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INTRODUCTION

Signal processing for radar systems is a vast and fascinating discipline that covers numerous techniques and
touches on many application areas. The history of radar began more than one hundred years ago, in 1904,
when ChristianHülsmeyer demonstrated the first experimental radar in Cologne, Germany (Griffiths et al.,
2019). The banks of the River Rhine at Cologne’s Hohenzollern Bridge were the scene of this important
invention. Later, in 1920, GuglielmoMarconi also observed in his experiments radio detection of targets, but
it was not untilWorldWar II that the dynamic development of radar emerged. It has since then evolved into
an indispensable all-weather, long-range sensor. Military and security applications have always been the
main drivers of radar development. However, more recently, radar has become a key technology for civilian
applications including air, maritime, and ground traffic control, in addition to urban sensing and indoor
monitoring. Radar not only affects our present time worldwide, but also shapes our future.

According to its acronymRAdio Detection And Ranging, the classical radar mission is to detect and
locate objects (Skolnik, 2002). With the advent of coherent pulse radar, velocity measurements have
become possible by exploiting the Doppler effect (Chen and Ling, 2001). In contrast to camera images
and many other sensors, radar is able to provide quantitative data on range and speed. Today
specialized radars measure range as well as azimuth and elevation angles, enabling target detection and
localization. Through Synthetic Aperture Radar (SAR), Inverse SAR (ISAR), or Interferometric SAR
(InSAR), a 3D image of an object can be obtained (Melvin and Scheer, 2012; Richards, 2014). In recent
years, passive radar systems have been gaining considerable and increasing attention for both target
detection and ground imaging (Lombardo and Colone, 2012; Blasone et al., 2020). Applications of
radar techniques span from ocean current monitoring to Earth digital elevation mapping, from
automotive to biomedicine, from industrial monitoring in IoT scenarios to through the wall imaging
(Amin, 2010), from the detection of vital signs and discerning the activities of daily living (Amin, 2017)
to UAVmonitoring (see Theodoridis and Chellappa (2013) and Theodoridis and Chellappa (2017) for
a broad overview of many radar signal processing techniques and applications). There are also many
key radar applications in agriculture, forestry, soil moisture monitoring, geology, geomorphology and
hydrology, oceanography, land use, land cover mapping, and archeology.

Radar has a long history, and judging from the growing applications of active sensing, it has an
illustrious and bright future. Future radar systems should effectively support a massive variety of
applications with novel hardware solutions and innovative signal processing techniques. Several
grand challenges inherent to future radar systems are outlined in the following.

GRAND CHALLENGES IN RADAR SIGNAL PROCESSING

Sparse Sensing and Sparse Array Design in Radar
Sparse sensing, or compressed sensing (CS), has been successful in solving the problems of target
detection, estimation, and classification in radar applications. It combines nonlinear reconstruction

Edited and reviewed by:
Carmine Clemente,

University of Strathclyde,
United Kingdom

*Correspondence:
Fulvio Gini

fulvio.gini@unipi.it

Specialty section:
This article was submitted to

Radar Signal Processing,
a section of the journal

Frontiers in Signal Processing

Received: 04 February 2021
Accepted: 17 February 2021
Published: 05 March 2021

Citation:
Gini F (2021) Grand Challenges in

Radar Signal Processing.
Front. Sig. Proc. 1:664232.

doi: 10.3389/frsip.2021.664232

Frontiers in Signal Processing | www.frontiersin.org March 2021 | Volume 1 | Article 6642321

SPECIALTY GRAND CHALLENGE
published: 05 March 2021

doi: 10.3389/frsip.2021.664232

http://crossmark.crossref.org/dialog/?doi=10.3389/frsip.2021.664232&domain=pdf&date_stamp=2021-03-05
https://www.frontiersin.org/articles/10.3389/frsip.2021.664232/full
https://www.frontiersin.org/articles/10.3389/frsip.2021.664232/full
http://creativecommons.org/licenses/by/4.0/
mailto:fulvio.gini@unipi.it
https://doi.org/10.3389/frsip.2021.664232
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://doi.org/10.3389/frsip.2021.664232


