
Multivariate Lipschitz Analysis of the
Stability of Neural Networks
Kavya Gupta1,2*, Fateh Kaakai2, Beatrice Pesquet-Popescu2, Jean-Christophe Pesquet1 and
Fragkiskos D. Malliaros1

1Inria, Centre de Vision Numérique, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France, 2Air Mobility Solutions BL,
Thales LAS, Rungis, France

The stability of neural networks with respect to adversarial perturbations has been
extensively studied. One of the main strategies consist of quantifying the Lipschitz
regularity of neural networks. In this paper, we introduce a multivariate Lipschitz
constant-based stability analysis of fully connected neural networks allowing us to
capture the influence of each input or group of inputs on the neural network stability.
Our approach relies on a suitable re-normalization of the input space, with the objective to
perform a more precise analysis than the one provided by a global Lipschitz constant. We
investigate the mathematical properties of the proposed multivariate Lipschitz analysis and
show its usefulness in better understanding the sensitivity of the neural network with regard
to groups of inputs. We display the results of this analysis by a new representation
designed for machine learning practitioners and safety engineers termed as a Lipschitz
star. The Lipschitz star is a graphical and practical tool to analyze the sensitivity of a neural
network model during its development, with regard to different combinations of inputs. By
leveraging this tool, we show that it is possible to build robust-by-design models using
spectral normalization techniques for controlling the stability of a neural network, given a
safety Lipschitz target. Thanks to our multivariate Lipschitz analysis, we can also measure
the efficiency of adversarial training in inference tasks. We perform experiments on various
open access tabular datasets, and also on a real Thales Air Mobility industrial application
subject to certification requirements.
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1 INTRODUCTION

Artificial neural networks are at the core of recent advances in Artificial Intelligence. One of the main
challenges faced today, especially by companies designing advanced industrial systems, is to ensure
the safety of new generations of products using these technologies. Neural networks have been shown
to be sensitive to adversarial perturbations (Szegedy et al., 2013). For example, changing a few pixels
of an image may lead to misclassification of the image by a Deep Neural Network (DNN), which
emphasizes the potential lack of stability of such architectures. DNNs being sensitive to adversarial
examples, can thus be fooled, in an intentional manner (security issue) or in undeliberate/accidental
manner (safety issue), which raises a major stability concern for safety-critical systems which need to
be certified by an independent certification authority prior to any entry into production/operation.
DNN-based solutions are hindered with such issue due to their complex nonlinear structure.
Attempts towards verification of neural networks have been made for example in (Katz et al., 2017;
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Weng et al., 2019). It has been proven in (Tsipras et al., 2018b)
that there exists a trade-off between the prediction performance
and the stability of neural networks.

In the last years, the number of works devoted to the stability
issue of neural networks has grown in manifolds. In these works,
the terms “stability”, “robustness” or “local robustness” are used
interchangeably with the samemeaning which is formally defined
in this paper as the extent to which a neural network can continue
to operate correctly despite small perturbations in its inputs. The
stability criterion considered here highlights the fact that these
small perturbations in the inputs do not produce high variations
of the outputs. Many approaches have been proposed, some
dedicated to specific architectures (e.g., networks using only
ReLU activation functions) and grounded on more or less
empirical techniques. We can break down broadly these
techniques into three categories:

• Purely computational approaches which consist in attacking
a neural network and observing its response to such attacks,

• methods based on (often clever) heuristics for testing/
promoting the stability of a neural net,

• studies that aim at establishing mathematical proofs of
stability.

These three kinds of strategies are useful for building and
certifying effectively robust neural networks. However, the
techniques based on mathematical proofs of stability are
generally preferred by industrial safety experts since they
enable a safe-by-design approach that is more efficient than a
robustness verification activity done a posteriori with a
necessarily bounded effort. Among the possible mathematical
approaches, we focus in this article on those relying upon the
analysis of the Lipschitz properties of neural networks. Such
properties play a fundamental role in the understanding of the
internal mechanisms governing these complex nonlinear systems.
Besides, they make few assumptions on the type of non-linearities
used and are thus valid for a wide range of networks.
Nevertheless, they generate a number of challenges both from
a theoretical and numerical standpoints.

Since DNNs are sensitive to small specific perturbations,
providing a quantitative estimation of the stability of such
architectures is of paramount importance for safe and secure
product development in domains such as aeronautics, ground
transportation, autonomous vehicles, energy, and healthcare.
One metric to assess the stability of neural networks to
adversarial perturbations is the Lipschitz constant, which
upper bounds the ratio between output variations and input
variations for a given metric. More generally, in deep learning
theory, novel generalization bounds critically rely on the
Lipschitz constant of the neural network (Bartlett et al., 2017).
One of the main limitations of the Lipschitz constant, defined in
either global or local context, is that it only provides a single
parameter to quantify the robustness of a neural network. Such a
single-parameter analysis does not facilitate the understanding of
potential sources of instability. In particular, it may be insightful
to identify the inputs which have the highest impact in terms of
sensitivity. In the context of tabular data mining, the inputs often

have quite heterogeneous characteristics. Some of them are
categorical data, often encoded in a specific way [e.g., one-hot
encoder (Hancock and Khoshgoftaar, 2020)] and among them,
one can usually distinguish those which are unsorted (like labels
identifying countries) or those which are sorted (like severity
scores in a disease). So, it may appear useful to analyze in a
specific manner each type of inputs of a NN and even sometimes
to exclude some of these inputs (e.g., unsorted categorical data for
which the notion of small perturbationmay be meaningless) from
the performed sensitivity analysis.

The contributions of the work are summarized below:

• A multivariate analysis of the Lipschitz properties of NNs is
performed by generating a set of partial Lipschitz constants.
This opens a new dimension to studying the stability
of NNs.

• Our sensitivity analysis allows us to capture the behaviour of
an individual input or group of inputs.

• The results of this analysis are displayed by a new graphical
representation termed as a Lipschitz star.

• Using the proposed analysis, we also study quantitatively
the effect of spectral normalization constraint and
adversarial training on the stability of NNs.

• We showcase our results on various open-source datasets
along with a real industrial application in the domain of Air
Traffic Management.

In the next section we give a detailed description of the
state-of-the-art related to the quantification of the Lipschitz
constant in neural networks. Section 3 gives our proposed
method pertaining to sensitivity of inputs and introduction to
Lipschitz stars. Section 4 provides an analytical evaluation
for our approach with synthetic datasets. The next section
gives detailed results on three open source datasets and a real
safety critical industrial dataset. The last section concludes
our paper.

2 OVERVIEW ON THE ESTIMATION OF THE
LIPSCHITZ CONSTANT OF
FEEDFORWARD NETWORKS
2.1 Theoretical Background
An m-layered feedforward network can be modelled by the
following recursive equations:

∀i ∈ 1, . . . , m{ }( ) xi � Ti xi−1( ) � Ri Wixi−1 + bi( ), (1)
where, at the ith layer, xi−1 ∈ RNi−1 designates the input vector,
xi ∈ RNi the output one, Wi ∈ RNi×Ni−1 is the weight matrix,
bi ∈ RNi is the bias vector, and Ri: R

Ni → RNi is the activation
operator. This operator may consist of the application of basic
nonlinear functions, e.g., ReLU or tanh, to each component of
the input. Alternatively, it may consist of a softmax operation
or group sorting operations which typically arise in max
pooling. In this model, when the matrix Wi has a
Toeplitz or a block-Toeplitz structure, a convolutive layer
is obtained.
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Since the seminal work in (Szegedy et al., 2013), it is known
that instability in the outputs of the neural networks may arise.
This issue, often referred to as the stability with respect to
adversarial noise, tends to be more severe when the training
set is small. However, it may even happen with large datasets such
as ImageNet. As shown in (Goodfellow et al., 2015), the problem
is mainly related to the choice of the weight matrices. One way of
quantifying the stability of the system is to calculate a Lipschitz
constant of the network.

