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Recent advances in Passive Coherent Location (PCL) systems make combined active and
passive radar sensor networks very attractive for both military and civilian air surveillance.
PCL systems seem promising as cost-effective gap fillers of active radar coverage
especially in alpine terrain and also as covert early warning sensors. However, PCL
systems are sensitive to changes of Transmitters of Opportunity (ToO). Many approaches
for energy-efficient target detection have been proposed for active radar sensor networks.
However, energy-efficiency and topology optimization of combined active-passive radar
sensor networks in realistic scenarios have been poorly studied until today. We here
propose an unsupervised learning approach for topology optimization and energy-efficient
detection in combined active-passive radar sensor networks. The interdependence of
active and passive sensors in the network and the given target scenario is naturally
accounted for by our approach. Optimal power budget and detection sectors of active
radars and the most useful ToOs for each PCL sensor are simultaneously learned over
time. This is a critical contribution for minimizing the need for active radar power budget
and PCL computational resources. The power budget of active radars is minimized in a
way that the added value of PCL sensors is fully exploited. We also demonstrate how our
approach dynamically relearns to achieve robust performance when changes in the ToO of
PCL sensors occur. We test our approach in a simulation suite for active-passive radar
sensor networks using real-world air surveillance data and ToOs under real-world
topographical conditions.
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1 INTRODUCTION

Conventional Radar Sensor Networks (RSN) consist of multiple active radars (referred to as nodes)
used to transmit waveforms in order to detect and track air targets. The goal of an RSN is to maximize
surveillance coverage and minimize both interference between single nodes and the total power
consumption of the RSN (Baker and Trimmer, 2000) (Baker and Hume, 2003). In our case we intend
to minimize the usage of active radars by maximizing the usage of passive radar in the RSN, which is
preferable for covert operation scenarios 1. Widely used approaches to attack this problem include
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game-theoretic approaches (Bacci et al., 2012) and network cost
based strategies (Jiang et al., 2019). Although such approaches are
highly effective for RSNs consisting of solely active radar sensors,
the widely awaited integration of Passive Coherent Location
(PCL) systems pose challenges that still need to be addressed.

PCL systems have enjoyed wide interest in recent years in both
research and industry. Commercial systems are currently at the
verge of operational go-live for diverse defense and civilian
surveillance purposes. PCL systems are attractive due to their
cost-effectiveness and covert operational capability. However,
efficient deployment of passive radar is relatively complex due
to their dependence on the so called Transmitters-of-
Opportunity (ToO). Especially in alpine terrain, the operation
of a PCL system can be crucially affected by topographical
conditions and ToO properties. In the alpine terrain many
ToOs exhibit highly directional transmission gains in order to
optimize transmission patterns owing to topological and urban
requirements. Transmission power and vertical/horizontal
antenna transmission constraints of the ToOs make pre-
deployment mission planning of PCL systems and especially
optimization of receiver locations (Mathews et al., 2015)
(Mousel, 2017) or ToO selection for fixed receiver sites
computationally challenging. Moreover, the number of usable
ToOs per PCL sensor is restricted by the limited computational
resources available at the sensor site and the receiver bandwidth,
making it inevitable to determine the most useful ToOs for each
PCL sensor. Currently available PCL systems mainly use
heuristics, on site signal measurements and human expertise
to solve the above issues.

Consequently, the efficient integration of PCL systems into an
existing active radar only RSN system, although topic of ongoing
research, poses several operational and logistics of deployment
challenges. These challenges have not yet been addressed neither
by game theory nor by radar research communities. We here
propose a simulation based approach for online learning of
useful ToOs per PCL sensor and optimal power budget and
detector sector of active sensors. Online refers to the fact that
our approach if deployed in a running sensor network will learn
the efficient deployment topology and active radar emission
control over time with the goal of finding the optimal ToOs for
each PCL sensor and the most useful range-sector bins for each
active radar sensor. The proposed methodology goes beyond the
conventional radar coverage computations for given altitudes
and proposes a temporal online learning mechanism. Our
simulation suite uses models of passive and active radar
detection, topography, wave propagation and real-world
ToOs in continental Europe. Our approach proposes to use
Hebbian learning to efficiently determine the most useful ToOs
per PCL sensor to maximize the PCL system’s added value for
coverage in an active-passive RSN. At the same time the
proposed neural network also learns the optimal active radar
power budget and sectors. We feed the simulation with real-
world recorded air surveillance data to adapt the Hebbian
plasticity of the used neural network. In summary our
approach proposes an efficient online learning mechanism to
compute the optimal spatiotemporal coverage of a combined
active-passive sensor network.

