.1038/s41567-020-0843-7

Chakrabarti, B., Gaillard, C., and Saintillan, D. (2020). Trapping, gliding, vaulting:
Transport of semiflexible polymers in periodic post arrays. Soft Matter 16, 5534–5544.
doi:10.1039/d0sm00390e

Chakrabarti, B., Liu, Y., Du Roure, O., Lindner, A., and Saintillan, D. (2021). Signatures
of elastoviscous buckling in the dilute rheology of stiff polymers. J. Fluid Mech. 919. arXiv:
2102.11407. doi:10.1017/jfm.2021.383

Chelakkot, R., Winkler, R. G., and Gompper, G. (2010). Migration of semiflexible
polymers in microcapillary flow. Europhys. Lett. 91, 14001. doi:10.1209/0295-5075/91/
14001

Chelakkot, R., Winkler, R. G., and Gompper, G. (2012). Flow-induced helical coiling of
semiflexible polymers in structured microchannels. Phys. Rev. Lett. 109, 178101–178105.
doi:10.1103/physrevlett.109.178101

De La Cruz, E. M., Martiel, J. L., and Blanchoin, L. (2015). Mechanical heterogeneity
favors fragmentation of strained actin filaments. Biophysical J. 108, 2270–2281. doi:10.
1016/j.bpj.2015.03.058

Girard, M., de la Cruz, M. O., Marko, J. F., and Erbaş, A. (2020). Heterochromatin
flexibility contributes to chromosome segregation in the cell nucleus. bioRxiv [Preprint].
Available at: https://www.biorxiv.org/content/10.1101/2020.12.01.403832v1.

Frontiers in Soft Matter frontiersin.org11

Nguyen and Manikantan 10.3389/frsfm.2022.977729

https://doi.org/10.1103/physreve.76.061914
https://doi.org/10.1017/s002211207000191x
https://doi.org/10.1017/s0022112070000745
https://doi.org/10.1103/physrevlett.87.198301
https://doi.org/10.1038/s41567-020-0843-7
https://doi.org/10.1039/d0sm00390e
https://doi.org/10.1017/jfm.2021.383
https://doi.org/10.1209/0295-5075/91/14001
https://doi.org/10.1209/0295-5075/91/14001
https://doi.org/10.1103/physrevlett.109.178101
https://doi.org/10.1016/j.bpj.2015.03.058
https://doi.org/10.1016/j.bpj.2015.03.058
https://www.biorxiv.org/content/10.1101/2020.12.01.403832v1
https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2022.977729


Gittes, F., Mickey, B., Nettleton, J., and Howard, J. (1993). Flexural rigidity of
microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell
Biol. 120, 923–934. doi:10.1083/jcb.120.4.923

Guglielmini, L., Kushwaha, A., Shaqfeh, E. S., and Stone, H. A. (2012). Buckling
transitions of an elastic filament in a viscous stagnation point flow. Phys. Fluids 24,
123601. doi:10.1063/1.4771606

Harasim, M., Wunderlich, B., Peleg, O., Kröger, M., and Bausch, A. R. (2013). Direct
observation of the dynamics of semiflexible polymers in shear flow. Phys. Rev. Lett. 110,
108302–108305. doi:10.1103/physrevlett.110.108302

Hernández-Vega, A., Braun, M., Scharrel, L., Jahnel, M., Wegmann, S., Hyman, B. T.,
et al. (2017). Local nucleation of microtubule bundles through tubulin concentration into a
condensed tau phase. Cell Rep. 20, 2304–2312. doi:10.1016/j.celrep.2017.08.042

Johnson, R. E. (1980). An improved slender-body theory for Stokes flow. J. Fluid Mech.
99, 411–431. doi:10.1017/s0022112080000687

Kantsler, V., and Goldstein, R. E. (2012). Fluctuations, dynamics, and the stretch-coil
transition of single actin filaments in extensional flows. Phys. Rev. Lett. 108,
038103–038105. doi:10.1103/physrevlett.108.038103

Keller, J. B., and Rubinow, S. I. (1976). Slender-body theory for slow viscous flow. J. Fluid
Mech. 75, 705–714. doi:10.1017/s0022112076000475

Landau, L., and Lifshitz, E. M. (1986). Course of theoretical Physics. 3rd ed. Oxford:
Pergamon Press.

Li, L., Manikantan, H., Saintillan, D., and Spagnolie, S. E. (2013). The sedimentation of
flexible filaments. J. Fluid Mech. 735, 7051306–7364692. doi:10.1017/jfm.2013.512

Liu, Y., Chakrabarti, B., Saintillan, D., Lindner, A., and Du Roure, O. (2018).
Morphological transitions of elastic filaments in shear flow. Proc. Natl. Acad. Sci. U. S.
A. 115, 9438–9443. arXiv:1803.10979. doi:10.1073/pnas.1805399115

Lorenzo, A. M., Koslover, E. F., and De La Cruz, E. M. (2020). Thermal fracture kinetics
of heterogeneous semiflexible polymers. Soft Matter 16, 2017–2024. arXiv:1905.03327.
doi:10.1039/c9sm01637f

Manikantan, H., and Saintillan, D. (2013). Subdiffusive transport of fluctuating
elastic filaments in cellular flows. Phys. Fluids 25, 073603–073614. doi:10.1063/1.
4812794

Manikantan, H., and Saintillan, D. (2015). Buckling transition of a semiflexible filament
in extensional flow. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 92, 041002–041004.
doi:10.1103/physreve.92.041002

Manikantan, H. (2015). “Bending, buckling, tumbling, trapping: Viscous dynamics of
elastic filaments,” PhD dissertation (San Diego, Engineering Sciences: University of
California).