A Lipschitz constant of a function T is an upper bound on the
ratio between the variations of the output values and the
variations of input arguments of a function T. Thus, it is a
measure of sensitivity of the function with respect to input
perturbations. This means that, if θ ∈ [0,+ ∞ is such that, for
every input x ∈ RN0 and perturbation z ∈ RN0 ,

‖T x + z( ) − T x( )‖≤ θ‖z‖, (2)
then θ is a Lipschitz constant of T. Note that, the same notation is
used here for the norms on RN0 and RNm , but actually different
norms can be used. If not specified, the standard Euclidean norm
will be used. Another important remark which follows from the
mean value inequality is that, if T is differentiable on RN0 , the
optimal (i.e., smallest) Lipschitz constant is

θ � sup
x∈RN0

‖T′ x( )‖S � sup
x∈RN0

sup
x∈RN0

‖T′ x( )z‖
‖z‖ , (3)

where T′(x) ∈ RNm×N0 is the Jacobian matrix of T at x and ‖ ·‖S
denotes the spectral matrix norm. Local definitions of the
Lipschitz constant are also possible (Yang et al., 2020). In
order to get more meaningful expressions of Lipschitz
constants, an important assumption which will be made in
this paper is that the operators (Ri)1≤ i ≤m are nonexpansive,
i.e., 1-Lipschitz. This assumption is satisfied for all the standard
choices of activation operators.

The first upper-bound on the Lipschitz constant of a neural
network was derived by analyzing the effect of each layer
independently and considering a product of the resulting
spectral norms (Goodfellow et al., 2015). This leads to the
following Trivial Upper Bound:

�θm � ‖Wm‖S‖Wm−1‖S . . . , ‖W1‖S. (4)
Although easy to compute, this upper bound turns out be

over-pessimistic. In (Virmaux and Scaman, 2018), the problem of
computing the exact Lipschitz constant of a differentiable
function is pointed out to be NP-hard. A first generic
algorithm (AutoLip) for upper bounding the Lipschitz
constant of any differentiable function is proposed. This
bound however reduces to Eq. 4 for standard feedforward
neural networks. Additionally, the authors proposed an
algorithm, called SeqLip, for sequential neural networks, which
shows significant improvement over AutoLip. A sequential neural
network is a network for which the activation operators are
separable in the sense that, for every i ∈ (1, . . . , m),

∀xi � ξ i,k( )1≤ k≤Ni
∈ RNi( ) Ri x( ) � ρi ξi,k( )( )1≤ k≤Ni

, (5)

where the activation function ρi: R → R
1. In (Virmaux and

Scaman, 2018), it is assumed that the functions (ρi)1≤ i≤m are
differentiable, increasing, and their derivative are upper bounded
by one. It can be deduced that a Lipschitz constant of the
network is

ϑm � sup
Λ1∈DN1 0,1[ ]( ),...,Λm−1∈DNm−1 0,1[ ]( )

‖WmΛm−1 . . . ,Λ1W1‖S, (6)

whereDN(I) designates the set of diagonal matrices of dimension
N × N with diagonal values in I ⊂ R. This bound simplifies as

ϑm � sup
Λ1∈DN1 0,1{ }( ),...,Λm−1∈DNm−1 0,1{ }( )

‖WmΛm−1 . . . ,Λ1W1‖S, (7)

which shows that 2Ni values of the diagonal elements of matrix Λi

have to be tested at each layer i ∈ (1, . . . , m), so that the global
complexity amounts to 2N1+/+Nm−1 and thus grows exponentially
as a function of the number of neurons. Estimating the Lipschitz
constant using this method is intractable even for medium-size
networks; thus, the authors use a greedy algorithm to compute a
bound, which may under-approximate the Lipschitz constant.
This does not provide true upper bounds.

In Combettes and Pesquet (2020b) various bounds on the
Lipschitz constant of a feedforward network are derived by
assuming that, for every i ∈ (1, . . . , m) the activation operator
Ri is αi-averaged with αi ∈]0, 1]. We recall that this means that
there exists a non-expansive (i.e., 1-Lipschitz) operator Qi such
that Ri = (1−αi)Id + αiQi. The following inequality is then
satisfied:

∀ x, y( ) ∈ RNi( ) ‖Ri x( ) − Ri y( )‖2 ≤ ‖x − y‖2 − 1 − αi
αi

‖x
− Ri x( ) − y + Ri y( )‖2. (8)

We thus see that the smaller αi, the more “stable” Ri is. In the
limit case when α1 = 1, Ri is non-expansive and, when αi = 1/2, Ri
is said to be firmly nonexpansive. An important subclass of firmly
nonexpansive operators is the class of proximity operators of
convex functions which are proper and lower-semicontinuous.
Let Γ0(RN) be the class of such functions defined from RN to
] − ∞,+∞]. The proximity operator of a function f ∈ Γ0(RN), at
some point x ∈ RN, is the unique vector denoted by proxf(x) such
that

proxf x( ) � argmin
p∈RN

1
2
‖p − x‖2 + f p( ). (9)

The proximity operator is a fundamental tool in convex
optimization. As shown in (Combettes and Pesquet, 2020a),
the point is that most of the activation functions (e.g.,
sigmoid, ReLu, leaky ReLU, ELU) currently used in neural
networks are the proximity operators of some proper lower-
semicontinuous convex functions. This property is also satisfied
by activation operators which are not separable, like softmax or
the squashing function used in capsule networks. The few

1More generally, a function ρi,k can be applied to each component ξi,k but this
situation rarely happens in standard neural networks.
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activation operators which are not proximity operators (e.g.,
convex combinations of a max pooling and an average
pooling) can be viewed as over-relaxations of proximity
operators and correspond to a value of the averaging
parameter greater than 1/2.

Based on these averaging assumptions, a first estimation of the
Lipschitz constant is given by

θm � βm;∅‖Wm◦ . . . ,◦W1‖ + ∑m−1

k�1
∑

j1 ,...,jk( )∈Jm,k

βm; j1 ,...,jk{ }σm; j1 ,...,jk{ },

(10)
where

∀ J ⊂ 1, . . . , m − 1{ }( ) βm;J � ∏
j∈J

αj⎛⎝ ⎞⎠ ∏
j∈ 1,...,m−1{ }\J

1 − αj( ),
(11)

for every k ∈ (1, . . . , m−1),

Jm,k � j1, . . . , jk( ) ∈ Nk 1≤ j1 < . . . , < jk ≤m − 1{ }, if k> 1;
1, . . . , m − 1{ }, if k � 1

{ (12)

and for every (j1, . . . , jk) ∈ Jm,k,

σm; j1 ,...,jk{ } � ‖Wm . . . ,Wjk+1‖S ‖Wjk . . . ,Wjk−1+1‖S . . . ‖Wj1 . . . ,W1‖S (13)

When, for every i ∈ (1, . . . , m−1), Ri is firmly nonexpansive,
the expression simplifies as

θm � 1
2m−1 ‖Wm . . . ,W1‖S + ∑m−1

k�1
∑

j1 ,...,jk( )∈Jm,k

σm; j1 ,...,jk{ }⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (14)

If, for every i ∈ (1, . . . , m−1), Ri is separable2, a second
estimation is provided which reads

ϑm � sup
Λ1∈DN1 2α1−1,1{ }( ),

..

.
,

Λm−1∈DNm−1 2αm−1−1,1{ }( )

‖WmΛm−1 . . . ,Λ1W1‖S (15)

We thus see that, when α1 = . . . = αm−1 = 1/2, we recover Eq. 7
without making any assumption on the differentiability of the
activation functions. This estimation is more accurate than the
previous one in the sense that

‖Wm . . . ,W1‖S ≤ ϑm ≤ θm. (16)
It is proved in (Combettes and Pesquet, 2020b) that, if the

network is with non-negative weights, that is
(∀i ∈ {1, . . . , m}) Wi ∈ [0,+∞Ni×Ni , the lower bound in Eq. 16
is attained, i.e.,

ϑm � ‖Wm . . . ,W1‖S. (17)
Another interesting result which is established in (Combettes

and Pesquet, 2020b) is that similar results hold if other norms

than the Euclidean norm are used to quantify the perturbations
on the input and the output. For example, for a given i ∈ (1, . . . ,
m), for every p ∈ (1, + ∞), we can define the following norm:

∀xi � ξ i,k( )1≤ k≤Ni
∈ RNi( )

‖x‖p �
∑Ni

k�1
|ξ i,k|p1/p, if p< + ∞

sup
1≤k≤Ni

|ξ i,k|, if p � +∞ .

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (18)

If (p, q) ∈ (1,+∞)2, the input space RN0 is equipped with the
norm ‖ ·‖p, and the output spaceRNm is equipped with the norm ‖
·‖q, a Lipschitz constant for a network with separable activation
operators is

ϑm � sup
Λ1

∈DN1 2α1−1,1[ ]( ),
..
.
,

Λm−1∈DNm−1 2αm−1−1,1[ ]( )

‖WmΛm−1 . . . ,Λ1W1‖p,q (19)

� sup
Λ1∈DN1 2α1−1,1{ }( ),

..

