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INTRODUCTION

Mobile communications have become the integral part of our everyday life and until now pursuing
ever higher data rates has been central to the development of all its previous generations. The next
generation mobile networks will depart from this pursuit and focus on various design objectives in
terms of data rate, intelligence, energy and spectral efficiency, number of connections, scalability,
latency and reliability. The upcoming cellular network, 5G, promises to expand its personal
communications capabilities to enable the Industrial Internet applications. The key to this 5G
transformation lies in its three new connectivity types: enhanced mobile broadband (eMBB), massive
IoT (Internet of Things) and ultra-reliable low-latency communications (URLLC). However, 5G will
not meet all requirements of the future emerging applications (You et al., 2020). Researchers now
start working on the sixth generation (6G) communication networks. Compared to 5G, 6G will
achieve much higher data rate and spectral/energy efficiency, extreme low latency, high reliability
and scalability. Machine learning technologies will play a critical role in 6G networks to achieve
automated network management, control and optimization. The traditional signal processing
techniques and communication design framework are inadequate to meet the highly dynamic
and stringent demands of future applications and complex network scenarios. Moving from the
state-of-the-art small pilot projects to a global large-scale deployment requires the design of new
signal processing technologies and optimization tools in beyond 5G or 6G wireless systems. In this
editorial article, several grand challenges in Signal Processing for Communications are outlined in
the following sections.

MULTI-ANTENNA SYSTEMS

It has been widely acknowledged that increasing the size of multi-antenna systems, i.e., the use of a
large-scale antenna array, will be indispensable for future wireless communication systems (Larsson
et al., 2014; Lu et al., 2014). The main idea behind large-scale antenna arrays is to increase the size of the
antenna array to hundreds or even thousands to provide tremendous array gains over small-scale
MIMO systems, and the channel hardening effect further enables the simplification of channel
estimation process. However, the direct implementation of fully-digital large-scale antenna arrays
will result in a significant hardware cost, and the consequent power consumption is also prohibitive for
practical deployment. Therefore, the grand challenge for large-scale antenna arrays is the introduction
of both hardware-efficient and power-efficient transmit and receive architectures to address the
practical implementation issues, and meanwhile handling the performance degradation from
hardware impairments such as distortion, phase-noize, and quantization noise, etc., due to the use
of low-cost hardware components. More recently, the concept of Holographic MIMO and the use of
reconfigurable intelligent surfaces have also emerged as novel multi-antenna architectures, which also
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bring new challenges in terms of both hardware design and signal
processing techniques (Basar et al., 2019).

MMWAVE AND THZ COMMUNICATIONS

Radio mmwave and THz communications are envisioned as a key
technology to enable future ubiquitous wireless communications
supporting efficient and flexiblemassive connectivity with ultra-high
user data rates in the order of Tb/s (Akyildiz et al., 2014). However,
utilizing the mmwave and THz frequency bands brings unique
challenges that require novel RF frontend and antenna design,
channel and interference modeling, and resource management.
Channel modeling considering molecular noise and blockage
probability should be developed to re-evaluate the line-of-sight
and non-line-of-sight reflected and scattered components (Priebe
and Kurner, 2013). The use of the narrow beam structure requires
fundamentally different interference coordination principles
(Alkhateeb et al., 2014). Fast handover procedures have to
incorporate the time required for discovery, localization, and
tracking functionalities. This calls for the theoretical breakthrough
and practical implementation of mmwave/THz communications.

MULTI-USER SIGNAL PROCESSING

Interference management is one of the most important topics in
multi-user transmission. In traditional view, inter-stream or inter-
user interference has been seen as a performance limiting factor in
multi-user transmission, and therefore wireless communication
systems usually attempt to avoid, mitigate or minimize
interference, which is done through precoding at the
transmitter side for multi-user multi-antenna transmission (Peel
et al., 2005). More recently, a new line of research shows that by
manipulating the interfering signals on a symbol level such that
they add up constructively at each receiver side, known
interference can indeed be made beneficial and further improve
the performance of wireless communication systems, achieved via
symbol-level precoding based on the concept of constructive
interference (Li et al., 2020). The main idea of symbol-level
precoding is to exploit both the data symbol information and
the channel state information available at the transmitter side to
design the precoding strategy, which has provided a new vision
toward interference management. Nevertheless, there still exist
design challenges for symbol-level precoding toward its practical
implementation, which includes computational complexity,
applicability to adaptive modulation and coding, SINR
estimation, combination with channel coding, etc.

SPARSE SIGNAL PROCESSING

The principle of signal processing aims to decompose complex
signals via elementary functions that are easier to handle. In the
field of signal processing and wireless communications, there exist
discrete signals that are usually sparse in some domain (time,
frequency, space, etc.), i.e., most of the entries are zero with only a

few non-zero coefficients. Compressed sensing, as a paradigm to
recover sparse signals from a small set of linear measurements, has
received extensive research attention in recent years (Choi et al.,
2017). More relevant to wireless communication, there are a variety
of wireless scenarios in which compressed sensing techniques can
be applied to. For example, sparse estimation can be used for
wireless channel estimation and interference cancellation, support
identification can be used for spectrum sensing in cognitive radio,
direction (AoA, AoD) estimation, and localization (Bajwa et al.,
2010). Nevertheless, there exist some remaining design challenges
for compressed sensing in wireless communications, for example
the flexible design of compressed sensing and sparse recovery
algorithms that are adaptive to diverse wireless environments, the
design principle for deterministic sensing matrices, combination
with machine learning and deep neural networks, design and
implementation complexity, etc.