2 RESEARCH QUESTION

Conventionally, comparison of static coverage diagrams of PCL
systems with those of active radars are used to manually perform
mission and deployment planning. This very often leads to locally
or partially optimal solutions that cannot be easily scaled or
adapted to new scenarios. With the upcoming integration of PCL
systems into operational civil and military sensor networks, the
need for topological and power budget optimization of such
multiband active-passive systems is given. In the current work
we propose a simulation based methodology to learn the efficient
deployment of each node in an active-passive radar network. Our
approach was motivated by the high transmission constraints of
ToOs and severe topological challenges in alpine terrain.

Given a set of active radars and PCL sensors on certain
locations, we address the problem of simultaneously
determining the most useful ToOs for each PCL sensor and
the most effective power budget strategy for each active radar.
With “useful” ToOs we mean the ToOs that provide more
detections compared to others. Such useful ToOs per PCL
sensor can differ depending on the target scenario and the
available set of active radars and other PCL sensors. Similarly,
the optimal power budget (consisting of the most useful range-
sector bins) for each active radar in the sensor network depends
on the target scenario and the available PCL sensors and active
radars. We here investigate the target scenario over continental
Europe around Switzerland on a normal day. The daily air traffic
over continental Europe is to a very high extent constant during
periods of no tension. Given this real-world target scenario and a
set of PCL and active radar sensors with their locations in
Switzerland, we address the problem of finding the most
useful ToOs per PCL sensor (from the hundreds of real-world
ToOs available) and the most useful range-sector bins for active
radars. Our goal is to simultaneously minimize the emissions of
active radars or even to totally eliminate their usage and
determine the most useful PCL ToOs. Instead of conventional
game theoretic approaches with relatively simplistic sensor nodes
and probabilistic target detection models we propose a Hebbian
learningmethod usingmodels of sensors, topography, targets and
wave propagation for coverage predictions of active and passive
radar systems for a replayed real-world air traffic scenario.

3 ACTIVE AND PASSIVE SENSOR MODELS

In this section, we discuss the PCL and active radar detection
models used in our RSN simulation suite.

3.1 Passive Coherent Location Sensor
We assume that the transmitters and receivers are given with the
following parameters respectively:

3.1.1 Bistatic Doppler Shift Computation
We consider a moving target and stationary transmitters and
receivers. A canonical definition of bistatic Doppler shift fD,
ignoring relativistic effects, is the rate of change of the total
path length of the transmitted signal, normalized by the
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wavelength λ (Jackson, 1986). The total path length is the range
sum ‖RT

�→‖ + ‖RR
�→‖.

The bistatic Doppler shift can be written using the derivatives
of the range sum as:

fD � 1
λ

d‖RT
�→‖
dt

+ d‖RR
�→‖
dt

⎡⎣ ⎤⎦ (1)

The target’s velocity vector projected onto the bistatic plane
(defined by the vectors RT

�→
and RR

�→
) has the magnitude v and

aspect angle δ referenced to the bistatic bisector (the aspect angle
is positive when measured clockwise from the bistatic bisector).
Figure 1 for an illustration.