.
,

Λm−1∈DNm−1 2αm−1−1,1{ }( )

‖WmΛm−1 . . . ,Λ1W1‖p,q (20)

where ‖ ·‖p,q is the subordinate Lp,q matrix norm induced by the
two previous norms. The ability to use norms other than the
Euclidean one may be sometimes more meaningful in practice
(especially for the ℓ1 or the sup norm). However, computing such
a subordinate norm is not always easy (Lewis, 2010).

2.2 SDP-Based Approach
The work in (Fazlyab et al., 2019) focuses on neural networks
using separable activation operators. It assumes that the
activation function ρi used at a layer i ∈ (1, . . . , m) is slope-
bounded, i.e., there exist nonnegative parameters ϒmin and ϒmax

such that

∀ ξ, ξ′( ) ∈ R2( ) ξ ≠ ξ′0ϒmin ≤
ρi ξ( ) − ρi ξ′( )

ξ − ξ′ ≤ϒmax.

As said by the authors, most activation functions satisfy this
inequality with min = 0 and max = 1. In other words, the above
inequality means that ρi is an increasing function and
nonexpansive. But a known result (Combettes and Pesquet,
2008, Proposition 1.4) states that a function ρi satisfies these
properties if and only if it is the proximity operator of some
proper lower-semicontinuous convex function. So it turns out
that we recover similar assumptions to those made in (Combettes
and Pesquet, 2020a).

Let us thus assume that min = 0, max = 1, and m ≥ 2. A
known property is that Ri is firmly nonexpansive if and only if

∀ x, y( ) ∈ RNi( )2( x − y( )⊤ Ri x( ) − Ri y( )( )≥ ‖Ri x( )
− Ri y( )‖2. (21)

The point is that, if Ri is a separable operator, this inequality
holds in a more general metric associated with a matrix

Qi � Diag qi,1,1, . . . , qi,Ni,Ni( ), (22)
2The result remains valid if different scalar activation functions are used in a
given layer.
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where (∀k ∈ {1, . . . , Ni}2) qi,k,k ≥ 0. In the following, the set of
such matrices (Qi)1≤ i≤m−1 will be denoted byQ. This means that

∀ x, y( ) ∈ RNi( )2( x − y( )⊤Qi Ri x( ) − Ri y( )( )≥
Ri x( ) − Ri y( )( )⊤Qi Ri x( ) − Ri y( )( ). (23)

For every (xi, yi) ∈ (RNi )2, let xi = Ri(Wixi−1 + bi) and yi =
Ri(Wiyi−1 + bi). It follows from Eq. 23 that

Wi xi−1 − yi−1( )( )⊤Qi xi − yi( )≥ xi − yi( )⊤Qi xi − yi( ). (24)
Summing for the first m−1 layers yields

∑m−1

i�1
Wi xi−1 − yi−1( )( )⊤Qi xi − yi( )≥ ∑m−1

i�1
xi − yi( )⊤Qi xi − yi( ).

(25)
On the other hand, ϑm > 0 is a Lipschitz constant of the neural

network T if

ϑ2m‖x0 − y0‖2 ≥ ‖Wm xm−1 − ym−1( )‖2. (26)
For the latter inequality to hold, it is thus sufficient to ensure

that

ϑ2m‖x0 − y0‖2 − ‖Wm xm−1 − ym−1( )‖2 ≥ 2
× ∑m−1

i�1
Wi xi−1 − yi−1( )( )⊤Qi xi − yi( ) − 2

× ∑m−1

i�1
xi − yi( )⊤Qi xi − yi( ). (27)

This inequality can be rewritten in matrix form as

x0 − y0

..

.

xm−1 − ym−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊤

M ρm, Q1, . . . , Qm−1( ) x0 − y0

..

.

xm−1 − ym−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≥ 0 (28)

with ρm � ϑ2m and

M ρm, Q1, . . . , Qm−1( ) �
ρmIdN0 −W⊤

1Q1 0

−Q1W1 0 1

1 1 1

1 0 −W⊤
m−1Qm−1

0 −Qm−1Wm−1 2Qm−1 −W⊤
mWm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(29)

In the case of a network having just one hidden layer, which is
mainly investigated in (Fazlyab et al., 2019), the above matrix
reduces to

M ρ2, Q1( ) � ρ2IdN0 −W⊤
1Q1

−Q1W1 2Q1 −W⊤
2W2

[ ]. (30)

Condition Eq. 28 is satisfied, for every (x0, . . . , xm−1) and (y0,
. . . , ym−1) if and only if

M ρm, Q1, . . . , Qm−1( ) ⪰ 0. (31)

It is actually sufficient that this positive semidefiniteness
constraint be satisfied for any matrices (Q1, . . . , Qm−1) ∈ Q for�
ρ

√
m
to be a Lipschitz constant. The smallest possible value of the

resulting constant can be obtained by solving the following
Semidefinite Programming (SDP) problem:

minimize
ρm,Q1 ,...,Qm−1( )∈C

ρm, (32)

where C is the closed convex set

C � ρm, Q1, . . . , Qm−1( ) ∈ 0,+∞[ × Q[ (31) holds{ }. (33)
Although there exists efficient SDP solvers, the method

remains computationally intensive. A solution to reduce its
computational complexity at the expense of a lower accuracy
consists of restricting the optimization of the metric matrices Q1,
. . . , Qm−1 to a subset of Q.

One limitation of this method is that it is tailored to the use of
the Euclidean norm.

Remark 1. In (Fazlyab et al., 2019), it is claimed that Eq. 23 is
valid for every metric matrix

Qi � ∑Ni

k�1
qi,k,keke

⊤
k + ∑

1≤k<ℓ≤Ni

qi,k,l ek − eℓ( ) ek − eℓ( )⊤, (34)

where (ek)1≤ k≤Ni
is the canonical basis of RNi and

(∀(k, ℓ) ∈ {1, . . . , Ni}2) with k ≤ ℓ, qi,k,ℓ ≥ 0 Unfortunately,
this turns out to be incorrect. The erroneous statement comes
from a flaw in the deduction of Lemma 1 from Lemma 2 in
(Fazlyab et al., 2019). A counterexample was recently provided in
(Pauli et al., 2022).

2.3 Polynomial Optimization Based
Approach
The approach in (Latorre et al., 2020) applies to neural networks
having a single output (i.e., Nm = 1)3. The authors mention that
their approach is restricted to differentiable activation functions,
but it is actually valid for any separable firmly nonexpansive
activation operators. Indeed, when Nm = 1, the Lipschitz constant
in Eq. 19 reduces to

ϑm � sup
Λ1∈DN1 0,1[ ]( ),

..

.
,

Λm−1∈DNm−1 0,1[ ]( )

‖W⊤
1Λ1 . . . ,Λm−1W⊤

m‖pp , (35)

where pp ∈ (1, + ∞) is the dual exponent of p (such that 1/p +
1/pp = 1). Recall that p ∈ (1, + ∞) is the exponent of the ℓp-
norm equipping the input space. This shows that ϑm is
equal to

ϑm � sup

Φ x, λ1, . . . , λm−1( ) | ‖x‖p ≤ 1, λi( )1≤ i≤m−1 ∈ 0, 1[ ]N1+/+Nm−1{ },
(36)

3This can be extended to multiple output network, if the output space is equipped
with the ℓ+∞ norm.
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where, for every x ∈ RN0 and (λi)1≤ i≤m ∈ RN1+/+Nm−1 ,

Φ x, λ1, . . . , λm−1( ) � x⊤W⊤
1 Diag λ1( ) . . . ,Diag λm−1( )W⊤

m. (37)
Function Φ is a multivariate polynomial of the components of

its vector arguments. Therefore, if the unit ball associated with
the ℓp norm can be described via polynomial inequalities,
which happens when p ∈ N\{0} and p = + ∞, then finding ϑm
turns out to be a polynomial constrained optimization
problem. Solving such an optimization problem can be
achieved by solving a hierarchy of convex problems.
However, the size of the hierarchy tends to grow fast and
if the order of the hierarchy is truncated to a too small value,
the delivered result becomes inaccurate. Leveraging the
sparsity properties that might exist for the weight matrices
may be helpful numerically. Note that, the approach is
further improved in (Chen et al., 2020) by using Lasserre’s
hierarchy.

A comparison of the state-of-the-art and proposed approach is
presented in Table 1.

