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The purpose of this work is to investigate spatial statistical modelling approaches to improve
contrast agent quantification in dynamic contrast enhanced MRI, by utilising the spatial
dependence among image voxels. Bayesian hierarchical models (BHMs), such as Besag
model and Leroux model, were studied using simulated MRI data. The models were built on
smaller images where spatial dependence can be incorporated, and then extended to larger
images using the maximum a posteriori (MAP) method. Notable improvements on contrast
agent concentration estimation were obtained for both smaller and larger images. For smaller
images: the BHMsprovided substantial improved estimates in terms of the rootmean squared
error (rMSE), compared to the estimates from the existingmethod for a noise level equivalent of
a 12-channel head coil at 3T. Moreover, Leroux model outperformed Besag models with two
different dependence structures. Specifically, the Besag models increased the estimation
precision by 27% around the peak of the dynamic curve, while the Lerouxmodel improved the
estimation by 40% at the peak, compared with the existing estimation method. For larger
images: the proposed MAP estimators showed clear improvements on rMSE for vessels,
tumor rim and white matter.

Keywords: dynamic contrast enhanced MRI, magnitude and phase model, contrast agent quantification, Bayesian
hierarchical model, Besag model, Leroux model, integrated nested Laplace approximation

1 INTRODUCTION

MRI contrast agents (CAs) are used to improve the visibility of internal brain structures (Rinck,
2019). With dynamic contrast-enhanced MRI (DCE-MRI), the uptake and washout of an exogenous
contrast agent can be monitored in certain tissues, e.g. tumors, vessels and white matter. By analysing
the dynamics of the CA concentration using pharmacokinetics models (Sourbron and Buckley,
2013), it is possible to estimate physiology parameters such as blood flow, vessel density, capillary
endothelial permeability, and extravascular extracellular space volume. These parameters are useful
for characterising e.g. tumor angiogenesis (Verma et al., 2012), performing target delineation and
evaluating treatment response in radiotherapy (Cao, 2011).

A crucial step for successful parameter estimation is accurate determination of the CA
concentration. This is difficult since MR-signals have a complicated relationship with the CA
concentration through the effect of the CA on the tissue relaxation time constants. Most
commonly, CA concentration is estimated using the magnitude of the MRI images (Sourbron
and Buckley, 2011), which is referred to as magnitude estimated CA in this paper. However, the
accuracy of this method can be hampered by for instance issues like flip angle inhomogeneity
(Cheng, 2007).
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In addition to the magnitude information, MRI images also
contain phase information and the phase is influenced by the CA
concentration as well. This has been exploited for accurate blood
CA estimates and Brynolfsson et al. (2014) combined the
magnitude estimated CA and phase shift data to improve CA
estimation in all types of tissue. In Brynolfsson et al. (2014), a
maximum likelihood estimator (MLE) was used to find the most
likely CA concentration given noisy and biasedmagnitude images
and noisy phase images with the assumption that voxels are
independent of each other.

In this work, we relax the restrictions in Brynolfsson et al. (2014)
by assuming that voxels that are spatially close to each other are not
independent. The main contribution of this work is that we utilised
the spatial dependence information among voxels to improve the
accuracy of CA concentration estimation. For this purpose, spatial
statistical modelling approaches, in particular Bayesian hierarchical
models (BHMs), are used together with phase shift data and
magnitude estimated CA. Furthermore, with improved CA
concentration estimation, we are able to increase the estimation
accuracy of related physiology parameters and bring potential
benefits to patients in terms of precision medicine in tumor
treatment. At current stage, we limit our evaluations to simulation
data. The DCE-MRI simulation is based on an anatomical model
from BrainWeb (Aubert-Broche et al., 2006), where the tissue-
specific true CA concentration in voxels is calculated using the
modified Kety model (Tofts, 1997). Afterwards, the magnitude
estimated CA and phase shift data are simulated through the
models 1) and 2) in the next section, with tissue-specific bias and
noise. See Brynolfsson et al., 2014 for the simulation details.

The structure of the paper is organized as follows. The models
with and without spatial information will be introduced in
Section 2. In Section 3, the methods used in this work will be
specified. Results will be presented in Section 4. The paper will be
closed with conclusion and discussion.