The term d‖RT
�→‖/dt is the projection of the target velocity

vector onto the transmitter-to-target LoS:

d‖RT
�→‖
dt

� v · cos δ − β/2( ) (2)

Similarly, d‖RR
�→‖/dt is the projection of the target velocity

vector onto the receiver-to-target LoS:

d‖RR
�→‖
dt

� v · cos δ + β/2( ) (3)

Combining Equations 1 and 2 and 3 we write the bistatic
Doppler shift caused by target motion as:

fD � v

λ
cos δ − β/2( ) + cos δ + β/2( )[ ] (4)

� 2v
λ
cos δ( )cos β

2
( ) (5)

Target detection using a simulated PCL sensor is reported
when a bistatic Doppler threshold is surpassed. This means that
bistatic geometry for PCL detection is taken into account in our
simulation. Besides bistatic Doppler, also the Signal-to-Noise
Ratio (SNR) is computed and thresholded. The specific
threshold values for both bistatic Doppler and SNR are
discussed below in section 3.1.2.

3.1.2 PCL Detection Model
We use the well known bistatic radar Equation to compute the
Signal-to-Noise Ratio (SNR):

SNR � Pr

Pn
� PtGt

4πr21
σb

1
4πr22

Grλ
2

4π

Gp

kT0BF
L (6)

where we define the following:

We compute processing gain Gp as B*tint where B is receiver
bandwidth and tint is integration time. Further, we set a detection
threshold of 5 Hz Doppler shift and 14 dB SNR.

For illustrating the passive radar coverage we use the notion of
minimum detectable RCS. Instead of solving for an achievable
SNR we calculate the minimal needed RCS σB, min that is required
for detection. For this we rewrite the SNR Eq. (6) such that it is
independent of the bistatic RCS σB:

SNR σB �
SNR

σB
(7)

Now by requiring that the SNR of a target to be greater than a
threshold SNRthr we derive an expression giving a lower bound
for the RCS of the target:

Parameters

Transmitter Tx position (lat, lon, altitude), frequency, bandwidth, horizontal and vertical antenna diagrams, effective radiated power,
polarisation

Receiver Rx position (lat, lon, altitude), signal bands, effective bandwidth, horizontal and vertical antenna diagrams, gain, losses, system
temperature, SNR threshold, Doppler threshold, integration time

FIGURE 1 |Geometry visualization for bistatic Doppler computation (λ is
the signal wavelength).

Pr Received signal power
Pn receiver noise power
Pt transmit power
Gt transmit antenna gain
r1 transmitter-to-target range
σb target bistatic RCS
r2 target-to-receiver range
Gr receive antenna gain
λ signal wavelength
k Boltzmann’s constant
Gp processing gain
T0 noise reference temperature, 290 K
B receiver effective bandwidth
F receiver effective noise figure
L (≤1) system losses

Frontiers in Signal Processing | www.frontiersin.org February 2022 | Volume 2 | Article 8228943

Mathews et al. Sensor Network Resource Allocation Learning

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


σB >
SNRthr

SNRσB

� σB,min (8)

Expressing SNR in dB yields Eq. (8) as:

σB > 10 SNRthr,dB−SNRσB,dB( )/10 � σB,min (9)
In order to be detectable, a target needs to have an RCS greater

than theminimumRCS required for detection, σB, min. This allows
plotting passive radar coverage as minimum detectable RCS as
shown in section 7.

A complete discussion of performance prediction using the
bistatic radar Equation can be found in (Griffiths and Baker,
2005). A simulation of passive Radar detection performance
prediction using antenna patterns and propagation effects is
performed and compared with real world measurements in
Malanowski et al. (2022). An approach for optimization of
passive radar receiver location was proposed in Mathews et al.
(2015) and a combinatorial optimization model for the joint
placement of transmitters and receivers was proposed in Yi et al.
(2017).

3.2 Active Radar Model
We assume the following parameters for a given active radar:

We consider non fluctuating targets (Swerling V model) and
noise modelled as a Gaussian. Although the Swerling V is used
here it is not a limiting factor for the proposed method. Given this
and if the intermediate filter (IF) and the detector can bemodelled
as a narrow band filter, then the probability density function
(PDF) of the post-detection envelope of the noise voltage can be
modelled as the Rayleigh function (Barton, 2013):

p R( ) � R

Ψ0
exp

−R2

2Ψ0
( ) (10)

where R is the amplitude of the envelope of the output filter and
Ψ0 is the variance of the noise voltage. This has the form of the
Rayleigh probability density function.