3 WEIGHTED LIPSCHITZ CONSTANTS FOR
SENSITIVITY ANALYSIS

To extend the theoretical results presented above on the
evaluation of neural network stability through their
Lipschitz regularity, we present in this section a new
approach based on a suitable weighting operation
performed in the computation of Lipschitz constants. This
enables a multivariate sensitivity analysis of the neural
network stability for individual inputs or groups of inputs.
We will start by motivating this weighting from a statistical
standpoint. Then we will define it in a more precise manner,
before discussing its resulting mathematical properties.

3.1 Statistical Motivations
For tractability, assume that the perturbation at the network input
is a realization of a zero-mean Gaussian distributed random
vector z with N0 × N0 covariance matrix Σ ≻ 0. Then, its
density upper level sets are defined as

Cη � z ∈ RN0 | z⊤Σ−1z≤ η{ }, (38)
for every η ∈]0,+∞ . The set Cη defines an ellipsoid where the
probability density takes its highest values. More precisely, the
probability for z to belong to this set is independent of Σ
(Supplementary Appendix S1) and is equal to.

P z ∈ Cη( ) � γ N0/2, η/2( )
Γ N0/2( ) , (39)

where Γ is the gamma function and γ the lower (unnormalized)
incomplete gamma function.

On the other hand, let us assume that the maximum standard
deviation σmax of the components of z (i.e., square root of the
maximum diagonal element of matrix Σ) is small enough. If we
suppose that the network T is differentiable in the neighborhood
of a given input x ∈ RN0 , as the input perturbation is small
enough, we can approximate the network output by the following
expansion:

T x + z( ) ≃ T x( ) + T′ x( )z. (40)
Let us focus our attention on perturbations in Cη. By doing so,

we impose some norm-bounded condition, which may appear
more realistic for adversarial perturbations. Then, we will be
interested in calculating

sup
z∈Cη

‖T x + z( ) − T x( )‖ ≃ sup
z∈Cη

‖T′ x( )z‖. (41)

By making the variable change z′ � z/
�
η

√
and using Eq. 38,

sup
z∈Cη

‖T x + z( ) − T x( )‖ ≃ �
η

√
sup
z′∈C1

‖T′ x( )z′‖

� �
η

√
sup
z∈RN0

z′≠0

‖T′ x( )z′‖
‖z′‖Σ−1

� �
η

√
σmaxsup

z′∈RN0
z′≠0

‖T′ x( )z′‖
‖z′‖Ω−1

,

(42)

where Ω � Σ/σ2max and ‖ · ‖Ω−1 � ���������(·)⊤Ω−1(·)√
. This suggests that,

in this context, the suitable subordinate matrix norm for
computing the Lipschitz constant in Eq. 3 is obtained by
weighting the Euclidean norm in the input space with Ω−1.
We can also deduce from Eq. 42, by setting z″ = Ω−1/2z′, that

sup
z∈Cη

‖T x + z( ) − T x( )‖ ≃ �
η

√
σmaxsup z″∈RN0

z″≠0

‖T′ x( )Ω1/2z″‖
‖z″‖

� �
η

√ ‖T′ x( )Σ1/2‖S.
(43)

On the other hand, based on the first-order approximation in
Eq. 40, T(x + z) is approximately Gaussian with mean T(x) and
covariance matrix T′(x)ΣT′(x)⊤. As
‖T′(x)ΣT′(x)⊤‖S � ‖T′(x)Σ1/2‖2S, we see that another
insightful interpretation of Eq. 43 is that, up to the scaling
factor

�
η

√
, it approximately delivers the square root of the

TABLE 1 | Comparison of state-of-the-art Lipschitz estimation approaches vs the proposed one.

Method Properties Sensitivity of inputs

Naive upper Bound [Goodfellow et al. (2014)] spectral bound, loose bound, univariate No
SDPLip [Fazlyab et al. (2019)] ℓ2 norm, more scalable to broad networks, univariate No
CPLip [Combettes and Pesquet (2020b)] ℓp ∈ (1, + ∞), not scalable to broad networks, univariate No
LipOpt-k [Latorre et al. (2020)] ℓp ∈ (1, + ∞), univariate No
Proposed scalable to broad networks, multivariate Yes
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spectral norm of the covariance matrix of the output
perturbations.

3.2 New Definition of a Weighted Lipschitz
constant
Based on the previous motivations, we propose to employ a weighted
norm to define a Lipschitz constant of the network as follows:

Definition 1. Let Ω be an N0 × N0 symmetric positive definite
real-valued matrix. We say that ${\theta}_{m}̂{\upOmega}$ is an
Ω-weighted norm Lipschitz constant of T as described in
Figure 1 if

∀ x, z( ) ∈ RN0( )2( ) ‖T x + z( ) − T z( )‖≤ θΩm ‖z‖Ω−1 . (44)
The above definition can be extended to non Euclidean norms

by making use of exponents (p, q) ∈ (1,+∞)2 and by replacing
inequality Eq. 44 with

∀ x, z( ) ∈ RN0( )2( ) ‖T x + z( ) − T z( )‖q ≤ θΩm ‖Ω−1/2z‖p. (45)
By changes of variable, this inequality can also be rewritten as.

∀ x′, z′( ) ∈ RN0( )2( ) ‖T Ω1/2 x′ + z′( )( )
− T Ω1/2z′( )‖q ≤ θΩm ‖z′‖p. (46)

Therefore, we see that calculating θΩm is equivalent to derive a
Lipschitz constant of the network T where an additional first
linear layer Ω1/2 has been added. Throughout the rest of this
section, it will be assumed that, for every i ∈ (1, . . . , m−1) the
activation operator Ri is separable and αi-averaged. It then follows
from Eq. 20 that an Ω-weighted norm Lipschitz constant of T is

ϑΩm � sup
Λ1∈DN1 2α1−1,1{ }( ),

..

.
,Λm−1∈DNm−1 2αm−1−1,1{ }( )

‖WmΛm−1 . . . ,Λ1W1Ω1/2‖p,q. (47)

Although all our derivations were based on the fact that Ω is
positive definite, from the latter expression we see that, by
continuous extension, ϑΩm can be defined when Ω is a singular
matrix.

3.3 Sensitivity with Respect to a Group of
Inputs
In this section, we will be interested in a specific family of
weighted norms associated with the set of matrices

Ωϵ,K | ∅ ≠ K ⊂ 1, . . . , N0{ }, ϵ ∈]0, 1]{ },
defined, for every nonempty subsetK of (1, . . . ,N0) and for every
ϵ ∈]0, 1], as

Ωϵ,K � Diag σ2ϵ,K,1, . . . , σ
2
ϵ,K,N0

( ), (48)
where

∀ℓ ∈ 1, . . . , N0{ }( ) σϵ,K,ℓ � 1 if ℓ ∈ K

ϵ otherwise.
{ (49)

If we come back to the statistical interpretation in Section 3.1,
Ωϵ,K is then (up to a positive scale factor) the covariance matrix of
a Gaussian random vector z with independent components4. The
components with indices in K have a given variance σ2max while
the others have variance ϵ2σ2max. Such a matrix thus provides a
natural way of putting emphasis on the group of inputs with
indices inK. Thus, variables ϑΩϵ,K

m will be termed partial Lipschitz
constants in the following.

The next proposition lists the main properties related to the
use of such weighted norms for calculating Lipschitz constants.
The proofs of these results are given in Supplementary
Appendix S2.

Proposition 1. Let (p, q) ∈ (1,+∞)2. For every nonempty subsetK
of (1, . . . , N0) and for every ϵ ∈]0, 1], letΩϵ,K be defined as above
and let ϑΩϵ,K

m be defined by (47). Let K0 and K1 be nonempty
subsets of (1, . . . , N0). Then the following hold:

1) As ϵ → 0, ϑ
Ωϵ,K0
m converges to the Lipschitz constant of a

network where all the inputs with indices out of K0 are kept
constant.

2) ϑ
Ω1,K0
m is equal to the global Lipschitz constant ϑm defined by
Eq. 20.

3) Let (ϵ, ϵ′)∈]0, 1]2. If Ωϵ,K0 ⪯ Ωϵ′,K1
, then ϑ

Ωϵ,K0
m ≤ ϑ

Ωϵ′,K1
m .