2 THEORY

2.1 Magnitude and Phase Models
This work uses the model developed by Brynolfsson et al. (2014)
as its starting point. Briefly, the model assumes that a
measurement of the CA concentration c � (c1, . . . , cN), where
N is the number of voxels in the image, can be obtained using
magnitude estimated CA data cm � (cm1 , . . . , cmN). In addition to
that, the measurement can be also deduced using phase shift data
Δφ � (Δφ1, . . . , ΔφN). The statistical model connecting the
underlying CA concentration c and the measured data, i.e.
magnitude estimated CA and phase shift, has the form

cm � Dξc + εm (1)

Δφ � Ψc + εφ, (2)

where εm, εφ are two Gaussian white noise vectors and Dξ is a
diagonal matrix with diagonal elements ξ which is a Gaussian
white noise vector with mean value 1. Ψ � F−1GF represents a
matrix after Fourier transform, where F is the Fourier transform
matrix and G is a known diagonal matrix. Thus, the magnitude

estimated CA is both noisy and biased, while the phase shift data
is only noisy. Furthermore, Ψ corresponds to how the magnetic
properties of the CA perturb the measured phase shift data. An
important feature ofΨ is that it is singular and thus not invertible.
Equivalently, the matrix vector notation Equation 2 can be
written in voxel-wise by

Δφ(s) � F−1(G(k) · F(c(s))) + ϵφ(s), (2p)

where s is the voxel location vector in the image, k is the
coordinate position vector in k-space (Brynolfsson et al.,
2014). Note that the drawback of Eq. 2 compared with (2*) is
thatΨ could be too huge to be stored into computer’s memory for
large image size.

2.2 Model I: No Spatial Dependence
No spatial dependence is assumed to c in this model implying no
spatial prior is added to the model Eqs 1, 2 for c. In this case cm
andΔφ are assumed to be independent of each other and theMLE
for c, i.e.

ĉ � argmin
c

cm − c( )TΣ−1
m cm − c( ) + (Δφ − Ψc)TΣ−1

φ (Δφ − Ψc){ }
is used to estimate CA concentration (Brynolfsson et al., 2014).

2.3 Model II: Bayesian Hierarchical Models
To incorporate spatial dependence into the model Eqs 1, 2, BHM
is employed to model the spatial relationship. BHM is a statistical
model consisting of multiple stages, where the parameters of
interest are estimated by using Bayesian method. It is common to
have three stages in the model. The first stage is data model for
modelling the observed data, and the second stage is process
model for modelling the unknown parameters of interest from
the first stage, while the third stage is hyper-parameter model
used to model unknown hyper-parameters. There are many well
developed process models, e.g. Besag model (Besag et al., 1991),
BYMmodel (Besag et al., 1991), Cressie model (Stern and Cressie,
2000), and Leroux model (Leroux et al., 2000), two of which are
adopted in this work and described as follows.

2.3.1 Besag Model
Besag model is the simplest and most popular model, which has a
special form of a generalised model (Besag, 1974) given by

c ∼ N 0, σ2(D(I − ρW))−( ), (3)

where σ2 is a variance parameter of random vector c, I is a identity
matrix,D � diag(d1, . . . , dN) is a known diagonal matrix with di
denoting the number of neighbours of voxel i,—represents
generalised inverse, ρ is a spatial dependence parameter, and
W � (Wij) is the proximity matrix,

Wij � 1/di, i ∼ j
0, otherwise

{
where i ∼ j indicates that the two voxels i and j are neighbours. It
can be shown that it suffices to let ρ ∈ (1/miniλi, 1) to ensure the
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covariance matrix of Eq. 3 to be positive definite, where λi, i � 1,
. . . ,N, are eigenvalues ofW (Reber, 1999). However, since ρ � 1 is
set in Besag model, the covariance matrix of Eq. 3 exists only in
terms of generalised inverse.

In terms of full conditionals, the model Eq. 3 can be
expressed as

ci|cj|i∼j, σ, ρ ∼ N ρ

di
∑
i∼j

cj,
1
di
σ2⎛⎝ ⎞⎠, (4)

where cj|i∼j represents the elements which are neighbours of ci.
The conditional mean is affected by its neighbours, and the
conditional variance is proportional to the variance parameter
σ2. As mentioned above, ρ � 1, thus it may not have a proper joint
distribution from which Eq. 4 can be derived. However, a sum to
zero constraint, ∑ci � 0, can be added to c to guarantee the
identifiability of this random field (Assunção and Krainski; Rue
and Held, 2005; Rue and Held, 2009). The inference process to
obtain the estimates will be described in Subsection 2.3.3.