Given the above noise model and for a given constant false
alarm rate (typically < 10−6) we now consider the probability of
detection pd. A sine wave with amplitude A and frequency f0 is
considered as the signal. This signal is present along with the
noise at the input to the IF filter. The frequency of the sine wave is
equal to the centre frequency of the IF filter f0 then the output of
the envelope detector will have the Rician distribution as the PDF
(Barton, 2013):

ps R( ) � R

Ψ0
exp −R

2 + A2

2Ψ0
( )I0 RA

Ψ0
( ) (11)

Given the Rayleigh distributed noise as in Equation 10 and a
specific Signal-to-Noise Ratio (SNR), the Rician distribution for
the output of the envelope detector as in Eq. (11) is defined. We

define the detection threshold so that a false alarm occurs
whenever the noise voltage exceeds a defined threshold voltage
Vt. Now the probability of detection can be expressed as:

pd � ∫
∞

Vt

R

Ψ0
exp −R

2 + A2

2Ψ0
( )I0 RA

Ψ0
( )dR (12)

The above Equation can numerically be solved using Marcum’s
Q-function. We use the Matlab implementation provided in
(Schreiner, 1999) for computing the pd given the above noise
model, a constant false alarm rate and an SNR. Thereby the SNR
of a non fluctuating target was computed using the well known
radar Equation (Skolnik, 1980; Barton, 2013):

SNR � PTdGtGrλ
2σ

4π( )3R4kT0FLs

(13)

where P is average power, Td is dwell time (= np*PRI), np is
number of pulses for coherent processing, PRI is pulse repetition
interval, R is radar to target distance and all other parameters the
same as in section 3.1.2. We assume a fixed target RCS (σ =
10m2). A threshold was used corresponding to the detection
probability of pd > 0.8. Doppler shift is computed and
thresholded analogously as for PCL in section 3.1.1. For
illustrating active radar coverage computations (as in
section 7) we only use the pd threshold of 0.8, which is
another way of plotting radar coverage than the minimum
detectable RCS illustration discussed in section 3.1.2 for
passive radar.

3.3 Radar Systems Network (RSN)
As result of the advances in PCL technology in the recent years,
many nations are considering the integration of PCL systems
into the existing active radar networks. PCL systems are
supposed to fulfill one or many requirements such as filling
the gaps in active radar coverage (gap-filling), covert
surveillance and early warning. However, efficient
integration of PCL systems are largely not studied yet. Our
current work proposes a methodology to optimize the
efficiency of both PCL and active radar systems in such
an RSN.

4 TARGET MODEL

For our purposes we use non fluctuating targets with a constant
RCS of 10m2 for active and passive radar on-the-fly detection
simulation. Our simulation tool BURST is capable of replaying
recorded air pictures consisting of hundreds of targets for several
hours. Solely ADS-B recordings were used for the current work.
Alternatively, more complete sources of air picture recordings
such as military surveillance systems can also be used. BURST

Parameters

Active radar RAD position (lat, lon, altitude), power, frequency, pulsewidth, number of pulses for integration, bandwidth, rotation time, antenna
diameter
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allows the configuration of the replay speed depending on the
available computational resources. In the simulation testbed used
for this work we could achieve four times the real recording speed,
i.e. the replayed targets flew four times the speed as was originally
recorded. This means that also the active and passive radar
processing were performed at four times the simulated sensors
real processing speed (e.g. active radar rotation time 1 s was used
instead of 4 s). The maximum replay speed is limited by the
available computing resources and the number of active and
passive sensors to be simulated in the proportionally correct
processing times as in the real world. In the case of our used
computed architecture and the target/sensor scenario a speed-up
of factor four was seen to be the maximum.

5 SIMULATION BASED OPTIMIZATION

5.1 Simulation Architecture
We use the homegrown simulation suite named BURST to
simulate all the necessary modules. BURST is a set of loosely
coupled modular software modules that can be instantiated
independently on multiple machines or a single machine with
multiple cores. The client server architecture allows the user to
use a data and software agnostic browser based HMI to access
all available functionalities of BURST. Each module of BURST
uses multiprocessing to make use of the multicore on each
machine. E.g. each PCL sensor and each active radar are run as
a single process. For our current simulation we used a 12 core

FIGURE 2 | Real-time database and parallelized simulation of active-passive sensor processing, target, learning and HMI modules. For the sake of simplicity many
auxiliary modules such as wave propagation, and digital elevation modules etc. are not illustrated.