4) Function ϑ
Ω·,K0
m : ]0, 1] → [0,+∞[: ϵ ↦ ϑ

Ωϵ,K0
m is monotonically

increasing.
5) Let ϵ∈]0, 1]. If K0 ⊂ K1, then ϑ

Ωϵ,K0
m ≤ ϑΩϵ,K1

m .
6) Let ϵ ∈]0, 1], let K ∈ N\{0}, and let

ωK,ϵ � N0 − 1
K − 1

( ) 1 + N0

K
− 1( )ϵ( ). (50)

We have

max
K⊂ 1,...,N0{ }
cardK�K

ϑΩϵ,K
m ≤ ϑm ≤

1
ωK,ϵ

∑
K⊂ 1,...,N0{ }
cardK�K

ϑΩϵ,K
m . (51)

7) Let ϵ ∈]0, 1], let P be a partition of (1, . . . , N0), and let.

ωP,ϵ � 1 + (cardP − 1)ϵ.
We have

max
K∈P

ϑΩϵ,K
m ≤ ϑm ≤

1
ωP,ϵ

∑
K∈P

ϑΩϵ,K
m . (52)

FIGURE 1 | m-layered feedforward neural network architecture. For the
ith-layer, Wi is the linear weight operator, bi the bias vector, and Ri the
activation operator.

4Recall that this interpretation is valid when p = 2 in Eq. 47.
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8) LetK2 be such thatK1 ∩ K2 ≠ ∅ andK1 ∪ K2 � K0. Let pp ∈
(1, + ∞) be such that 1/p + 1/p@ = 1 Then

ϑΩϵ,K0
m ≤ ϑΩϵ,K1

m( )pp + ϑΩϵ,K2
m( )pp( )1/pp + o ϵ( ). (53)

Let us comment on these results. According to Property (i) in
the limit case when ϵ→ 0, only the inputs with indices in K0 are
used in the computation of the associated Lipschitz constant. In
turn, Property (ii) states that, when ϵ = 1, we recover the classical
expression of a Lipschitz constant where the perturbations on all
the inputs are taken into account. In addition, based on Property
(iv), the evolution of ϑ

Ωϵ,K0
m when ϵ varies from 1 to 0 provides a

way of assessing how the group of inputs indexed by K0

contributes to the overall Lipschitz behaviour of the network.
Although one would expect that summing the Lipschitz constants
obtained for each group of inputs would yield the global Lipschitz
constant, Properties (vi) and (vii) show that this does not hold in
general whatever the way the entries are split (possibly
overlapping groups of given size K or disjoint groups of
arbitrary size). Instead, after suitable normalization, such sums
provide upper bounds on ϑm. Furthermore, it follows from (2),
Eqs 51, 52 that the difference between these normalized sums and
ϑm tends to vanish when ϵ increases.

Note that, when looking at the sensitivity with respect to
individual inputs, i.e., when the considered set of indices are
singletons, both (6) (with K = 1) and (7) (with P � {{k} |
k ∈ {1, . . . , N0}} lead to the same inequality

max
k∈ 1,...,N0{ }

ϑΩϵ, k{ }
m ≤ ϑm ≤

1
1 + N0 − 1( )ϵ ∑N0

k�1
ϑΩϵ, k{ }
m . (54)

4 VALIDATION ON SYNTHETIC DATA

4.1 Context
To highlight the need for advanced sensitivity analysis tools in the
design of neural networks, we first study simple synthetic
examples of polynomial systems for which we can calculate
explicitly the partial Lipschitz constants. We generate input-
output data for the defined systems, and train a fully
connected model using a standard training, i.e., without any
constraints. We compare this approach with a training subject
to a spectral norm constraint on the layers.

Spectral Normalization: For safety critical tasks, Lipschitz
constant and performance targets can be specified as engineering
requirements, prior to network training. A Lipschitz target can be
defined by a safety analysis of the acceptable perturbations for
each output knowing the input range and it constitutes a current
practice in many industries. Imposing this Lipschitz target can
be done either by controlling the Lipschitz constant for each
layer or for the whole network depending on the application at
hand. Such a work for controlling the Lipschitz constant has
been presented in (Serrurier et al., 2021) using Hinge
regularization. In our experiments, we train networks while
using a spectral normalization technique (Miyato et al., 2018)
which has been proved to be effective in controlling Lipschitz

properties in GANs. Given an m layer fully connected
architecture and a Lipschitz target L, we can constrain the
spectral norm of each layer to be less than

��
Lm

√
. According to

Eq. 4, this ensures that the upper bound on the global Lipschitz
constant is less than L.

For each training, we study the effect of input variables on the
stability of the networks. As proposed in Section 3.3, for a given
group of inputs with indices in K, we will quantify the partial
Lipschitz constant ϑΩϵ,K

m . The obtained value of ϑΩϵ,K
m allows us to

evaluate how the corresponding group of variables may
potentially affect the stability of the network. For simplicity, in
this section, we will focus on the limit case when ϵ = 0 (see the last
remark in Section 3.2).

Partial Lipschitz constant values ϑΩ0,K
m , for all possible choices

for K, are computed using the numerical method described in
Section 2.2 and compared with the theoretical values derived in
the following subsection. More details on the models are also
provided in these sections.

4.2 Polynomial Systems
We consider regression problems where the data is synthesized by
a second-order multivariate polynomial. The system to be
modelled is thus described by the following function:

∀ ξ1, . . . , ξN0( ) ∈ RN0( ) f ξ1, . . . , ξN0( )
� ∑N0

k�1
akξk +∑N0

k�1
∑N0

l�1
bk,lξkξ l, (55)

where (ak)k∈N0
and (bk,l)1≤ k,l≤N0

are the real-valued polynomial
coefficients. Note that, such a polynomial system is generally not
Lipschitz-continuous. The Lipschitz-continuity property only
holds on every compact set. Subsequently, we will thus study
this system on the hypercube [−M,M]N0 with M > 0.

The explicit values of the partial Lipschitz constant on this
domain can be derived as follows. We first calculate the gradient
of f

∇f ξ1, . . . , ξN0( ) � zkf ξ1, . . . , ξN0( )( )1≤ k≤N0
, (56)

where, for every k ∈ (1, . . . , N0), zkf denotes the partial derivative
w.r.t. the k-th variable given by

zkf ξ1, . . . , ξN0( ) � ak +∑N0

l�1
bk,l + bl,k( )ξl. (57)

For every K ⊂ {1, . . . , N0}, the partial Lipschitz constant�ϑΩ0,K

of the polynomial system (restricted to [−M,M]N0 ) w.r.t. the
group of variables with indices in K is then equal to.

�ϑ
Ω0,K � sup

ξ1 ,...,ξN0( )∈ −M,M[ ]N0

��������������
λΩ0,K ξ1, . . . , ξN0( )√

, (58)

where, for every diagonal matrix Λ � Diag(ε21, . . . , ε2N0
)

with (ε1, . . . , εN0) ∈ [0,+∞N0 ,

λΛ ξ1, . . . , ξN0
( ) � ‖ ∇f ξ1, . . . , ξN0

( )( )⊤Λ1/2‖2

� ∑N0

k�1
εk zkf ξ1, . . . , ξN0

( )( )2. (59)
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Since the partial derivatives in Eq. 57 are affine functions of
the variables (ξ1, . . . , ξN0

), λΛ is a convex function. We deduce
that the supremum in Eq. 58 is attained when
ξ1 � ± M, . . . , ξN0

� ± M, so that �ϑ
Ω0,K

can be computed by
looking for the maximum of a finite number of values.

4.3 Numerical Results
In our numerical experiments, we consider a toy example
corresponding to N0 = 3 and

∀ ξ1, ξ2, ξ3( ) ∈ R3( ) f ξ1, ξ2, ξ3( ) � ξ1 + 100ξ3 − ξ22 + γξ1ξ3,

(60)
where γ ∈ [0,+∞. We deduce from Eq. 59 that

λΛ ξ1, ξ2, ξ3( ) � ε1 1 + γξ3( )2 + 4ε2ξ
2
2 + ε3 100 + γξ1( )2 (61)

and, consequently,

sup
ξ1 ,ξ2 ,ξ3( )∈ −M,M[ ]3

λΛ ξ1, ξ2, ξ3( ) � ε1 1 + γM( )2 + 4ε2M
2

+ ε3 100 + γM( )2. (62)
By looking at the seven possible binary values of (ε1, ε2, ε3) ≠

(0, 0, 0), we thus calculate the Lipschitz constant of f with respect
to each group of inputs. For example,

• if ε1 = 1, ε = 0, ε3 = 0, we calculate �ϑ
Ω0,K

with K � {1},
i.e., evaluate the sensitivity w.r.t. the first variable

• if ε1 = ε2 = 1, ε3 = 0, we calculate �ϑ
Ω0,K

with K � {1, 2},
i.e., evaluate the joint sensitivity w.r.t. the first and second
variables;

• if ε1 = ε2 = ε3 = 1, we calculate �ϑ
Ω0,K

with K � {1, 2, 3},
i.e., evaluate the sensitivity w.r.t. all the variables (global
Lipschitz constant).