2.3.2 Leroux Model
Although being invariant to the addition of any constant is a very
important property (Rue and Held, 2005), Besag model has some
undesired properties, e.g. the covariance matrix is not positive
definite and it leads to a negative pairwise correlation for regions
located further apart (MacNab, 2010). A proper prior is introduced
here which was proposed by Leroux et al. (2000) and was the most
appealing from both theoretical and practical standpoints (Lee,
2011). The joint distribution of Leroux model is given by

c ∼ N 0, σ2((1 − λ)I + λR)−1( ), (5)

where R is the structure matrix which equals to D(I − W), λ is a
spatial dependence parameter taking values within the interval of
(0, 1). As λ→ 1−, the model converges to Besag model and as λ→
0+, it converges to N (0, σ2I).

In terms of full conditionals, the model of Eq. 5 can be
expressed as

ci|cj|i∼j, σ, λ ∼ N λ

1 − λ + λdi
∑
i∼j

cj,
1

1 − λ + λdi
σ2⎛⎝ ⎞⎠.

The major difference between model I and model II is that c is
considered as a deterministic unknown vector in model I while as
a random unknown vector in model II by assuming that it is a
Gaussian Markov random field (GMRF), commonly used for
lattice image data analysis. A GRMF is a multivariate Gaussian
distribution which satisfies certain Markov assumption. The
main property of the GMRF is that the neighborhood
relationship can be reflected through the precision matrix Q
which is the inverse of covariance matrix. In other words,Qij � 0 if
and only if ci is not the neighbor of cj given the remaining voxels.

2.3.3 INLA: Integrated Nested Laplace Approximations
To estimate the random unknown vector in BHMs, an algorithm
based on INLA has been applied, which is adapted for GMRF.
The specific BHMs, described above, are fit into this frame and

built with three stages. For simplicity, a new set of notations of
random vectors is introduced, which has no connection with the
notations used before. The first stage is the data model π(y|x),
where π denotes probability density, y is the observation vector, x
is the GMRF and yi, i � 1, . . . , N, are independent conditional on
x. The second stage is the GMRF, π(x|θ), where θ is the hyper-
parameter vector, and π(θ) is the third stage. INLA can provide
accurate estimations for the GMRF and hyper-parameters. The
inference process is described briefly as follows:

The main interest is to estimate the marginal posterior
distributions of the GMRF

π xi|y( ) � ∫
θ
π xi|y, θ( )π(θ|y)dθ. (6)

Note that the second term of the integrand can be
approximated by

π̂(θ|y)∝ π(x, y, θ)
π̂G(x|y, θ)|x�x*(θ),

where the denominator π̂G(x|y, θ) denotes the Gaussian
approximation to the full conditional distribution of x, and
x*(θ) is the mode of the full conditional of x for a given θ.
Gaussian approximation means the distribution of a variable is
approximated by a normal distribution by matching the mode
and the curvature at the mode (Rue and Held, 2005).

The simplified Laplace approximation method is used to
approximate the other component of the integrand of Eq. 6
(Rue et al., 2009). This method is a trade-off between accuracy
and computational time and is commonly used in practice. It is
also the default method in R-INLA. In order to perform a
numerical integration of Eq. 6, a number of good evaluation
points θk of θ can be obtained by Newton like algorithms (Rue
et al., 2009). Finally, an approximation of the posterior marginal
density Eq. 6 is given by

π xi|y( ) � ∑
k

π̂ xi|y, θk( )π̂ θk|y( )Δθk

2.4 Maximum a Posteriori
Due to the limitations of R-INLA described in the next section, an
exploratory analysis is conducted by using MAP estimator
given by

ĉ � argmin
c

cm − c( )TΣ−1
m cm − c( ) + (Δφ − Ψc)TΣ−1

φ (Δφ − Ψc) + cTQc{ },
(7)

where Q is the precision matrix of c (Cousineau and Hélie, 2013).
The linear conjugate gradient algorithm is employed for finding c
(Atkinson, 1989).

