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The extensive rise of high-definition CCTV camera footage has stimulated both the data
compression and the data analysis research fields. The increased awareness of citizens to
the vulnerability of their private information, creates a third challenge for the video
surveillance community that also has to encompass privacy protection. In this paper,
we aim to tackle those needs by proposing a deep learning-based object tracking solution
via compressed domain residual frames. The goal is to be able to provide a public and
privacy-friendly image representation for data analysis. In this work, we explore a scenario
where the tracking is achieved directly on a restricted part of the information extracted from
the compressed domain. We utilize exclusively the residual frames already generated by
the video compression codec to train and test our network. This very compact
representation also acts as an information filter, which limits the amount of private
information leakage in a video stream. We manage to show that using residual frames
for deep learning-based object tracking can be just as effective as using classical decoded
frames. More precisely, the use of residual frames is particularly beneficial in simple video
surveillance scenarios with non-overlapping and continuous traffic.
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1 INTRODUCTION

According to Cisco’s Visual Networking Index report in 2017, global data consumption has been
increasing exponentially for the past decade, with video data accounting for 80% of the worldwide
traffic1. One of the largest growing types of video data consumption is video surveillance traffic,
which is set to achieve a seven-fold increase by 2022 to account for a total of 3% of the worldwide
Internet traffic. This substantial surge in video surveillance data had created three major needs. The
first major need is to be able to transfer and store the data which calls for the use of innovative video
compression codecs. The second major need is to be able to analyze the large flow of data, which calls
for the use of machine learning and more specifically deep learning algorithms. Lastly, the third
major need, which is especially relevant when working with video surveillance footage, is to able to
preserve the privacy of the individuals involved in the captured scenes. The main motivation of this
paper is to address these three needs by using an inexpensive, low-storage and privacy-friendly image
representation that can therefore be made publicly available for traffic analysis.
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In this work, we utilize an inexpensive compressed domain
image representation already generated by the video compression
codec: residual frames. Also known as the prediction error,
residual frames are the difference between the prediction of a
frame at time t+1 using the frame at time t and the original
frame at time t+1. Residual frames not only have a low-storage
cost but they also act as an information filter by only keeping
the movement regions of interest (ROI) between two
consecutive frames. In this research, we choose to work
exclusively on the residual frames to train and test a deep
learning-based object detector and tracker. This will allow us
to not only store our data in the compressed format but also
provide a privacy-friendly data source for deep learning-based
object tracking. Deep learning-based object tracking trained
and tested solely on residual frames is a new approach explored
by this paper. This research’s main contribution is to show that
using residual frames as an image representation for a deep
learning-based object tracking can be just as effective as using
decoded frames while limiting the amount of private
information leakage in a video stream.

This paper is organized as follows. In Section 2, we detail the
state of the art of combining data compression, data analysis and
data protection. In Section 3we put forward the utilizedmaterials
and methods by presenting the compression algorithm and both
object detectors and trackers used. Then we introduce the HOTA
evaluation metric, the different datasets that we have worked
with, and the two experiments that have been conducted. In
Section 4 we present the detailed individual results of the two
experiments. Thereafter, in Section 5, we expose the benefits and
drawbacks resulting from the two experiments, examine the
privacy-friendly capabilities of our solution, and comment on
key limitations that have impacted this research. Finally, in
Section 6, we conclude the paper by summarizing the results
and outcomes of our research and proposing several potential
further work.

2 RELATED WORKS

The challenges of combining the two needs of video compression
and video analysis is a topic that has already been addressed in the
literature. The Moving Picture Experts Group (MPEG) recently
created an ad hoc group dedicated to the standardization of Video
Coding for Machines (VCM) (Duan et al., 2020). The VCM
group’s inception came after the realization that traditional video
compression codecs were not optimal for deep learning feature
extraction. The aim of the VCM group is to create a video
compression codec tailored to machine vision rather than
human perception. The proposed codec managed to achieve,
at lower bit-rate costs, much better detection accuracy in most
cases and more visually pleasing decoded videos than the High
Efficiency Video Codec (HEVC). Another proposition within the
same scope proposed a hybrid framework that combined
convolutional neural networks (CNN) with classical
background subtraction techniques (Kim et al., 2018). The
proposed framework was made up of a two-step process. The
first step was to identify the ROI using a background subtraction

algorithm on all frames. The second step was to apply a CNN
classifier to the ROI. They managed to achieve a classification
accuracy of up to 85%.

In addition, other works have also looked at taking advantage
of already generated compressed domain motion vectors to
improve the efficiency of deep learning networks. Researchers
proposed to work on a CNN-based detector combined with
compressed domain motion vectors to lower the power
consumption of classical deep learning-based detectors (Ujiie
et al., 2018). They utilized the inexpensive motion vectors already
generated by the video compression codec to speed up the
detection process in the predicted frames. Using the MOT16
benchmark, they obtained a MOTA score of 88% while also
cutting the detection frequency by twelve times. Other
researchers have also explored the use of the compressed
domain motion vectors, but concentrated their efforts on
improving the efficiency of their CNN-based object tracker
(Liu et al., 2019). They manage to achieve a tracker that is six
times faster than the state-of-the-art online multi-object tracking
(MOT) methods.