SPECTRUM AND ENERGY EFFICIENT
COMMUNICATIONS

The wireless revolution is fueling an insatiable demand for access
to the RF spectrum (Chen and Oh, 2016). Rapidly emerging
wireless systems, such as beyond 5G cellular networks and
machine-to-machine communications with multi-vendor
networks, are competing for precious spectrum resource. On
the other hand, enabling energy-efficient green protocols and
network architectures can significantly reduce signal
transmission power for massive interference coordinations and
extend the battery life of wireless devices (Liu and Ansari, 2019).
Therefore, it is highly desirable to develop new components,
techniques, and architectures to achieve spectrum and energy-
efficient wireless communications and networking. These may
include advanced spectrum sharing techniques, low power cost
and energy efficient resource allocation schemes, novel transceiver
design for smart and fast data processing, and wireless charging
control and energy management for IoT devices.

CROSS-LAYER OPTIMIZATION

Cross-layer optimization is critical for improving the End-to-End
(E2E) performance and understanding the performance limits of
communication systems (She et al., 2021). Based on the Open
Systems Interconnection model, communication networks can be
divided into seven layers, from physical layer to application layer
(Jiang et al., 2019). Although the interactions across different
layers have significant impacts on the E2E performance, they are
not considered in most of the existing studies that only focus on
one of the seven layers. One of the bottlenecks in cross-layer
optimization is that a cross-layer model is complicated and
analytically tractable in general (Amjad et al., 2019). As a
result, the objective function or the constraints do not have
closed-form expressions. Even if we can obtain closed-form
expressions of some problems, they are usually non-convex or
NP-hard. Therefore, solving cross-layer optimization problems
are extremely challenging, especially for the systems that need to
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make decisions in real time. Based on the universal
approximation theorem of artificial deep neural networks
(DNN) (Hornik et al., 1989), a promising approach to solve
cross-layer optimization problems is to use DNNs to
approximate the optimal policies. Such a concept has been
validated in the existing literature and has the potential to be
implemented in real-world systems (Dong et al., 2021; Gu et al.,
2021).

CONVEX AND NON-CONVEX
OPTIMIZATION

Depending on the properties of feasible regions and objective
functions, optimization problems can be either convex or non-
convex (Boyd and Vandeberghe, 2004). In communications, there
are two branches of studies in convex and non-convex
optimization. The first one is to investigate the performance
limits of communication systems by deriving the closed-form
optimal solutions of the problems, where the first order
necessary conditions, also known as the Karush–Kuhn–Tucker
(KKT) conditions, have been widely applied (Goldsmith, 2005). It
is worth noting that by solving the KKT conditions, one can only
obtain a local optimal solution for non-convex problems. Only for
convex problems, a local optimal solution is also global optimal.
The other branch of works is to design practical algorithms for
solving convex or non-convex problems. For convex problems,
there are some well-developed low-complexity algorithms that can
converge to the global optimal solution, such as the interior-point
method (Boyd andVandeberghe, 2004). For non-convex problems,
we can hardly obtain the global optimal solution with low-
complexity algorithms in general. Most of existing works
developed specifical algorithms for their problems case by case.
Furthermore, for a variety number of problems in
communications, the systems need to make decisions every few
milliseconds in real time, e.g., power control, beamforming,
scheduling, etc. Even for theoretical low-complexity algorithms
like the interior-point method, the computational complexity is still
too high to be implemented in real time. To address this issue,
unsupervized deep learning has been considered as a
promising approach (Eisen et al., 2019), where the DNN
used to approximate the optimal policy is trained by the
primal-dual method. In this way, the theoretical models in
communications are integrated into the unsupervized deep
learning for solving optimization problems. After off-line
training, we can obtain the output of the DNN (i.e., near
optimal solution of the optimization problem) by using the
forward propagation algorithm, which can be implemented in
real time.

MACHINE LEARNING FOR WIRELESS
COMMUNICATIONS

Machine learning and data driven methods have been conceived as
a key enabler for future wireless networks evolution (O’Shea and
Hoydis, 2017). However, the pathway to the learning-empowered
wireless networks is still not clearly identified. A fundamental
question is how machine learning can truly benefit the well-
established and well-verified communication systems over the
last decades. In particular, it is not clear how to adapt the
machine learning algorithms widely developed in computer
vision and natural language processing to the lower layers such
as PHY and MAC in communication protocols, where the design
objectives and inherent constraints have dramatically changed
(Qin et al., 2019; Wen et al., 2018). Moreover, it necessitates to
develop novel learning-based performance limits beyond the
classical Shannon theory to establish diversified quality-of-
service guarantees in future applications.

CONCLUSION AND OUTLOOK

With the rapid development of emerging new technologies and
applications in communications, future communications networks
will be a highly complex and dynamic environment. Some
important challenges in signal processing technologies that must
be catered for future communications to achieve ultra-high data
rate, intelligence, high energy and spectral efficiency scalability.
Advancement in signal processing technologies and optimization
tools will pave the way and fuel innovation for future
communication systems. In this editorial article, we have
outlined some important areas in emerging signal processing
techniques for communications, including large-scale massive
MIMO, Holographic MIMO, reconfigurable intelligent surfaces,
multi-user signal processing, machine learning, MmWave and THz
communications, spectrum and energy efficient communications,
cross-layer optimization and convex and non-convex optimization.
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