3 METHODS

3.1 Data Preparation
In this simulation study, the data was generated by using
simulated GRE based DCE-MRI scans at 3T with a noise level
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equivalent of a 12-channel head coil (rSNR � 5) and with a noise
level of a 2-channel body coil (rSNR � 1), respectively. rSNR is
defined as rSNR � η·SNRbodycoil and η ∈ [1, 5]. See Brynolfsson
et al., 2014 for details.

R-INLA is used to implement BHMs, as mentioned in
subsection 2.3.3. Unfortunately, it is not adapted for Fourier
transform function used in (2*), thus our BHMs have to be
applied to smaller images (10, ×, 10, ×, 10) such that Ψ in Eq. 2
can be stored into the computer’s memory. Afterwards,
exploratory analysis is conducted for larger images (64 × 64 ×
64) by utilising the estimates from smaller images. 30 simulations

for smaller images and 50 simulations for larger images were
generated and estimates of CA concentration were obtained with
2-s temporal resolution for the first 30 s and 5-s temporal
resolution for the last 30 s. In other words, there are 22 time
points for each simulation.

3.2 Common Settings for all the Models
Time is assumed to be independent. The covariance matrixes of
εm and εφ are approximated from the simulated data, ξ is
assumed to be N (1, 0.09I) (see Brynolfsson et al., 2014 for
details).

FIGURE 1 | Mean (A) and variance (B) of the estimator from each model in vessels as well as the true CA concentration (A) at 3T with rSNR � 5

FIGURE 2 | rMSE of each model in vessels at 3T with rSNR � 5
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FIGURE 3 | Time series of the mean of spatial dependence λ at 3T with rSNR � 5

FIGURE 4 | rMSE comparison between MAP estimators and MLEs for vessels, tumor rim and white matter at 3T with rSNR � 5 over 50 simulations.
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3.3 Specific Settings for BHMs
Eqs 1, 2 are used as data model. The prior for log(1/σ2) is set to be
Log − Gamma(1, 5 × 10−5) for Besag and Leroux models, which
gives higher probability to relatively smaller variance. The prior
for logitλ is set to be Logitbeta(1, 1) for Leroux model, which
represents a non-informative prior.

The first order neighbourhood is used in the proximity matrix
W. Two different assumptions are made to constructW for Besag
model. The first is that two voxels next to each other are not
neighbours if they are from different tissues. However, in reality
we have no information about tissue classification, thus in the
second assumption we do not give tissue restriction toW, i.e. two
voxels next to each other are always neighbours. Only the second
assumption is used for Leroux model. Under each assumption,
the precision matrix Q has at most six non-zero elements in the
off-diagonal positions for each row so that Q is a very sparse
matrix.

3.4 From Smaller to Larger Images
Although we use R-INLA to analyse smaller images, larger
images are more meaningful in clinical practice. MAP
estimator is used for larger images based on Leroux model,
which implies Q−1 � σ̂2((1 − λ̂)I + λ̂R)−1 in Eq. 7. By assuming
that the spatial dependence λ is invariant over different image
sizes, the same estimates λ̂’s for smaller images over the time
points can be used. Note that full conditional variance Var(ci|
c−i) is proportional to σ̂

2. Since the resolution of smaller images
is lower than that of larger images, the full conditional variance
of smaller images should smaller than that of larger images.

FIGURE 5 | rMSE comparison between MAP estimators and MLEs for vessels, tumor rim and white matter at 3T with rSNR � 1 over 50 simulations.

FIGURE 6 | Neighbourhood structure in spatiotemporal model.
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Therefore, σ̂2 should be larger than the one in smaller images
for each time point in general. Since the average precision τ̂ �
1/σ̂2 over 30 simulations for each time point could be calculated
for smaller images, one can go through all possible values which
are smaller than τ̂ to minimise Eq. 7 for larger images.
However, for the exploratory purpose, we set τ̂ to be a
constant, which is smaller than the smallest averaged τ̂ over
all the time points for smaller images, for larger images over all
the time points.

To verify whether the spatial information can improve the
estimation for lower rSNR, the same procedure is also applied to
data generated with rSNR � 1 at 3T. Since full conditional
variance of the images with rSNR � 1 should be larger than
the one with rSNR � 5, τ̂ should be smaller than the one with
rSNR � 5 for each time point in general. Again, a constant τ̂ for
images with rSNR � 1 is set for all the time points.