Another challenge that has been addressed in the literature is
to combine the two needs of data analysis and data privacy.
Researchers have tried to simplify the problem by proposing to
tackle specific features and excluding them from the frames as a
binary decision. An image scrambling method for privacy-
friendly video surveillance showed that it was possible to
scramble the frame’s ROI to hide critical information in the
observed scene (Dufaux and Ebrahimi, 2006). Other related work
take up the challenge of combining data compression and data
privacy. Researchers developed a custom license plate recognition
and facial recognition software to encrypt the specific ROI before
encoding and sending out the video sequence (Carrillo et al.,
2008).

Although the presented works tackle at least one of the three
major needs, none of them attempt to tackle all three major needs
in one unified solution.

3 MATERIALS AND METHODS

In this section we present the compression algorithm used, the
object detectors and trackers that we have worked with, our
evaluation metric and datasets, and finally our experimental
setup. All publicly available source codes used in this work are
made available at https://github.com/JonathanSamelson/
ResidualsTracking.

3.1 Compression Algorithm
Inter-frame video codecs use the temporal redundancies of a
video sequence to compress it. This is achieved by segmenting the
video sequences into reference frames (also called I frames) and
predicted frames (also called P or B frames). The reference frames
consist of sending the full intra-frame image whereas the
predicted frames are generated by a process called block
matching. Block matching divides the frame into several non-
overlapping blocks of predetermined size and assigns a motion
vector (also known as a displacement vector) to each block by
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identifying the location of that block in the previous frame. The
motion vectors paired with the latest original stored frame enable
us to make a prediction on the upcoming frame and subsequently
generate the frame prediction error (also called residual frame) by
subtracting the latest original frame from the predicted frame.

The most widely used inter-frame video compression formats
such as HEVC (Sullivan et al., 2012), VVC (Huang et al., 2020),
and VP9 (Mukherjee et al., 2013) all rely on a quadtree structure
for their block matching process called adaptive block matching.
The goal is to have variable block sizes that depend on the scene
depicted in the frame. Ideally, we would like to have large blocks
that represent inanimate sections of the frame for the
background, and small blocks that represent movement areas,
for the foreground. This would lower the encoding cost per frame,
as it would reduce the number of encoded blocks and motion
vectors per frame. The adaptive block matching process can also
be seen as an image content filter given that it highlights ROI in
the frame (movement areas) over the inanimate sections of the
frame. Figure 1 shows a sample image of the residual frame (A) as
well as the respective adaptive block matching quadtree (B)
generated for the two successive decoded frames shown in
Figure 2.

For this work we developed our own open-source generic
adaptive block matching algorithm inspired by the works of
(Vermaut et al., 2001; Barjatya, 2004). Our algorithm works

similarly to the widely used standardized inter-frame
compression formats such as presented in (Chien et al., 2021;
Zhang et al., 2019). This allows us to generate the motion vectors
and corresponding residual frames needed for our study without
accessing, editing, and testing all the available inter-frame
compression video codecs. The algorithm needs to know only
three preset values: the size of the largest possible block, the size of
the smallest possible block, and the sensitivity threshold. The
algorithm starts by calculating the motion vectors for the largest
blocks. Once it has done so, it goes through the motion vectors
individually from left to right and from top to bottom and looks at
each block’s individual neighbors. If the absolute value of the
difference of the motion vector and the averages of its neighbors
are greater than the preset threshold, the concerned block is split.
Otherwise, this motion vector is confirmed and becomes final.
The act of splitting means that the block containing the motion
vector will be divided into four equal blocks and the process
continues recursively until we reach the preset smallest block size.
The detailed algorithm is shown in Figure 3.

3.2 Object Detectors
In this work we chose to compare the performance on the two
image representations (residual and decoded frames) with the
help of two trained object detectors: YOLOv4 and tiny YOLOv4.
Over the last few years, You Only Look Once (YOLO) has been
one of the state-of-the-art single-stage detectors on datasets such

FIGURE 1 | Sample image of the residual frame (A) and the respective
adaptive block matching quadtree (B) generated from two successive frames.

FIGURE 2 | Sample image of two successive decoded frames (A)
and (B).
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asMS-COCO (Lin et al., 2014), thanks to its different updates and
versions. As the name suggests, the whole frame is scanned in a
single evaluation, making the inference faster and allowing the
detector to achieve real-time performance. To do so, YOLO
divides the frame into pre-defined grid cells, each responsible
for detecting objects thanks to YOLO’s anchor boxes (prior
boxes) of different shapes. Thus, each cell can produce
multiple predictions containing the bounding box dimensions
as well as the object class and certainty.