algorithms and pseudorandom linear measurements to solve
underdetermined linear equations that define many inverse
problems (Potter et al., 2010). In their study (Ender, 2010), Ender
describes the application of CS techniques for pulse compression,
radar imaging, and air space surveillance with array antennas. Over
the last decade, CS and sparse signal reconstruction methods have
been widely applied to tackle traditional radar problems, e.g., high-
resolution target Direction of Arrival (DOA) estimation (Fortunati
et al., 2014), as well as emerging problems, e.g., spectrum sensing in
cognitive radar (Aubry et al., 2019). More recently, sparse sensing
was combined with machine learning to solve the problem of
missing or limited data (Cheng et al., 2020; Weiß et al., 2020).
Optimization methods with sparse regularizations and constraints
have been applied in both phased arrays and multiple-input
multiple-output (MIMO) radar platforms for efficient radar
aperture design under a given number of frontend receivers.
Sparse array design with different objective and cost functions
have benefited from recent advances in convex optimizations and
semidefinite quadratic programming (SQP) (Xu et al., 2015). Global
optimization methods, like particle swarms or simulated annealing,
have been applied for array design with flexible antenna placements.
Another successful design approach is the cyclic algorithm (CA) that
optimally matches the designed and desired beam patterns via
iteration (Roberts et al., 2011). A sparse antenna array has several
advantages in the high-resolution thinned configurations for phased
array and multi-input multi-output (MIMO) radar (Roberts et al.,
2011). Whereas structured sparse arrays, such as Nested and Co-
prime arrays, seek to increase the virtual aperture and available
degrees of freedom to handle more sources than physical antennas
(Wang et al., 2018), unstructured sparse array design can be time-
varying and is guided by the knowledge learned from the sensed
environment (Elbir and Mishra, 2020). Research into the design of
sparse arrays is an area that is indeed catalyzing a growing interest in
the scientific community.

Radar Waveform Optimization
Waveform optimization for system parameter estimation is an
emerging topic in signal processing with applications in radar and
remote sensing. In radar, waveform adaptation in different
domains, such as spatial, temporal, spectral, and polarization,
is aimed at dynamically improving system performance (Aubry
et al., 2013). Such capability is enabled by new computing
architectures, high-speed and off-the-shelf processors, arbitrary
digital waveform generators, solid-state transmitters, andmodern
phased arrays with multiple transmit and receive channels, etc.
Waveform optimization improves radar detection, classification,
identification, localization, and tracking (Gini et al., 2012; Cui
et al., 2020). New optimization methods and techniques are
currently under investigation to deal with challenging radar
waveform designs involving practical constraints, such as
constant modulus, spectral constraints, waveform similarity,
and finite or discrete-phase alphabet.

Cognitive Radar
Cognitive radar is a recent and growing research area that offers
substantial benefits for defense and civilian radar systems
(Haykin, 2006). Although many research efforts have focused

on perception-action cycles, few of them have demonstrated the
learning component (Guerci, 2010; Farina et al., 2017; Charlish
et al., 2018; Greco et al., 2018; Bruggenwirth et al., 2019) and
many aspects of the field contain open problems. A radar that can
perform online learning to execute better actions and adapt its
operational parameters based on its situational awareness can
have potential benefits. Additionally, cognition is typically
investigated for a single radar system. However, the
distribution of perception-action cycles over multiple radar
nodes, at different operating levels, starting from signals and
multiple radar functions to the mission level, have a huge research
potential. Cognitive radars should take advantage of all the
available degrees of freedom and sources of diversity including
location, frequency, code, beam patterns, revisit time, PRF, and
polarization when choosing future actions (Geng et al., 2020; Yan
et al., 2020). These actions should be cognizant of low-observable
targets, drones or swarms of UAVs, dense and contested
spectrum use, and adversarial activities. The most relevant
enabling technologies for the future development of cognitive
radar are adaptive waveform design, numerical optimization, RF
System-on-Chip (RFSoC), all-digital radar arrays, machine
learning, and deep learning.