4 RESULTS

4.1 Smaller Images
In the left panel of Figure 1, it plots the mean of estimator at
every time point for vessels from each model at 3T with rSNR �
5 together with the true CA concentration. It seems that the
MLE has the smallest bias among the models, especially at the
top region of the curve. However, in the right panel of Figure 1,
it illustrates the variance of each estimator and the variance of
MLE is apparently larger than the others. To take the mean and
variance together into account to evaluate the goodness of the
estimator for each model, root mean squared error (rMSE) of
vessels based on 30 simulations is drawn in Figure 2. In
Figure 2, two Besag models show improvements in terms of
rMSE, especially around the peak, where the percentage
decrease is about 27%. Besag models without tissue
restriction perform similarly with the one with tissue
restriction, slightly worse at the beginning of the scanning.
The mean difference between the two Besag rMSE over
22 time points is about 0.001. The Leroux model
outperforms the others. The improvements show both
around the peak and right tail. It is about 40% decrease at
the peak and 23% around the right tail compared to the MLE in
model I.

From Figure 3, it can be seen that the spatial dependence is
negatively associated with CA concentration. The spatial
dependence is lower when CA concentration is around the
peak and the spatial dependence is getting higher when CA
concentration is lower.

4.2 Larger Images
Since the smallest averaged τ̂ for smaller images over all the time
points is 0.9, τ̂ � 0.1 is selected to minimise Eq. 7 for larger
images. The same values shown in Figure 3 are used for λ̂ to
minimise Eq. 7. From Figure 4, it shows both improvements
around the peak and right tail for MAP estimators compared to
MLEs over 50 simulations, even though σ̂2s are not the optimal
ones to minimise c over time points.

The same analysis is carried out for the data generated with
rSNR � 1 at 3T. It shows that λ has similar patten as in
Figure 3. τ̂ � 0.01, which is less than 0.1, is selected for
rSNR � 1 at 3T.

The comparison between MAP estimators and MLEs for three
different tissues with respect to rMSE are presented in Figure 5.
Clear rMSE reduction by using MAPs can observed. Note that in
general the rMSE in Figure 5 is larger than the one in Figure 4
due to the different noise levels.

5 CONCLUSION AND DISCUSSION

The investigation in this paper has demonstrated that spatial
statistical modelling approaches are capable to improve
contrast agent quantification in dynamic contrast enhanced
MRI, by utilising the spatial dependence information among
image voxels. Bayesian hierarchical models, in particular
Besag and Leroux models, have provided notable
improvements on CA concentration estimation. Substantial
reduction of rMSE in estimation has been obtained by using
BHMs in vessels for smaller images. Thereinto, Leroux model
outperforms Besag models with two different dependence
structures.

For larger images, since the BHMs could not be adopted due
to the computational capability, MAP method with the
estimated parameters from smaller images is employed to
estimate the CA concentration. Our proposed MAP
estimators have shown clear improvements, compared to the
existing MLEmethod, on rMSE for vessels, tumor rim and white
matter.

Although the smaller images are not practical in clinic, the
results showed clear evidences that incorporating borrowing
strength from neighbours can improve the accuracy of CA
concentration. Further investigation could be done in the
future by developing own codes to implement BHMs for
larger images instead of using R-INLA. In this case, with Eq.
1 and (2*) as the data model, Leroux model as the process model,
one can check if the spatial dependence is invariant or not and
how τ changes over different image sizes. Also different magnetic
strength, e.g.1.5T, and more rSNRs can be analysed as in
Brynolfsson et al. (2014).

The other restriction of this study is that the time dependence
was not considered which resulted in a relatively simple
statistical model and fast computational time. In reality, it is
very reasonable to incorporate time dependence into the BHMs,
which is called spatiotemporal BHMs (Cressie andWikle, 2011).
Figure 6 illustrates the spatiotemporal idea in a much
concise way.

In Figure 6, the black dot is not only affected by its
neighbours in space domain, but also by its neighbours in
time domain. Many time series models can be used here, e. g
random work models and autoregressive models. By
incorporating the time dependence, besides temporal trend,
the interaction between spatial and temporal effects can also
be studied.
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