In its fourth revision, the authors present many improvements
that make YOLO faster and more robust (Bochkovskiy et al.,
2020). Among the most important ones that improve training, are
CutMix and Mosaic data augmentation techniques (Yun et al.,
2019), DropBlock regularization method, Cross mini-Batch
Normalization (CmBN), and Self-Adversarial Training (SAT).
To improve inference time, they notably introduced Mish
activation function (Misra, 2019), SPP-block (He et al., 2015),
Cross-stage partial connections (CSP) (Wang et al., 2020b), PAN
path-aggregation block (Liu et al., 2018), and Multi-input
weighted residual connections (MiWRC).

The tiny version of YOLO follows the same principles, with a
drastically reduced network size. Basically, the number of
convolutional layers in the backbone are scaled down, as is the
number of anchor boxes that make the predictions.
Consequently, it infers the result much quicker but often leads
to models with lower accuracy.

One could consider applying a thresholding method to this
light representation to obtain a binary image and find the
contours of the objects using the algorithms presented in

(Suzuki and Abe, 1985; Ren et al., 2002). Such techniques are
commonly used on top of frame differencing methods. Yet, they
only work in simple scenarios, since close objects are often seen as
one. Deep learning-based methods are more convenient to cover
more complex scenarios such as dense traffic or crowded scenes,
as they are able to recognize the object shapes.

3.3 Object Trackers
The role of an object tracker is to associate the object detections
with the same identities over successive frames. We chose to run
two object trackers on top of our two detector models, resulting in
a combination of four algorithms on both decoded and residual
frames.

IOU tracker (Bochinski et al., 2017) is a very simple algorithm
that relies on the assumption that detections of an object highly
overlap on successive frames, resulting in a high Intersection
Over Union (IOU) score. Although this is true for high refresh-
rate video sequences, this is less the case for videos from traffic
surveillance cameras, which run at lower refresh-rates and where
vehicles travel a larger distance between two frames. To address
this constraint, we chose the Kalman-IOU tracker (KIOU)
instead, where a Kalman filter is added to better estimate
object location and speed. This filter also lets you retain a
history of the objects and re-identify them in case of missing
detections. It was slightly adapted in order to work in an online
tracking context, i.e., to work simultaneously with the detector.

The second tracker we chose is Simple Online and Realtime
Tracking (SORT) (Bewley et al., 2016). This algorithm also
includes a Kalman filter to predict existing targets’ locations. It
computes an assignment cost matrix between those predictions
and the provided detections on the current frame using the IOU
distance and then solves it optimally using the Hungarian
algorithm.

Both trackers are localization-based trackers as they use only a
fast statistical approach based on localization of bounding boxes.
There also exists more complex trackers called feature-based
trackers, such as DeepSORT (Wojke et al., 2017), which also
base their predictions on objects’ appearance information.
However, detailed features such as vehicle models, brands, and
colors cannot be distinguished in residual frames. Therefore, we
limited our exploration to the former kind of trackers.

3.4 HOTA Evaluation Metric
In this section, we introduce the Higher Order Tracking Accuracy
(HOTA) evaluation metric developed in detail by (Luiten et al.,
2020). This metric was used to assess the performance of our
detector/tracker combinations on the multi-object tracking task.
In their work, they allow to measure the performance of the two
stages (the detection and the association) evenly in a single
metric. They also show that the HOTA metric should be used
instead of the MOTA metric (Bernardin and Stiefelhagen, 2008)
because the latter is biased towards detection. Ground-truth
annotations and predictions are matched thanks to the
Hungarian algorithm, provided that their similarity score is
above a threshold α.

The HOTA score is computed by means of sub-metrics that
can also be used for deeper analysis. The matching is done at the

FIGURE 3 | Block diagram of the generic adaptive block matching
algorithm (ABMA).
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detection level in each frame based on the similarity score. The
matched pairs of detections are called the true positives (TP).
Predictions that are not matched with a ground-truth detection
are called false positives (FP). Likewise, ground-truth detections
that are not matched with a prediction are called false negatives
(FN). Then, the detection precision (DetPr), recall (DetRe), and
accuracy (DetA) are obtained using Eqs 1–3 respectively. More
specifically, the detection recall measures the performance in
finding all the ground-truth detections while the detection
precision evaluates how well the predictor does not produce
extra detections.

DetPrα � |TP|
|TP| + |FP| (1)

DetPrα � |TP|
|TP| + |FN| (2)

DetPrα � |TP|
|TP| + |FN| + |FP| (3)

The tracks’ association can be computed for each matched
detection. This is done by evaluating the alignment between the
predicted detection’s track and ground-truth detection’s track.
Then, the matching detections between the two tracks are called
true positives (TPA). The remaining detections from the
predicted track are the false positives (FPA) and the ones from
the ground-truth track are the false negatives (FNA). When the
best matching tracks are found, association precision (AssPr),
recall (AssRe), and association (AssA) are computed using in Eqs
4–6 respectively. This time, the recall tells how well the predictor
does not split the tracks of the objects whereas the precision
assesses how it avoids merging the tracks of different objects.