FIGURE 3 | (A) PCL single layered neural network for Hebbian learning. Both the input (PCL receivers as blue circles) and output layers (ToOs as red circles) are one
dimensional. (B)Active radar power budget and sector utility learning neural network for Hebbian learning. Input layer has as nodes active radars (blue circles). The output
layer (red circles) is two dimensional accounting for the sensor range and sectors.
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Intel® Xeon (R) CPU E5-2620 v3 @ 2.40 GHz processor with
15.6 GiB memory and a four core Intel® i7-4600U CPU @
2.1 GHz processor with 11.6 GiB memory. Both machines
were running the Ubuntu 18.04 Bionic Beaver LTS
operating system. All BURST modules except the HMI were
run on the first machine. The HMI was used from the latter
machine.

5.2 Real-Time Database and Distributed
Processing
We use the open source object-relational database system
PostgreSQL4 for real-time communication between the
distributed modules of our simulation suite. Figure 2 for an
overview of the main modules of the distributed simulation suite
BURST and the inter process communication via real-time
database. The database interprocess communication was
implemented to allow for concurrent dynamic updates of
target movements and sensor detections. Besides this BURST
also allows process-to-process communication using the
Websocket technology.

5.3 Transmitters of Opportunity for PCL
Sensors
We use freely available data on the FM and DAB transmitters that
have been coordinated in accordance with the Geneva Plan
(GE84) and licensed by the Swiss Federal Office of
Communications2. This data is available in machine-readable
form in “.csv” and “.xml” format and includes transmitter
attributes like position in geographic and national coordinates,
name, frequency, bandwidth, Effective Radiated Power (ERP),
horizontal antenna diagram, vertical antenna diagram etc.We use
the horizontal and vertical antenna diagrams to approximate the
3D radiation pattern. When no antenna diagrams were available
an omnidirectional antenna was assumed.

5.4 Topography Model
We use the Global Multi-resolution Terrain Elevation Data3

topographical data at 7.5 arc-seconds resolution with Root
Mean Square Error range between 26 and 30 m.

FIGURE 4 | Passive Radar Coverage using all ToOs: FM Sensor is shown as the yellow circle and real world FM transmitters as red numbers. Coverage
computation is shown as minimal detectable RCS (0.1 blue to 150 m2 red) for altitude 3000 masl.

4(Dataset) POSTGRESQL (). https://www.postgresql.org/.

2(Dataset) BAKOM (). https://www.bakom.admin.ch/bakom/en/homepage/
frequencies-and-antennas/location-of-radio-transmitters.html.
3(Dataset) GMTED (). https://www.usgs.gov/products/data-and-tools/gis-data.
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5.5 Electromagnetic Wave Propagation
Model
We have integrated the open source 5 library into our
simulation suite BURST both Longley-Rice and ITWOM
RF propagation models to compute the terrain propagation
loss for the spectrum between 20 MHz and 20 GHz.
Atmospheric refraction is considered using the 4/3 Earth
radius model.

6 HEBBIAN LEARNING OF SENSOR
EFFICIENCY

Hebbian learning is widely accepted in the fields of psychology,
neurology, and neurobiology as a neuroscientific theory of
synaptic plasticity based on the premise that repeated
stimulation of pre- and postsynaptic cells lead to increase in
synaptic efficacy (Hebb, 1949). As an unsupervised learning
method Hebbian learning models and its variants have been
used widely in engineering and computation (Gerstner and
Kistler, 2002). In contrast to learning techniques that rely on

large volumes of labeled data to build the initial composition of
the network (e.g. using error backpropagation in supervised
learning), Hebbian learning is unsupervised and more similar
to the mostly observational model employed by the animal brain
in any learning activity.