Machine Learning for Radar
Machine learning (ML) has achieved great results which are
attributed to major investments of many countries as well as
massive cooperation among members of the international
scientific community. In particular, the use of ML
techniques has made it possible to improve the performance
of some signal processing techniques based on traditional
approaches and to overcome their intrinsic limitations.
Following the success of using ML techniques in many
engineering fields, the radar community has also begun to
apply ML techniques to solve classic radar problems and to
address traditional challenges from a new perspective
(Carotenuto and De Maio, 2021). As already mentioned,
ML is one of the enabling technologies for new cognitive
radar systems, moreover there has already been an extensive
development of signal processing algorithms based on ML that
have found application in various fields related to radar
systems. Some traditional applications have benefited most
from the use of ML. In particular, radar imaging and
classification is an area where ML has contributed
significantly. In particular, in the scientific literature, we can
find many applications of ML to solve problems related to the
processing of radar signals, e.g., for the recognition and
classification of radar emitters, processing and classification
of radar images, noise suppression in the radar image,
automatic target recognition (ATR), target detection, anti-
jamming techniques, adaptive waveform design, dynamic
antenna array selection, cognitive electronic warfare (CEW),
reconstruction from measurements with missing data, high-
resolution Direction of Arrival (DOA) estimation, and many
others [see Zhu et al. (2017) and Lang et al. (2020)] for an
exhaustive and comprehensive analysis of the state of the art of
ML and especially deep learning (DL) applications in the radar
and remote sensing fields). The proposed algorithms include
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conventional machine learning based on feature engineering
combined with appropriate classifiers, such as support vector
machines (SVM), decision trees (DT), random forest (RF), and
empowerment methods. They also include automatic feature
learning such as deep learning (e.g., deep belief networks
(DBN), autoencoder (AE), convolutional neural networks
(CNN), recurrent neural networks (RNN), generative
antagonist networks (GAN)) (Lang et al., 2019). In general,
it is now recognized that a higher degree of automation
improves radar environmental awareness, irrespective of the
type of application considered. The adaptivity of the radar,
both on transmit and receive, should be “intelligently”
regulated through accurate environmental awareness made
possible by ML. This area of research has experienced an
exponential growth in the last 10 years and is continuing to
expand; the timeliness of these topics is confirmed by the flurry
of academic activities and the fast-growing number of
publications (Ma et al., 2019).

Coexistence of Radar and Communication
Systems
In recent years, there has been an explosive growth in wireless
communications, especially for applications in the Industrial
Internet of Things (IIoT). On the other hand, radar
technology has evolved in the direction of ever-increasing
functionality. A modern radar system must be able to
dynamically change the transmission waveform and operating
frequency band, depending on the specific information collected
in real time from the surrounding environment (Blunt et al.,
2010). Due to the rapidly growing demand on finite spectral
resources, the desire for better and more flexible use of the
spectrum is also increasing (Aubry et al., 2015). On the other
hand, commercial wireless industry strives for greater access to
the spectrum and has eyed and sought use of the frequency bands
traditionally assigned to radar systems, which has led to the so-
called problem of “spectrum erosion” (Griffiths et al., 2015; Blunt
and Perrins, 2018). As part of the search for efficient resource
sharing and new technological solutions, it has recently been
recognized that the competition for bandwidth between radar
and communication systems can be alleviated by jointly and
optimally designing the two systems, realizing them on a single
platform (Blunt et al., 2010; Aubry et al., 2015; Hassanien et al.,
2016). In this respect, the platform is not just a radar or
communication system, but a multifunctional system whose
waveforms and operations support multiple activities and tasks
simultaneously (Chiriyath et al., 2017; Wang et al., 2018). The
topic of dual-function radar communication systems has
attracted the interest of theoretical researchers and
practitioners from both the radar and communication
scientific communities (Cohen et al., 2018; Zheng et al., 2019).
The design of joint dual-function radar communication systems
is a timely and relevant research topic and requires new ideas and
technological solutions (Rahman et al., 2020; Mazahir et al.).
Research underway focuses on established and emerging areas
such as cognitive spectrum sensing for resource allocation in
communication systems, adaptive waveform design for modern

radar systems, and MIMO radar and communication system
designs, to name a few. Examples of open problems and methods
can be found in two recent special issues, one of the IEEE Trans.
on AES devoted to Spectrum Sharing (Blunt et al., 2019) and the
other of the Elsevier Digital Signal Processing journal devoted to
the Co-operation and Joint Design of Communications and
Radar Systems in a Crowded Spectrum (Amin et al., 2020).