These Lipschitz constants allow us to evaluate the intrinsic
dynamics of the system, that is how it responds when its
inputs vary.

Our interest will be now to evaluate how this dynamics is
modified when the system is modelled by a neural network. To do
so, three systems are studied by choosing γ ∈ (0, 1/10, 1) andM =
50. We generate 5,000 data samples from each system, the input
values being drawn independently from a random uniform
distribution. While training the neural networks, the dataset is

divided with a ratio of 4:1 into training and testing samples. The
input is normalized using its mean and standard deviation, while
the output is max-normalized. We build neural networks for
approximating the systems using two hidden layers (m = 3) with a
number of hidden neurons equal to 30 in each layer and ReLU
activation functions. The training loss is the mean square error.

For different values of γ, we report the values of the partial
Lipschitz constants in Tables 2, 3, 4. The variable θK corresponds
to �ϑ

Ω0,K
for the analytical value we derived from previous

formulas, whereas it corresponds to the Lipschitz constant
ϑΩ0,K
3 , when computed for the neural network trained either in
a standard manner or with a spectral normalization constraint.
The value of L used in the spectral normalization was adjusted to
obtain a similar global Lipschitz constant to the polynomial
system. In the caption, we also indicate the accuracy in terms
of normalized mean square error (NMSE) and normalized mean
absolute error (NMAE). These values are slightly higher for
constrained training, but remain quite small.

Comments on the results:

• In general, ξ3 impacts the output of this system the most,
and (ξ2, ξ3) mainly account for the global dynamics of the
system.

• With standard training, we see that there exists a significant
increase of the sensitivity with respect to the input
variations, so making the neural network vulnerable to
adversarial perturbations.

• By using spectral normalization, it is possible to constrain
the global Lipschitz constant of the system to be close to the
analytical global value while keeping a good accuracy. One

TABLE 2 |Comparison of Lipschitz constant values when γ = 0. Test performance
for standard training: NMSE = 0.007, NMAE = 0.005, for spectral
normalization: NMSE = 0.011, NMAE = 0.009.

Partial LC Analytical Standard Spectral normalized

Θ(1) 1 133.9 6.75
Θ(2) 100 211.7 76.3
Θ(3) 100 299.7 136.0
Θ(1,2) 100.0 229.0 102.2
Θ(1,3) 100.0 303.1 136.0
Θ(2,3) 122.5 314.2 141.2
Θ(1,2,3) 141.4 315.3 141.2

TABLE 3 | Comparison of Lipschitz constant values when γ = 1/10. Test
performance for standard training: NMSE = 0.006, NMAE = 0.005, for spectral
normalization: NMSE = 0.009, NMAE = 0.007.

Partial LC Analytical Standard Spectral normalized

Θ(1) 6 138.7 10.1
Θ(2) 100 219.2 90.0
Θ(3) 105 302.7 138.9
Θ(1,2) 100.2 231.6 108.1
Θ(1,3) 105.2 306.3 139.0
Θ(2,3) 145 316.4 147.2
Θ(1,2,3) 145.1 316.5 147.2

TABLE 4 |Comparison of Lipschitz constant values when γ = 1. Test performance
for standard training: NMSE = 0.006, MAE = 0.005, for spectral normalization:
NMSE = 0.014, NMAE = 0.009.

Partial LC Analytical Standard Spectral normalized

Θ(1) 51 274.7 59.5
Θ(2) 100 298.9 80.3
Θ(3) 150 388.7 183.7
Θ(1,2) 112.6 337.0 119.4
Θ(1,3) 158.4 392.2 183.7
Θ(2,3) 180.3 400.1 188.9
Θ(1,2,3) 187.4 400.5 189.0
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may however notice an increase of the sensitivity to ξ1 and
ξ3, and a decrease of the sensitivity to ξ2 with respect to the
original system.

• For all the three models, the values obtained with neural
networks follow the same trend, for different groups of
inputs, as those observed with the analytical values.

• Although the Lipschitz constant of the neural networks is
computed on the whole space and the one of the system on
(−50,50)3, our Lipschitz estimates appear to be consistent
without resorting to a local analysis.

These observations emphasize the importance of controlling
the Lipschitz constant of neural network models through specific
training strategies. In addition, we see that evaluating the
Lipschitz constant with respect to groups of inputs allow us to
have a better understanding of the behaviour of the models.

In this section, we have discussed the proposed method for
synthetic datasets. In the next section, the sensitivity analysis will
be made on widely used open source datasets and an industrial
dataset.

5 APPLICATION ON DIFFERENT USE
CASES

5.1 Datasets and Network Description
We study four regression problems involving tabular datasets to
showcase our proposed multivariate analysis of the stability of
neural networks. Tabular data take advantage of heterogeneous
sources of information coming from different sensors or data
collection processes. We apply our methods on widely used
tabular datasets: 1) Combined Cycle Power Plant dataset 5

which has 4 attributes with 9,568 instances; 2) Auto MPG
dataset 6 consists of 398 instances with 7 attributes; 3) Boston

Housing dataset 7 consists of 506 instances with 13 attributes. For
Combined Power Plant and Auto MPG datasets, we solve a
regression problem with a single output, whereas for Boston
Housing dataset we consider a two-output regression problem
with “price” and “ptratio” as the output variables. The attributes
in the dataset are a combination of continuous and categorical.
The datasets are divided with a ratio of 4:1 between training and
test data.

Thales Air Mobility industrial application represents the
prediction of the Estimated Time En-route (ETE), meaning
the time spent by an aircraft between the take-off and landing,
considering a number of variables as described in Table 5. The
application is important in air traffic flow management, which is
an activity area where safety is critical. The purpose of the
proposed sensitivity analysis is thus to help engineers in
building safe by design models complying with given safety
stability targets. The dataset consists of 2,219,097 training,
739,639 validation, and 739,891 test samples.

For all the models, we build fully connected networks with
ReLU8 activation function on all the hidden layers, except the last
one. The models are trained on Keras with Tensorflow backend.
The initializers are set to Glorot uniform. The network
architecture of the different models, number of layers, and
neurons are tabulated in Table 6. Combined Cycle Power
Plant dataset with (10, 6) network architecture is trained with
two hidden layers having 10 and 6 hidden neurons, respectively.
For Thales Air Mobility industrial application [10 × (30)] implies
that the neural network has 10 hidden layers with 30
neurons each.

5.2 Sensitivity Analysis with Respect to
Each Input
In this section we study the effect of input variables on the
stability of the networks. More specifically, we study the effect of
input variations on the stability of the networks by quantifying
ϑΩϵ,K
m with ϵ ∈]0, 1], for various choices of K, instead of a global
Lipschitz constant accounting for the influence of the whole set of
inputs. The obtained value of ϑΩϵ,K

m allows us to evaluate how the
corresponding group of variables may potentially affect the
stability of the network. By performing this analysis for several
choices of K, we thus generate a multivariate analysis of the
Lipschitz regularity of the network.

As shown by Proposition 1, varying the ϵ parameter is also
insightful since it allows us to measure how the network behaves
when input perturbations are gradually more concentrated on a
given subset of inputs.

Although our approach can be applied to groups of inputs, for
simplicity in this section, we will focus on the case when the setsK
reduce to singletons. In this context, we propose a new
representation for displaying the results of the Lipschitz

TABLE 5 | Input and output variables description for the Thales Air Mobility
industrial application dataset.

Variable Name Type

Input 0 Speed Continuous
1 Flight distance
2 Departure delay
3 Initial ETE
4 Latitude origin
5 Longitude origin
6 Altitude origin
7 Latitude destination
8 Longitude destination
9 Altitude destination
10 Arrival time slot 7 slots (categorical)
11 Departure time slot 7 slots (categorical)

Output 12 Aircraft category 6 classes (categorical)
13 Airline company 19 classes (categorical)
3 Refinement ETE continuous

5https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant.
6https://archive.ics.uci.edu/ml/datasets/auto+mpg.