AssPrα � 1
|TP| ∑

c∈[TP}

|TPA(c)|
|TPA(c)| + |FPA(c)| (4)

AssRe α � 1
|TP| ∑

c∈ TP{ }

|TPA(c)|
|TPA(c)| + |FNA(c)| (5)

AssAα � AssReα · AssPr α
AssReα + AssPrα − AssReα · AssPrα (6)

In short, HOTAα combines the detection and the association
accuracies. Each of themmeasures the overall quality of their own
stage and can be broken down to obtain the recalls and the
precisions. This is illustrated in Figure 4. The final HOTA score is
the average of the nineteen HOTA scores computed at each
similarity score threshold (ranging from 0.05 to 0.95). In the case
of bounding boxes, the similarity score (S) is the Intersection
Over Union (IOU). Additionally, the localization accuracy
(LocA) measures the overall spatial alignment between the
predicted detections and the ground-truth annotations.
HOTAα, HOTA and LocA can be calculated using Eqs 7–9
respectively.

HOTAα �
������������
DetAα · AssAα

√
(7)

HOTA � ∫1

0
HOTAαdα ≈

1
19

∑
α∈ 0.05,...0.95{ }

HOTAα (8)

LocA � ∫1

0

1
TPα| | ∑

c∈ TPα{ }
S(c)dα (9)

3.5 Datasets
Three datasets were used to train and test our solutions. First,
MIO-TCD Localization (Luo et al., 2018) allowed us to train our
detectors for decoded frames. This public dataset acquired
140,000 annotated images captured at different times of the
day and periods of the year by 8,000 traffic cameras deployed
over North America. We trained a YOLOv4 and a tiny YOLOv4
detectors on MIO-TCD Localization and obtained an mAP of
80.4 and 71.5%, respectively, on the test set. The former is the
state-of-the-art detector reported on the MIO-TCD localization
challenge. Note that eleven mobile object classes were annotated
in this challenge, but in this work all predictions were grouped
into a single mobile object class to match the residual frames’
annotations. This has also been done to ease the detection task,
given that this is a first exploration into deep learning object
detection using residual frames. Another reason is because an
implementation to evaluate multi-class dataset with HOTA
metrics is not yet available.

Second, we applied our compression algorithm on video
sequences from AICity Challenge 2021 Track 1 (Naphade
et al., 2021; Naphade et al., 2018) to obtain the residual
frames dataset. We then trained a YOLOv4 and a tiny
YOLOv4 detector on this dataset. For this purpose, we
manually annotated 14,000 residual frames from six different
points of view to make it appropriate for training. Indeed, there
are some visibility discrepancies between decoded and residual
frames. The latter representation relies on movement in the
observed scene, leading to stationary vehicles often not being
visible. Using an Nvidia GTX 1080Ti, it took approximately

FIGURE 4 | Hierarchical diagram of the HOTA sub-metrics illustrating
the different error types (Luiten et al., 2020).
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16 hours to train YOLOv4 and only 2 hours to train the tiny
version on this adapted dataset.

Finally, we used AICity Challenge 2021 Track 3, also known as
CityFlowV2 (Naphade et al., 2021; Tang et al., 2019). We selected
four full HD (1,920 × 1,080 pixels) video sequences (recorded at
10 frames per second), resulting in a total of 10,000 frames to test
the performance of the four detector/tracker combinations on
both representations. CityFlowV2 provides full ground-truths
with vehicle IDs. It should be noted that the challenge targets
multi-camera tracking. Therefore, only objects that travel across
at least two cameras were annotated. Also, vehicles whose
bounding boxes were smaller than 1,000 square pixels (smaller
than 0.05% of the native resolution) were not annotated. To keep
a fair comparison, predictions smaller than this threshold were
also removed. Otherwise, detectors would have been wrongly
penalized, since they are capable of detecting further objects
resulting in false positives. Therefore, the appropriate test
sequences were chosen to take the aforementioned constraints
into account.

3.6 Experiments
In this paper, we set up two experiments on two different video
surveillance scenarios to show that an object tracker trained and
tested on residual frames can be just as effective as an object
tracker trained and tested on decoded frames. Both experiments
followed the same setup. The two experiments were tested on four
detector/tracker combinations for both image representations
(residual and decoded frames): YOLOv4/KIOU, YOLOv4/
SORT, tiny YOLOv4/KIOU and tiny YOLOv4/SORT.

The scenario for Experiment One is shown in Figure 5A.
Three cameras observed the same intersection between a double-
lane two-way street and a single-lane two-way street. This
scenario is indeed very complex, with overlapping numbers of
vehicles, and can be used for various video surveillance tasks such
as traffic light violation detection, vehicle counting, and traffic
jam monitoring. The goal of Experiment One was to show that a
network trained and tested on residual frames could compete
with a network trained and tested on decoded frames even in a

highly complex scenario. The scenario for Experiment Two is
shown in Figure 5B. One camera observed a double-lane two-
way street with uninterrupted traffic flow. This scenario is mainly
used for vehicle counting and wrong-way driving violation
detection. The goal of Experiment Two was to highlight the
benefits of using residual frames in these types of scenarios, as the
constant traffic flow should allow the block matching algorithm
to generate motion vectors constantly. This would lead to
uninterrupted and more visible residual frames in return.