Radar for Advanced Driver Assistance
Systems
Radar technology is one of the enabling technologies for
advanced driver assistance systems (ADASs) and highly
automated driving (HAD). In recent years, we have witnessed
a leap in new systems and new signal processing techniques
tailored to the field of automotive radar (Waldschmidt et al.,
2021). Although current automotive radar technology is still
based almost exclusively on the principle of frequency
modulated continuous wave (FMCW) radar, modern
automotive radars are expected to be more flexible and to
allow for adaptive selection of waveform parameters as well as
dynamic use of transmit and receive channels. This flexibility calls
for multipurpose radar sensors, which can perform functions
ranging from adaptive cruise control to automated parking.
Additionally, the implementation of advanced autonomous
driving functions requires that radar sensors work in
symbiosis with lidar and cameras. All this justifies the growing
research and development in the field of automotive radar
systems in both industry and academia. For example, the use
of SIMO (single-input multiple-output) and MIMO (multiple-
input multiple-output) radar systems has provided automotive
systems with the capacity for spatial filtering to achieve the
necessary spatial resolution for obstacle Direction of Arrival
(DOA) estimates (Engels et al., 2017; Zhang et al., 2020).
Problems related to target blindness, snow, rain, and near-field
detection are also still relevant and require further investigation.
One of the great challenges in automotive radar concerns
adaptive filtering for the mitigation of interference at various
radar sensors (on the same vehicle or on different vehicles)
(Alland et al., 2019). This problem will be increasingly
important in the near future, given the increasing number of
vehicles equipped with radar sensors in heavy traffic situations. In
addition to the coexistence of multiple radars in a crowded traffic
environment, spectrum sharing with communication systems is
also a major concern (Kumari et al., 2018). Other challenges and
opportunities evolve around the phenomenology of the sensed
signals, system architecture, circuit technology, automotive SAR
imaging, object identification, and advanced signal processing
techniques (Saponara et al., 2019). An increasing role of machine
learning is also expected in signal processing algorithms for
detection and classification in automotive radar (Khomchuk
et al., 2016; Seyfioğlu et al., 2018; Schumann et al., 2020;
Waldschmidt et al., 2021). The automotive radar community
is at the forefront of technologies that promise to provide fully
autonomous driving cars, and several automotive radar industry
groups (GM, Hertzwell, Zendar, Toyota, etc.) are investing
heavily in solving these problems.
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Radar for Biomedicine and e-Healthcare
The civilian or dual-use applications of radar sensors are
experiencing an enormous growth, thanks to the maturation
of millimeter wave technology which allows for reliable low-
cost radar sensors. Among the areas that have benefited most
from these developments are undoubtedly those of health
monitoring and biomedicine. Indeed, intelligent healthcare
systems are undergoing a rapid transformation from the
conventional specialist and a hospital-focused style to a
distributed patient-centered system. Some technological
developments have encouraged this rapid evolution of
intelligent healthcare systems, including those related to radar
technology andmachine learning techniques. These technologies,
together with 5G and Internet of Things (IoT), are crucial for the
evolution of future smart health services. There are a plethora of
applications of radar sensing in biomedicine. For example, radar
imaging techniques are becoming a promising alternative, or at
least complementary techniques, to existing imaging modalities
for detecting breast cancer and monitoring response to treatment
(Song et al., 2019). Although many excellent results have already
been achieved, there are still several outstanding challenges, such
as the low signal-to-noise ratio, tissue heterogeneity, and low
resolution. Radar-based remote monitoring of human vital signs
and activities is also an application area that has sparked great
research interest due to its potential applications in patient health
monitoring in hospitals, elderly homes, rehabilitation centers,
and care facilities (Amin et al., 2016; Li et al., 2018b; Seifert et al.,
2019; Mercuri et al., 2021). However, there are still many open
problems related to the low signal-to-noise ratio, high aspect
angles, obstacles, dynamic environments, discrimination of very
similar activities, non-focal motion, and the large and time-
varying nature of human activities. Overcoming the challenges
in healthcare and biomedical applications requires further
advancement of the state of the art in statistical signal
processing and machine learning techniques (Maitre et al., 2020).

Micro-Doppler Radar
A moving point-like target introduces a frequency shift in the
narrowband radar return due to the Doppler effect. However, in
the real world, any target has a complex structure, the body is not
fully rigid, and any structural component of the target may not
follow an ideally straight-line motion. As a result, the motion
contains a component called micro-motion, which includes the
effect of vibration, rotation, and acceleration. Micro-motion and
its inducedmicro-Doppler effect were introduced to characterize the
movement of a target (Chen and Ling, 2001). Thus, extraction and
analysis of radar micro-Doppler characteristics have become an
active research area. Micro-motion can be observed in many
applications, such as rotating propellers of a fixed-wing aircraft,
rotating rotor blades of a helicopter, engine-generated vibration in a
vehicle, rotating antenna on a ship, swinging arms and legs of a
walking person, flapping wings of a bird, and the heartbeat and
respiration of a person (Chen, 2014). Over the past few years, it has
been proven that micro-Doppler characteristics can be exploited to
extract a signature of a target and because of this, it found
applications in many areas such as enhanced target detection,
characterization, and tracking. Modern high-resolution radars,