Munk, T., Hallatschek, O., Wiggins, C. H., and Frey, E. (2006). Dynamics of semiflexible
polymers in a flow field. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 74, 041911–11.
doi:10.1103/physreve.74.041911

Quennouz, N., Shelley, M., Du Roure, O., and Lindner, A. (2015). Transport and
buckling dynamics of an elastic fibre in a viscous cellular flow. J. Fluid Mech. 769, 387–402.
doi:10.1017/jfm.2015.115

Setru, S. U., Gouveia, B., Alfaro-aco, R., Shaevitz, J. W., Stone, H. A., and Petry, S. (2021).
A hydrodynamic instability drives protein droplet formation on microtubules to nucleate
branches. Nat. Phys. 17, 493–498. doi:10.1038/s41567-020-01141-8

Suzuki, K., Miyazaki, M., Takagi, J., Itabashi, T., and Ishiwata, S. (2017). Spatial
confinement of active microtubule networks induces large-scale rotational cytoplasmic
flow. Proc. Natl. Acad. Sci. U. S. A. 114, 2922–2927. doi:10.1073/pnas.1616001114

Tan, R., Lam, A. J., Tan, T., Han, J., Nowakowski, D. W., Vershinin, M., et al. (2019).
Microtubules gate tau condensation to spatially regulate microtubule functions. Nat. Cell
Biol. 21, 1078–1085. doi:10.1038/s41556-019-0375-5

Tornberg, A. K., and Shelley, M. J. (2004). Simulating the dynamics and interactions of
flexible fibers in Stokes flows. J. Comput. Phys. 196, 8–40. doi:10.1016/j.jcp.2003.10.017

Verchot-Lubicz, J., and Goldstein, R. E. (2010). Cytoplasmic streaming enables the
distribution of molecules and vesicles in large plant cells. Protoplasma 240, 99–107. doi:10.
1007/s00709-009-0088-x

Wandersman, E., Quennouz, N., Fermigier, M., Lindner, A., and Du Roure, O. (2010).
Buckled in translation. Soft Matter 6, 5715–5719. doi:10.1039/c0sm00132e

Wiggins, C. H., Riveline, D., Ott, A., and Goldstein, R. E. (1998). Trapping and wiggling:
Elastohydrodynamics of driven microfilaments. Biophysical J. 74, 1043–1060. doi:10.1016/
s0006-3495(98)74029-9

Woodhouse, F. G., and Goldstein, R. E. (2013). Cytoplasmic streaming in plant cells
emerges naturally by microfilament self-organization. Proc. Natl. Acad. Sci. U. S. A. 110,
14132–14137. doi:10.1073/pnas.1302736110

Xue, N., Nunes, J. K., and Stone, H. A. (2022). Shear-induced migration of confined
flexible fibers. Soft Matter 18, 514–525. doi:10.1039/d1sm01256h

Young, Y. N., and Shelley, M. J. (2007). Stretch-coil transition and transport of fibers in
cellular flows. Phys. Rev. Lett. 99, 058303–058306. doi:10.1103/physrevlett.99.058303

Frontiers in Soft Matter frontiersin.org12

Nguyen and Manikantan 10.3389/frsfm.2022.977729

https://doi.org/10.1083/jcb.120.4.923
https://doi.org/10.1063/1.4771606
https://doi.org/10.1103/physrevlett.110.108302
https://doi.org/10.1016/j.celrep.2017.08.042
https://doi.org/10.1017/s0022112080000687
https://doi.org/10.1103/physrevlett.108.038103
https://doi.org/10.1017/s0022112076000475
https://doi.org/10.1017/jfm.2013.512
https://doi.org/10.1073/pnas.1805399115
https://doi.org/10.1039/c9sm01637f
https://doi.org/10.1063/1.4812794
https://doi.org/10.1063/1.4812794
https://doi.org/10.1103/physreve.92.041002
https://doi.org/10.1103/physreve.74.041911
https://doi.org/10.1017/jfm.2015.115
https://doi.org/10.1038/s41567-020-01141-8
https://doi.org/10.1073/pnas.1616001114
https://doi.org/10.1038/s41556-019-0375-5
https://doi.org/10.1016/j.jcp.2003.10.017
https://doi.org/10.1007/s00709-009-0088-x
https://doi.org/10.1007/s00709-009-0088-x
https://doi.org/10.1039/c0sm00132e
https://doi.org/10.1016/s0006-3495(98)74029-9
https://doi.org/10.1016/s0006-3495(98)74029-9
https://doi.org/10.1073/pnas.1302736110
https://doi.org/10.1039/d1sm01256h
https://doi.org/10.1103/physrevlett.99.058303
https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2022.977729

	Flow-induced buckling of elastic microfilaments with non-uniform bending stiffness
	1 Introduction
	2 Problem description
	2.1 Energy functional and force balance
	2.2 Constitutive equations of motion
	2.3 Biologically motivated stiffness profiles
	2.4 Brownian motion
	2.5 Computational methods

	3 Results
	3.1 Simulation results
	3.2 Linear stability analysis
	3.3 Comparison of simulations with stability analysis

	4 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