4 RESULTS

4.1 Experiment One
In this scenario, we tested the combinations on the intersection
depicted in Figure 5A. The total footage of the three cameras
amounted to 6,000 frames recorded at 10 frames per second. We
calculated the HOTA metric and sub-metrics for each detector/
tracker combination on both representations. The results for
Experiment One are shown in Table 1.

For the HOTAmetric, we obtained an average score of 35.92%
when residual frames were the input versus an average score of
41.87% when decoded frames were the input. Concerning the
DetA sub-metric, we observed an average score of 32.64% when
residual frames were the input versus an average score of 34.66%
when decoded frames were the input. As for the AssA sub-metric,
we derived an average score of 41.21% when residual frames were
the input versus an average score of 52.77% when decoded frames
were the input.

On the whole, the HOTA score is 6% better on average when
decoded frames are used. This difference mainly comes from
AssA (11.5% difference on average) and more specifically from
the association recall (AssRe) that measures how objects’ tracks
are split into multiple tracks. This can be explained simply by the
traffic light stop lines. When vehicles stand still in the residual
frames, they temporary disappear, given that residual frames
depend on motion vectors generated by block matching. These
vehicles are then assigned new IDs when they start moving again.
On the other hand, the DetA sub-score is not much affected by
residual frames (only 2% difference on average). Likewise, the
detection recall (DetRe) is strongly affected by the stop lines since
it measures to what extent all detections are found, but is
counterbalanced by the detection precision (DetPr), which is
higher for residual frames detectors thanks to the background
suppression it provides. This results in fewer false positive
detections. That being said, both kinds of detectors locate the
objects properly in the space as shown by Figure 6.

4.2 Experiment Two
In this scenario, we tested the combinations on the street depicted
in Figure 5B. The total footage of the camera amounted to 4,000
frames recorded at 10 frames per second. We calculated the
HOTA metric and sub-metrics for each detector/tracker
combination on both representations. The results for
Experiment Two are shown in Table 2.

For the HOTAmetric, we obtained an average score of 37.38%
when residual frames were the input versus an average score of

FIGURE 5 | Visualization of the two video surveillance scenarios.
Experiment One (A) shows a complex scenario where an intersection is
observed by three distinct cameras. Experiment Two (B) shows a simple
scenario where a two-way street is observed by a single camera.
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32.25% when decoded frames were the input. Concerning the
DetA sub-metric, we observed an average score of 38.96% when
residual frames were the input versus an average score of 29.95%
when decoded frames ere the. As for the AssA sub-metric, we
derived an average score of 36.24% when residual frames were the
input versus an average score of 35.12% when decoded frames
were the input.

Overall, the HOTA score is 5% higher on average for the
residual representation in Experiment Two. This time, the main
difference comes from the DetA sub-metric, where a 9%
difference on average can be noticed. This is explained by a
higher detection recall (DetRe) due to the vehicles’ constant
movements causing them to appear in the residual frames.
Also, fewer false positive detection results in a better precision
(DetPr), similar to Experiment One. Less significantly, the
association accuracy (AssA) is quite similar for both
representations, with less than 1% difference on average.
Those scores are closer since tracks are not split anymore in
the case of residual frames. Furthermore, the camera is closer to
the ground, making the distant vehicles less distinguishable for
the trackers. Consequently, all the association scores are a bit
lower than in Experiment One. With everything considered, both
detectors still perform generally well, as shown by Figure 7.

5 DISCUSSION

In this section, we first discuss the benefits and the drawbacks of
using the two frame representations. Secondly, we assess both
residual and decoded frames on a privacy-friendly model.
Thirdly, we position our research with respect to the state-of-
the-art. Last, we expose the limitations of our work.

5.1 Decoded Frames Versus Residual
Frames
The results of the two experiments yield two different
observations. The first observation is seen in Experiment One
(complex scenario where three distinct cameras observe an
intersection) where the decoded frame representation
outperforms the residual frame representation. This is due to
the continuously interrupted traffic flow by the intersection’s
traffic lights. Given that compression codecs rely on movement to
generate residual frames, standstill objects do not appear in the
image, as shown in Figure 8. Yet, residual frames are not
completely limited in the scenario. For instance, it is still
possible to count vehicles entering or exiting the intersection
for statistical purposes.

TABLE 1 |Results of Experiment One (complex scenario where three distinct cameras observe an intersection) for residual versus decoded frames for each detector/tracker
combination evaluated with HOTA metric and sub-metrics. Bold values highlight the overall HOTA scores and the underlined values show the best average scores for
each metric between the two representations.