equipped with advanced signal processing algorithms, have a
better capability to extract micro-Doppler features, which allow
classical problems such as non-cooperative target detection and
classification to be solved in a more efficient way (Clemente et al.,
2015; Ritchie et al., 2016; Fioranelli et al., 2020). This also paves the
way for new applications, such as human activitymonitoring (Amin,
2017; Shrestha et al., 2020), urban and indoor surveillance (Pastina
et al., 2015; Seyfioğlu et al., 2018), healthcare (Li et al., 2018a; Lang
et al., 2019; Seifert et al., 2019), automotive applications (Khomchuk
et al., 2016; Duggal et al., 2020), and manufacturing (Zeintl et al.,
2019; Izzo et al., 2020). A recent book (Fioranelli et al., 2020) covered
the latest developments in radar micro-Doppler signatures and non-
cooperative recognition ofmoving targets and identified a number of
ongoing research areas, among which passive radar approaches for
healthcare, multimodal sensing for assisted living using radar, small
drones and bird signatures extraction, and micro-Doppler signature
extraction and analysis for automotive application were mentioned.

CONCLUSION

New radar technologies and applications are discovered and proposed
almost every day; however, there still exists challenges and gaps that
need to be addressed. In this editorial article, we have outlined some
important challenges in radar signal processing, but the list is certainly
not exhaustive. For example, distributed signal processing methods to
exploit all the information available within an interconnected and
spatially diverse multi-platform system is certainly a research area of
growing interest. In fact, the IEEE AES Magazine is organizing a
special issue devoted to “Multi-Platform and Multi-Functional RF
Systems (MPRFS) and (MFRFS)” that will be published at the end of
2021. Another application area, not mentioned above, concerns the
application of new radar technologies and methods for advancing
atmospheric and climate science. This is a traditional research area
where the use ofmachine learning techniques, possibly integratedwith
traditional statistical signal processing methods, promises new
frontiers. Additionally, areas of increasing research interest include
terahertz andmmWave radar, software defined radar (SDR) and low-
cost radar, and quantum radar. Finally, advances in radar sensing
technologies will pave the way for effective Internet of Things (IoT)
and industrial IoT (IIoT) solutions, therefore affectingmany aspects of
our daily lives. The progress toward low-cost sensors, hardware
architectures, and signal processing algorithms will further push
the use of radar technology into new civilian application areas.
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Seyfioğlu, M. S., Özbayoğlu, A. M., and Gürbüz, S. Z. (2018). Deep convolutional
autoencoder for radar-based classification of similar aided and unaided human
activities. IEEE Trans. Aerosp. Electron. Syst. 54 (4), 1709–1723. doi:10.1109/
taes.2018.2799758

Shrestha, A., Li, H., Le Kernec, J., and Fioranelli, F. (2020). Continuous human
activity classification from FMCW radar with Bi-lstm networks. IEEE Sensors J.
20 (22), 13607–13619. doi:10.1109/jsen.2020.3006386

Skolnik, M. I. (2002). Introduction to radar systems. 3rd Edn. McGraw-Hill Education.

Song, H., Sasada, S., Masumoto, N., Kadoya, T., Shiroma, N., Orita, M., et al.
(2019). Detectability of breast tumors in excised breast tissues of total
mastectomy by IR-UWB-radar-based breast cancer detector. IEEE Trans.
Biomed. Eng. 66 (8), 2296–2305. doi:10.1109/tbme.2018.2887083

Theodoridis, S., and Chellappa, R. Editors (2013). Academic press library in signal
processing: communications and radar signal processing, Vol. 2. 1st Edn.
Academic Press.

Theodoridis, S., and Chellappa, R. Editors (2017). Academic press library in signal
processing: array, radar and communications engineering, Vol. 7, 1st Edn.
Academic Press.