7https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html.
8We present the results only for ReLU, but we tested our approach with other
activation functions such as tanh as well and found the trends in sensitivity of
inputs to be similar.
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analysis of a neural network. More precisely, we plot the values of
(ϑΩϵ,{k}

m )1≤ k≤N0
on a star or radar chart where each branch of the

star corresponds to the index k of an input. For each value of ϵ, a
new plot is obtained which is displayed in a specific color. Note
that, according to Proposition 3(iv), the plots generated for
different ϵ values cannot cross. When ϵ = 1, we obtain an
“isotropic” representation whose “radius” corresponds to the
global Lipschitz constant ϑm of the network. This
representation is called a Lipschitz star. All the results of our
analysis will be displayed with this representation.

For each dataset, we first perform a standard training when
designing the network. To facilitate comparisons, the Lipschitz
star of the network trained in such standard manner is presented
as the first subplot of all the figures in the paper. Next, we show
the variation in terms of input sensitivity, when 1) a Lipschitz
target is imposed, and 2) when an adversarial training of the
networks is performed. The network architecture remains
unchanged, for all our experiments and each dataset, as
indicated in Section 5.1. All the Lipschitz constants for each
value of ϵ are calculated using LipSDP-Neuron (Fazlyab et al.,

2019). Since an increased stability may come at the price of a loss
of accuracy (Tsipras et al., 2018a), we also report the
performance of the networks on test datasets in terms of
MAE (Mean Absolute Error) for each of the Lipschitz star plot.

5.3 Effect of Training With Specified
Lipschitz Target
Spectral norm constrained training is performed as explained in
Section 4.1. The results are shown for our three datasets in
Figures 2–5. On these plots, we can observe a shrinkage of the
Lipschitz stars following the reduction of the target Lipschitz
value. Interestingly, improving stability does not affect
significantly the performance of the networks. Let us comment
on the last use case in light of the obtained results.

Comments on the Thales Air Mobility industrial
application From the star plots, it is clear that the various
variables have a quite different effect on the Lipschitz
behavior of the network. This is an expected outcome
since these variables carry a different amount of

TABLE 6 | Network Architecture and training setup for different datasets.

Dataset Hidden
layers and neurons

Epochs Optimizer Learning rate

Combined cycle power plant (10, 6) 100 Adam 0.01
Auto MPG (16, 8) 1,000 RMSprop 0.001
Boston housing (10, 5) 500 RMSprop 0.001
Thales air mobility app. [10 × (30)] 100 Adam 0.01

The input attributes are normalized by removing their mean and scaling to unit variance.

FIGURE 2 | Sensitivity w.r.t. to each input on Combined Cycle Power Plant dataset. Influence of a spectral normalization constraint. (A) Standard training: Lipschitz
constant = 0.66, MAE = 0.007, (B) With spectral normalization: Lipschitz constant = 0.25, MAE = 0.0066.
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information captured by learning. From Figure 5 we
observe that variables 1—Flight Distance and 3—Initial
ETE play a prominent role, while variables 5—Longitude

Origin, and 8—Longitude Destination are also sensitive.
Some plausible explanations for these facts are mentioned
below.

FIGURE 3 | Sensitivity w.r.t. to each input on Auto MPG dataset. Influence of a spectral normalization constraint. (A) Standard training: Lipschitz constant = 2.75,
MAE = 0.05, (B) With spectral normalization: Lipschitz constant = 0.76, MAE = 0.04.

FIGURE 4 | Sensitivity w.r.t. to each input on Boston Housing dataset. Influence of a spectral normalization constraint. (A) Standard training: Lipschitz constant =
18.56, MAE(y1) = 2.45, MAE(y2) = 1.41, (B) With spectral normalization: Lipschitz constant = 8.06, MAE(y1) = 2.96, MAE(y2) = 1.35.
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• Flight distance: The impact of a change of this input can be
significant since because of air traffic management
separation rules, the commercial aircrafts cannot freely
increase their speed to minimize the impact of a longer
flight distance.

• Initial ETE: Modifying this input is equivalent to changing
the initial conditions, which will have a significant impact. It
is possible, in the worst case scenario, to accumulate other
perturbations coming from other coupled inputs and
parameters (e.g., weather conditions) and this is probably
the reason why the partial Lipschitz constant is very high,
and close to the global Lipschitz constant.

• Longitude origin and destination parameters: These
parameters are related to different continents and even
countries of the origin and destination airports and
probably with different qualities of air traffic equipment.

5.4 Effect of Adversarial Training
Generating adversarial attacks and performing adversarial
training constitute popular methods in designing robust neural
networks. However, these techniques have received less attention
for regression tasks, since most of the works deal with
classification tasks (Goodfellow et al., 2015; Kurakin et al.,
2018; Eykholt et al., 2018). Also, most of the existing works in
the deep learning literature are for standard signal/image
processing problems, whereas there are only few works
handling tabular data (Zhang et al., 2016; Ke et al., 2018). One
noticeable exception is (Ballet et al., 2019) which investigates
problems related to adversarial attacks for classification tasks
involving tabular data. Since our applications are related to
regression problems for which few existing works are directly

applicable, we designed a specific adversarial training method.
More specifically, for a given amplitude of the adversarial noise
and for each sample in the training set, we generate the worst
attack based on the spectral properties of the Jacobian of the
network, computed by backpropagation at this point. At each
epoch of the adversarial training procedure, we solve the
underlying minmax problem (Tu et al., 2019). More details on
the generation of adversarial attacks for regression attacks can be
found in (Gupta et al., 2021).

The generated adversarial attacks from the trained model at
the previous epoch are successively concatenated to the training
set for the next training epoch, much like in standard adversarial
training practices using FGSM (Goodfellow et al., 2015) and
Deepfool (Moosavi-Dezfooli et al., 2016) attacks. While generating
adversarial attacks on tabular data, some of the variables may bemore
susceptible to attacks than others. The authors of (Ballet et al., 2019)
take care of this aspect by using a feature importance vector. They also
only attack the continuous variables, disregarding categorical ones
while generating attacks. For the Power plant and Boston Housing
datasets, we attack all the four input variables, while on the MPG
dataset, we attack only the continuous variables. For the industrial
dataset, we generate attacks for the five most sensitive input variables.
We also tried attacking all the variables of the dataset but this was not
observed to be more efficient. The results in form of Lipschitz star are
given in Figures 6–9.

As expected, adversarial training leads to a shrinkage of the
star plots, which indicates a better control on the stability of the
trained models, while also improving slightly the MAE. In the test
we did, we observe however that our adversarial training
procedure is globally less efficient than the spectral
normalization technique.

FIGURE 5 | Sensitivity w.r.t. to each input on Thales Air Mobility industrial application. Influence of a spectral normalization constraint. (A) Standard training:
Lipschitz constant = 45.46, MAE = 496.37 (s), (B) With spectral normalization constraint: Lipschitz constant = 16.62, MAE = 478.88 (s).
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5.5 Sensitivity w.r.t. Pair of Variables
We now consider the case when the set K contains pairs of
elements. We first show the corresponding Partial Lipschitz

constants using a Lipschitz star representation in
Figure 10, for the different datasets we have discussed in
the article. Vertices in the Lipschitz star represent the

FIGURE 6 | Sensitivity w.r.t. to each input on Combined Cycle Power Plant dataset. Effect of adversarial training. (A) Standard training: Lipschitz constant = 0.657,
MAE = 0.007, (B) Adversarial training: Lipschitz constant = 0.37, MAE = 0.0068.

FIGURE 7 | Sensitivity w.r.t. to each input on Auto MPG dataset. Effect of adversarial training. (A) Standard training: Lipschitz constant = 2.75, MAE = 0.05, (B)
Adversarial training: Lipschitz constant = 1.84, MAE = 0.042.
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obtained Lipschitz constant value ϑΩϵ,K
m for all

possible combinations of pair of variables with varying
values of ϵ, i.e., it represents the sensitivity w.r.t. to that
particular pair.

As shown by Figure 10, this Lipschitz star representation can
be useful for displaying the influence of groups of variables
instead of single ones. This may be of high interest when the
number of inputs is large, especially if they can be grouped into

FIGURE 8 | Sensitivity w.r.t. to each input on Boston Housing dataset. Effect of adversarial training. (A) Standard training: Lipschitz = 18.56, MAE(y1) = 2.45,
MAE(y2) = 1.41, (B) Adversarial training: Lipschitz constant = 16.50, MAE(y1) = 2.35 MAE(y2) = 1.32.