Representation Detector/Tracker HOTA DetA DetRe DetPr AssA AssRe AssPr

Residual YOLOv4/KIOU 36.28 34.04 44.24 47.83 39.95 51.11 60.89
YOLOv4/SORT 37.47 32.96 42.37 47.43 44.79 57.14 61.30
Tiny YOLOv4/KIOU 34.90 32.67 44.73 45.31 38.55 50.64 60.26
Tiny YOLOv4/SORT 35.02 30.91 41.61 43.79 41.55 54.84 57.88

Average scores 35.92 32.64 43.24 46.09 41.21 53.43 60.08

Decoded YOLOv4/KIOU 42.63 35.97 61.26 38.53 52.94 67.74 61.37
YOLOv4/SORT 43.21 35.29 59.70 38.21 55.46 69.44 61.89
Tiny YOLOv4/KIOU 40.35 34.00 62.77 36.22 49.75 63.93 60.78
Tiny YOLOv4/SORT 41.29 33.38 61.06 35.92 52.95 66.86 60.49

Average scores 41.87 34.66 61.20 37.22 52.77 66.99 61.13

TABLE 2 | Results of Experiment Two (simple scenario where a single camera observes a two-way street) for residual versus decoded frames for each detector/tracker
combination evaluated with HOTA metric and sub-metrics. Bold values highlight the overall HOTA scores and the underlined values show the best average scores for
each metric between the two representations.

Representation Detector/Tracker HOTA DetA DetRe DetPr AssA AssRe AssPr

Residual YOLOv4/KIOU 35.57 37.96 51.11 46.60 33.60 41.15 54.92
YOLOv4/SORT 38.97 37.87 50.67 46.86 40.33 50.25 55.18
Tiny YOLOv4/KIOU 34.92 39.74 53.60 46.86 30.87 39.58 51.55
Tiny YOLOv4/SORT 40.07 40.24 53.63 47.75 40.17 50.41 53.89

Average scores 37.38 38.96 52.25 47.02 36.24 45.35 53.89

Decoded YOLOv4/KIOU 31.72 32.35 45.06 39.96 31.38 39.76 48.41
YOLOv4/SORT 33.93 31.92 44.25 39.93 36.46 46.51 48.80
Tiny YOLOv4/KIOU 31.13 27.85 44.93 32.85 34.95 41.76 49.12
Tiny YOLOv4/SORT 32.23 27.69 44.09 32.93 37.69 45.29 48.78

Average scores 32.25 29.95 44.58 36.42 35.12 43.33 48.78
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The second observation is seen in Experiment Two (simple
scenario where a single camera observes a two-way street) where
the residual frames representation outperforms the decoded
frame representation. Figure 9 shows a benefit and a drawback
of using residual frames. On one hand, residual frames face
possible detection mergers due to the uniform color
distribution. On the other hand, the image smoothing offered
by residual frames allows to get rid of false positives, which are
sometimes predicted by deep learning techniques because of
confusing shapes or colors. Figure 10 shows a second benefit to
the use of the residual frame representation. It makes it possible
to deal with backgrounds that contain objects that the model is
able to detect but are not of interest. While it is possible to use a
mask to perform detection only in a region of interest, this is not
possible in this case, where there is a full parking lot in the
background.

In summary, in the complex scenario, the drawback caused by
the high frequency of continuously interrupted targets outweighs
the benefits of residual frames’ background subtraction. However,
in the simple scenario, the uninterrupted traffic flow limits the
drawback of residual frames and emphasizes the benefits of its
background subtraction. Consequently, for object tracking
purposes, the choice of the image representation may depend
on the evaluated scenario. Yet, for storage purposes, it is obvious

that we would rather choose lightweight residual frames over
heavy decoded frames. Also, for privacy purposes, the choice is
not straightforward. It remains an open-ended question whether
decoded or residual frames are more privacy-friendly. This will be
discussed in the next section.

5.2 Privacy-Friendly Model
In this paper, we not only want to address the two needs of data
compression and data analysis but also tackle the need for data
privacy. It is, however, very difficult to define a clear evaluation
metric when measuring data privacy. Also, every country has
different thresholds for the amount of information that may be
leaked from video surveillance footage. In the European Union,
the General Data Protection Regulation (GDPR) ensures the
individual’s right to ask for any information held about them,
including but not limited to CCTV footage2. It is extremely hard
to guarantee with 100% accuracy that one image, regardless of the
representation used, does not reveal any private information
about individuals in the visual scene. In our situation, we have
to compromise between effective tracking and protecting the

FIGURE 7 | Results on residual frames (A) versus decoded frames (B) in
Experiment Two. White bounding boxes represent the ground truth
annotations, colored boxes represent the detections together with their
respective IDs and confidence score.

FIGURE 6 | Results on residual frames (A) versus decoded frames (B) in
Experiment One. White bounding boxes represent the ground truth
annotations, colored boxes represent the detections together with their
respective IDs and confidence score.

2https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32016R0679&from=EN
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private information of individuals in the field. We can observe
that the residual frames representation used is a sort of
information filter on the entire image achieved by removing
the background and distorting the foreground.