Waldschmidt, C., Hasch, J., and Menzel, W. (2021). Automotive radar: from first
efforts to future systems. IEEE J. Microwaves 1 (1), 135–148. doi:10.1109/jmw.
2020.3033616

Wang, X., Hassanien, A., and Amin, M. G. (2018). Sparse transmit array design for
dual-function radar communications by antenna selection. Digital Signal.
Process. 83, 223–234. doi:10.1016/j.dsp.2018.08.016

Weiß, M., Kohler, M., Saam, A., and Worms, J. (2020). “Combined CS and DL
techniques for DOA with a rotman lens,”in Proc. Of the 2020 IEEE radar
conference (RadarConf20), Florence, Italy, September 21–25, 2020. doi:10.
1109/RadarConf2043947.2020.9266463

Xu, H., Blum, R. S., Wang, J., and Yuan, J. (2015). Colocated MIMO radar
waveform design for transmit beampattern formation. IEEE Trans. Aerosp.
Electron. Syst. 51 (2), 1558–1568. doi:10.1109/taes.2014.140249

Yan, J., Pu, W., Ma, S., Zhou, S., Liu, H., and Greco, M. S. (2020). Optimal resource
allocation for asynchronous multiple target tracking in heterogeneous radar
network. IEEE Trans. Signal Process. 68, 4055–4068. doi:10.1109/TSP.2020.
3007313

Zeintl, C., Eibensteiner, F., and Langer, J. (2019). “Evaluation of FMCW radar for
vibration sensing in industrial environments,” in Proceeding of the 29th
international conference radioelektronika, Pardubice, Czech Republic, April
16–18, 2019. doi:10.1109/RADIOELEK.2019.8733410

Zhang, W., Wang, P., He, N., and He, Z. (2020). Super resolution DOA based on
relative motion for FMCW automotive radar. IEEE Trans. Vehicular Technol.
69 (8), 8698–8709. doi:10.1109/tvt.2020.2999640

Zheng, L., Lops, M., Eldar, Y. C., and Wang, X. (2019). Radar and communication
coexistence: an overview: a review of recent methods. IEEE Signal Process. Mag.
36 (5), 85–99. doi:10.1109/msp.2019.2907329

Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., et al. (2017). Deep
learning in remote sensing: a comprehensive review and list of resources. IEEE
Geosci. Remote Sens. Mag. 5 (4), 8–36. doi:10.1109/mgrs.2017.2762307

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Gini. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Signal Processing | www.frontiersin.org March 2021 | Volume 1 | Article 6642326

Gini Grand Challenges in in Radar Signal Processing

https://doi.org/10.1109/JBHI.2020.3027967
https://doi.org/10.36227/techrxiv.13041887.v1
https://doi.org/10.36227/techrxiv.13041887.v1
https://doi.org/10.1109/JIOT.2021.3051580
https://doi.org/10.1109/JIOT.2021.3051580
https://doi.org/10.1109/tvt.2015.2392936
https://doi.org/10.1109/jproc.2009.2037526
https://doi.org/10.1109/jproc.2009.2037526
https://doi.org/10.1049/iet-rsn.2016.0063
https://doi.org/10.1109/tap.2010.2103550
https://doi.org/10.1109/msp.2019.2909074
https://doi.org/10.1109/msp.2019.2909074
https://doi.org/10.1109/tiv.2019.2955853
https://doi.org/10.1109/tbme.2019.2893528
https://doi.org/10.1109/taes.2018.2799758
https://doi.org/10.1109/taes.2018.2799758
https://doi.org/10.1109/jsen.2020.3006386
https://doi.org/10.1109/tbme.2018.2887083
https://doi.org/10.1109/jmw.2020.3033616
https://doi.org/10.1109/jmw.2020.3033616
https://doi.org/10.1016/j.dsp.2018.08.016
https://doi.org/10.1109/RadarConf2043947.2020.9266463
https://doi.org/10.1109/RadarConf2043947.2020.9266463
https://doi.org/10.1109/taes.2014.140249
https://doi.org/10.1109/TSP.2020.3007313
https://doi.org/10.1109/TSP.2020.3007313
https://doi.org/10.1109/RADIOELEK.2019.8733410
https://doi.org/10.1109/tvt.2020.2999640
https://doi.org/10.1109/msp.2019.2907329
https://doi.org/10.1109/mgrs.2017.2762307
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

	Grand Challenges in Radar Signal Processing
	Introduction
	Grand Challenges in Radar Signal Processing
	Sparse Sensing and Sparse Array Design in Radar
	Radar Waveform Optimization
	Cognitive Radar
	Machine Learning for Radar
	Coexistence of Radar and Communication Systems
	Radar for Advanced Driver Assistance Systems
	Radar for Biomedicine and e-Healthcare
	Micro-Doppler Radar

	Conclusion
	Author Contributions
	Acknowledgments
	References