FIGURE 9 | Sensitivity w.r.t. to each input on Thales Air Mobility industrial application. Effect of adversarial training. (A) Standard training: Lipschitz = 45.47, MAE =
496.37 (s), Adversarial training. (B) Lipschitz = 34.26, MAE = 494.7 (s).
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variables belonging to a given class having a specific physical
meaning (e.g., electrical variables versus mechanical ones). Such
Lipschitz star representationmight however not be very insightful
for identifying the coupling that may exist between the variables
within a given group. For example, it may happen that,
considered together, two variables yield an increased sensitivity
than the sensitivity of each of them individually. The reason why
we need to find a better way for highlighting these coupling effects
is related to Proposition 3(v) which states that, for every ϵ ∈]0, 1]
and (k, ℓ) ∈ {1, . . . , N0}2,

max ϑΩϵ, k{ }
m , ϑΩϵ, ℓ{ }

m{ }≤ ϑΩϵ, k,ℓ{ }
m . (63)

This property means that, when considering a pair of inputs,
the one with the highest partial Lipschitz constant will
“dominate” the other. To circumvent this difficulty and make
our analysis more interpretable, we can think of normalizing the
Lipschitz constant in a suitable manner. Such a strategy is a
common practice in statistics when, for example, the covariance
of a pair of variables is normalized by the product of their
standard deviations to define their correlation factor. Once

FIGURE 10 | Sensitivity w.r.t to pair of variables on (A) Combined Power Plant dataset (B) Auto MPG Dataset (C) Boston Housing dataset and (D) Thales Air
Mobility industrial application.
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again, we can take advantage of the properties established in
Proposition 3 to provide us a guideline to perform this
normalization. In addition to Eq. 63, according to Property (viii),

ϑΩϵ, k,ℓ{ }
m ≤ ϑΩϵ, k{ }

m( )p* + ϑΩϵ, ℓ{ }
m( )pp( )1/pp + o ϵ( )

≤ 21/p
p

max ϑΩϵ, k{ }
m , ϑΩϵ, ℓ{ }

m{ } + o ϵ( ).
(64)

The two previous inequalities suggest to normalize the
Lipschitz constant for pairs of inputs by defining

~ϑ
Ωϵ, k,ℓ{ }
m � 1

21/pp − 1
ϑΩϵ, k,ℓ{ }
m

max ϑΩϵ, k{ }
m , ϑΩϵ, ℓ{ }

m{ } − 1⎛⎝ ⎞⎠. (65)

Indeed, when ϵ is close to zero, Eqs 63–65 show that
~ϑ
Ωϵ,{k,ℓ}
m ∈ [0, 1]. Note that, for the diagonal terms, ~ϑ

Ωϵ,{k,k}
m � 0.

The higher ~ϑ
Ωϵ,{k,ℓ}
m , the higher the gain in sensitivity due to the

coupling between k and ℓ. The normalized values for the different
datasets are reported in Table 7.

5.6 Interpretation of the Results
We summarize some important observations/properties
concerning the stability of the NNs which can be drawn from
training on different datasets and leveraging the quantitative tools
we have proposed in this article.

a) Combined Power Plant Dataset
• “3—Exhaust Vacuum” is the most sensitive variable out of
the four variables.

• We observe for any variable coupled with “3” gives a higher
partial Lipschitz constant.

TABLE 7 | Second order normalized couplingmatrix with ϵ = 0.001 on (A)Combined Power Plant Dataset (B) AutoMPGDataset (C)Boston Housing Dataset and (D) Thales
Air Mobility industrial application.

Variable 1 2 3

0 0.22 0.57 0.04
1 — 0.15 0.04
2 — — 0.06

Variable 1 2 3 4 5 6

0 0.1 0.29 0.18 0.06 0.16 0.05
1 — 0.17 0.08 0.03 0.12 0.15
2 — — 0.14 0.03 0.20 0.11
3 — — — 0.11 0.39 0.56
4 — — — — 0.08 0
5 — — — — — 0.34

Variable 1 2 3 4 5 6 7 8 9 10 11

0 0.22 0.11 0.16 0.03 0.25 0.12 0.17 0.09 0.43 0.11 0.10
1 — 017 0.16 0.37 0.00 0.00 0.14 0.18 0 0.05 0.11
2 — — 0.17 0.05 0 0.23 0 0.35 0.061 0.02 0.00
3 — — — 0.35 0.07 0.21 0 0.12 0.02 0.16 0.01
4 — — — — 0.05 0.11 0.11 0.01 0.04 0.06 0.08
5 — — — — — 0.11 0.07 0.01 0.08 0.04 0.07
6 — — — — — — 0.01 0 0.16 0.35 0
7 — — — — — — — 0.27 0.1 0.03 0.76
8 — — — — — — — — 0.27 0.04 0.14
9 — — — — — — — — — 0.02 0.06
10 — — — — — — — — — — 0.01

Variable 1 2 3 4 5 6 7 8 9 10 11 12

0 0.01 0.03 0.01 0.03 0.21 0.03 0.23 0.09 0.21 0.27 0.06 0.28
1 — 0 0.03 0.01 0 0 0 0.12 0.07 0 0.24 0.03
2 — — 0 0.04 0.01 0.05 0.02 0 0.01 0.02 0 0.01
3 — — — 0.01 0.19 0 0.03 0.08 0.06 0.01 0.26 0.15
4 — — — — 0 0.02 0.17 0 0.01 0.06 0.01 0.01
5 — — — — — 0.06 0.13 0.11 0.13 0.07 0.19 0.27
6 — — — — — — 0.03 0.01 0.02 0.19 0.02 0.01
7 — — — — — — — 0.01 0.04 0.09 0.02 0.32
8 — — — — — — — — 0.07 0.02 0.29 0.03
9 — — — — — — — — 0.01 0.06 0.02 0.03
10 — — — — — — — — — 0 0.21 0.16
11 — — — — — — — — — — 0.00 0.07
12 — — — — — — — — — — — 0.12
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• From Table 7A, we see that the effect is mostly caused by
the sensitivity of “3” and there is no gain when coupled with
other variables. Hence, “3” dominates the overall sensitivity
of the NN.

• On the other hand, we observe that, “0” when coupled with
“1” and “2” becomes more sensitive as evidenced by the
gain in Table 7A.

b) Auto MPG Dataset
• Variable “6—Origin” and “3—Weight” are the most
sensitive variables.

• The values of partial Lipschitz constant peak when the
other variables are coupled with “3” or “6”.

• From Table 7B, we see that most of the values coupled
with either “3” or “6” are close to zero, except when “3”
and “6” are coupled together. Also, we see an exception
when “5” is coupled with either “3” or “6”. This suggests
that altogether “3”, “5”, and “6” have a higher impact on
the stability of the network.

c) Boston Housing Dataset
• Variable “7—DIS” and “11—LSTAT” are the most sensitive
variables.

• We observe a high partial Lipschitz constant when coupling
any variables with “7” or “11”.

• From Table 7C, we see that all the values for both “7” and
“11” coupled with other variables are close to zero, except
when “7” and “11” are jointly considered. Hence, “7” and
“11” dominate the sensitivity of the NN.

• We observe from the table of normalized values, that “2–9”
have a higher impact on the sensitivity of the NN when
coupled. Similar observation can be made for pairs
“2–8”,“1–4”,“3–4”.

d) Thales Air Mobility industrial application
• Variable “1—Flight distance”,“3—Initial ETE”, and
“8—Longitude Destination” are the most sensitive
variables.

• We see peaks in the partial Lipschitz constant values when
these highly sensitive variables are coupled with other
variables.

• But when analyzing the normalized tables, it becomes
clear that the gain is mostly due to these sensitive
variables.

• We also observe from Table 7D, an increased sensitivity of
“0” when coupled with other variables “5”, “7”, “10”, “11”,
and “13”.

6 CONCLUSION

We have proposed a new multivariate analysis of the Lipschitz
regularity of a neural network. Our approach, whose
theoretical foundations are given in Section 3, allows the
sensitivity with respect to any group of inputs to be

highlighted. We have introduced a new “Lipschitz star”
representation which is helpful to display how each input or
group of inputs contributes to the global Lipschitz behaviour
of a network. The use of these tools has been illustrated on four
regression use cases involving tabular data. The improvements
brought by two robust training methods (training subject to
Lipschitz bounds and adversarial training) have been
measured. More generally the proposed methodology is
applicable to various machine learning tasks to build “safe-
by-design” models where heterogeneous/multimodal/multi-
omic data can be used.
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