However, all the previously presented traditional methods of
privacy modeling look at the explicit features for identification,
such as visual text or facial features, only; they do not include
implicit features such as location, time, and actions observed in
the scene (Dufaux and Ebrahimi, 2006; Carrillo et al., 2008). To
have a global privacy loss measurement, we not only need to
consider all the features involved in the observed frames but
should also have a non-binary evaluation metric to reflect this
trade-off. To this end, a global privacy loss metric (Γ) has been put
forward by Saini et al. (2010). The metric takes into consideration
the four key information features that can be associated to
detected objects: Who, What, When, and Where. The Who
information features represent the explicit features associated
with identity. The What, When and Where information features
represent the implicit features that, if combined with contextual
knowledge of the scene and accumulated over several frames, can
represent identity with a certain level of certainty. All four key
information features have scores ranging from 0 to 1, with 0
indicating no evidence of privacy loss and 1 indicating sufficient

evidence of privacy loss resulting in identification. The logistic
function modeling the privacy loss is shown in Eq. 10:

Γ � 1

1 + e− α* IWho+IWhat,When,Where( )−β( ) (10)

where α is the scaling coefficient and β is the translation
coefficient. IWho and IWhat,When,Where are the privacy leakage
due to the explicit and implicit features, respectively. It should
be noted that IWho carries the highest weight of the four key
information features.

In the initial model of using residual frames proposed by
this paper, we would opt for encrypting the entire encoded
bit-stream except for the residual frames, which would be
publicly available. If we wanted to improve the privacy of our
system further, we would need to apply a simple clustering
filter to the residual frames. The filter would simply group
together every YxZ pixel cluster by replacing them with their
median value. A sample of the filtered residual frames is
shown in Figure 11 with Y � Z � 7. Thus, to apply this
clustering filter, we would need to tweak the compression
codec used. This means that on top of having the residual
frame (needed for decoding) in the encoded bit-stream, we
would have an additional filtered residual frame. In that case

FIGURE 9 | Results on residual frames (A) versus decoded frames (B)
showing false positives in the background and foreground of the decoded
frame and detection mergers in the residual frame. White bounding boxes
represent the ground truth annotations, colored boxes represent the
detections together with their respective IDs and confidence score.

FIGURE 8 | Results on residual frames (A) versus decoded frames (B)
showing false negatives in residual frames when cars are stopped. White
bounding boxes represent the ground truth annotations, colored boxes
represent the detections together with their respective IDs and
confidence score.
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we would encrypt the residual frame alongside the rest of the
stream and keep only the filtered residual frame public.
However, this gain in privacy comes at a higher encoding
cost for the compression codec as well as a performance drop
for the deep learning object detectors and trackers. In short,
there will always be a trade-off between the three needs of
compression, analysis, and privacy.

We put the model into practice by enumerating the
different explicit and implicit features in the case of traffic

video surveillance and assigned them scores ranging from
very low to very high evidence of privacy loss for each of the
three proposed representations. This is depicted in Figure 12.
Among the explicit features (IWho), the evidence of privacy
loss drops for colors, since residual representations highlight
the prediction error, which is mapped onto a grayscale image.
The brand and model of a vehicle is less recognizable
compared with decoded frames, in particular for filtered
residual frames. License plates, for their part, can directly
leak the identity in the case of the decoded frames, but are less
likely to be readable in residual frames and are scrambled in
filtered residual frames. The same goes for dents and other
damage, which can be considered as a unique feature on
someone’s vehicle. As for implicit features, IWhere can be
decomposed mainly into text and background features.
The former are texts featured on traffic signs, for instance,
while the latter can be any building or monument capable of
revealing the location. As previously shown, the background
filtering present in the residual representations addresses this
concern. IWhen considered mainly time related information.
For example, the weather and the sunlight can communicate
information on the day and time of the scene. Residual
representations are mostly agnostic of IWhen features. Some
exceptions could occur in the case of severe weather
conditions. IWhat can be split into simple and complex
detection tasks. Simple tasks such as vehicle counting or
wrong-way driving violations can be carried just as
effectively with residual representations or decoded frames.
Complex tasks such as detecting emergency vehicles are
easier to achieve when dealing with decoded frames rather
than both residual representations. Overall, we observe that
the global privacy loss is better for residual frames than for
decoded frames and can also be improved by applying
clustering filters to the residual frames.

5.3 Research Positioning
The proposed work is a new approach to object tracking
based exclusively on the analysis of compressed domain
residual frames. We therefore opted to position our paper
not only on its object tracking results but also by highlighting
its other benefits by observing key similarities and
differences with the previous works mentioned in Section
2. A comparison can be made with respect to the proposed

FIGURE 11 | Comparison of explicit features leakage in (A) decoded frames, (B) residual frames and (C) filtered residual frames.

FIGURE 10 | Results on residual frames (A) versus decoded frames (B)
showing a parking with irrelevant cars in the background. Colored boxes
represent the detections together with their respective IDs and
confidence score.
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work on CNN training using the ROI extracted by classical
background subtraction (Kim et al., 2018). Similarly to their
work, we also take advantage of the residual frame’s
background subtraction by-product to obtain the changing
ROI to train our network. However, contrarily to their
proposal, the residual frame’s background subtraction by-
product is auto-generated by the already existing video
compression codec and therefore does not require any
supplementary computational power. In the same scope,
we find further similarities of our work with the VCM
proposal by MPEG (Duan et al., 2020) as the two works
aim to facilitate feature extraction. Another comparison can
be made with regards to research propositions that have
integrated compressed domain motion vectors for object
detection (Ujiie et al., 2018; Liu et al., 2019). Even though
we have utilized the compressed domain residual frames in
our case, we still differ from their work as we propose to train
and test our network exclusively on the residual frames. This

will ensure that we do not rely on the original key frames
(also called I frames) nor on the motion vectors for the
detection and tracking process. We therefore are not only
able to store our data in the compressed format but we also
show that this alternative could potentially provide a
privacy-friendly solution to deep learning-based object
tracking. We also find similarities with the privacy-
friendly video surveillance scrambler proposal that
distorts the ROI in the frame to hide critical information
(Dufaux and Ebrahimi, 2006). In our paper, we use the
clustering filter proposed in Section 5.2 to scramble the
residual frame-generated ROI. Given that the ROI are auto-
generated by the residual frames and that the clustering
filtered is a basic median value filter, our algorithm would
only require minor additional computational power
compared to having to extract the ROI with complex
algorithms.

5.4 Limitations
As for all research work, we reached some limitations that were
either external or based on decisions made within our team.
Firstly, we decided to chose the same parameters for all video
sequences for the detectors and trackers. We decided to set
parameters that worked well for all sequences because
optimizing parameters for each one would have been
arbitrary and could lead to biased results. For example,
depending on the scenario, one could adjust a detector to
favor false positives over false negatives, such as in intrusion
detection systems. Conversely, urban planners would rather
balance false positives and false negatives to obtain correct
estimations.

Concerning the generic compression algorithm, it can be
optimized in one of the two directions: either gain storage
space and limit the amount of information disclosed at a cost
of lower detection and tracking performance, or lose storage
space and increase the amount of information leakage to improve
the detection and tracking performance. In this study, we worked
with fixed compression parameters for all chosen training and
test sequences. The parameters have been chosen to balance
storage space and tracking performance while maximizing
privacy protection.

Regarding our detectors, they were trained on two
different datasets. Nevertheless, they all proved to
generalize well on other video sequences. Even though the
detectors for residual frames were trained on AICity footage
(different from those used for testing), there is less need
variety in the observed scene to obtain a generic model given
the simple appearance of the moving objects in the residual
representation.

An important external factor that impacted our results
was the AICity annotations. The fact that vehicles have to
travel across at least two cameras to be annotated results in
missing ground truths for vehicles passing in front of a single
camera. Moreover, to ensure full coverage of the vehicles,
these ground truths were annotated larger than normal.
Furthermore, only annotations larger than 2/3 of the
visible vehicle bodies were kept (Naphade et al., 2021;

FIGURE 12 | Radar chart for both explicit (A) and implicit (B) features
highlighting the reduction in information leakage when using residual and
filtered residual frames over decoded frames.
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Tang et al., 2019). All these factors do not really impact our
comparison, as they are common to both kinds of detectors.
However, the annotation restrictions lowered the HOTA
percentages for all tested sequences.

6 CONCLUSION AND FUTURE WORK

In this work, we put forward an object tracking method which
adapts both video compression and video analysis while
reducing the amount of private information leakage in the
video stream. This research addresses the three major needs
created by the large surge in video data consumption. This was
done by setting up two experiments based on two different video
surveillance scenarios following the same experimental setup.
The two experiments were tested on four detector/tracker
combinations for both image representations (residual and
decoded frames): YOLOv4/KIOU, YOLOv4/SORT, tiny
YOLOv4/KIOU and tiny YOLOv4/SORT. Using the HOTA
evaluation metric, we showed that using inexpensive
compressed domain residual frames as an image
representation can be just as effective as using decoded
frames for deep learning-based object tracking. This research
is to be seen as a positive result to encourage the use of
compressed domain representations in deep learning-based
video analysis. It is also a first step towards providing a
publicly available data format for deep learning-based traffic
monitoring.

Several future work propositions would extend the
validation of our results. Further testing on other deep
learning-based object detectors such as EfficientDet or other
YOLO-family models (PP-YOLO, scaled YOLOv4, or YOLOR)
should be done to consolidate our hypothesis (Tan et al., 2020;
Long et al., 2020; Wang C. et al., 2020; Wang et al., 2021).
Feature-based trackers such as DeepSORT, JDETracker or
TPM could be trained on residual frames to see if they are
capable of capturing more information, albeit at a higher cost
(Peng et al., 2020; Zhang et al., 2020; Wojke et al., 2017).
Another interesting path to explore is the use of residual

frames in night-time object tracking, as it is much more
robust to illumination and color changes than decoded
frames. Finally, further exploration into the privacy
evaluation metrics could be investigated with the goal of
further validating our claim to providing a privacy-friendly
solution to video surveillance object tracking.
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