We here formulate the Hebbian learning for our purpose as
follows [adapted from (Gerstner and Kistler, 2002)]. The general
formula for synaptic plasticity can be writte down as:

d

dt
wij � F wij; vi, vj( ) (14)

where d
dtwij is the rate of change of synaptic strength and F is a

function to be defined. vi and vj are the post- and presynaptic
neuronal firing rates respectively (for our purposes we do no need
to model the membrane potentials). In order to model for the
simultaneous activity of the pre- and postsynaptic neurons and
the subsequent change in synaptic weight we expand the fucntion
F in a Taylor series about vi = vj = 0:

d

dt
wij � c0 wij( ) + cprei wij( )vj + cpost1 wij( )vi + cpre2 wij( )v2j

+ cpost2 wij( )v2i + ccorr11 wij( )vivj +O v3( ) (15)

The term ccorr11 (wij)vivj in Eq. 15 implements the AND condition
for joint activity. The simplest choice for Hebbian learning rule

FIGURE 5 | Passive Radar Coverage using non-Swiss ToOs: FM Sensor is indicated by the yellow circle and real world FM transmitters outside Switzerland by red
numbers. Coverage computation is shown as minimal detectable RCS (0.1 blue to 150 m2 red) for altitude 3000 masl.

5(Dataset) SPLAT! (). https://www.qsl.net/kd2bd/splat.html.
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within the Taylor expansion of Eq. 15 would be to fix ccorr11 as a
positive constant (learning rate) and set all other terms to zero.
We thus get the prototypical learning rule:

d

dt
wij � ccorr11 vivj (16)

We bound the synaptic weight wij between 0 and 1 by making
ccorr11 depend on wij as follows:

ccorr11 wij( ) � γ1 1 − wij( ) (17)
In summary we obtain the learning rule

d

dt
wij � γ1 1 − wij( )vivj − γ2wij (18)

where the synaptic weights are bounded and decay back to zero in
the absence of stimulation. γi are thereby normalization factors
(according to the so called Oja’s rule) which solves the typical
stability problems of the Hebb’s learning rule. Besides, in the case
of PCL topology learning we need to allow competition between
ToOs as the computational resources per PCL sensor site
are limited and the best ToOs have to be chosen. To account
for this we normalize the synaptic weights wij for each PCL
receiver. The left side of the Figure 3 illustrates the neural
network for PCL topology optimization. Each PCL receiver is

modelled as a presynaptic neuron that is connected through a
synapse to all the potentially available ToOs. The synaptic
weights wij will be learned according to the above rule. The
right side of the Figure 3 illustrates the neural network for
active radar power budget and sector optimization. Each active
radar is modelled by a presynaptic neuron that is connected to
all nodes in a 2D postsynaptic neural matrix. The two
dimensions of the 2D postsynaptic neural matrix represent
all potentially available sectors and ranges of active radars used
in the simulation. Note that further dimensions can be added if
necessary.

Given the above discussed neural architecture for Hebbian
learning we now discuss the pre- and postsynaptic activation
functions. Using the BURST simulation suite presented in
section 5.1 we simultaneously simulate targets and their
detection using PCL and active radars in an RSN. The
simulated targets are recorded real-world air traffic using
either ADS-B or combined military and civil air surveillance
radars. Whenever a sensor detects a target the following
activation function is triggered in the neural network for
both pre- and postsynaptic PCL neurons for receiver j and
ToO i:

vi � vj � S x( ) � 1
1 + e−x

(19)

FIGURE 6 | Three active Radars (numbers 524, 525, 526) with coverage illustrations as probability of detection greater than 0.8 for a target of 10 m2 RCS at
3000 masl.
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where S is the sigmoid function and x a specific detected target is
given by:

x � f i, j, target( )
� 1.0 − a

b
− c

d
if Receiverj and ToOi detects target

0 otherwise

⎧⎪⎨⎪⎩
(20)

where a is the total number of PCL detections, b is total
number of PCL sensors (where each PCL receiver-ToO
couple is defined as a sensor), c is the total number of
active radar detections and d total number of active radars.
This activation function states on the one hand that the more
unique the detection of a target by a given receiver-transmitter
pair (i.e. PCL sensor) the higher the activity. The uniqueness of
a detection by a PCL sensor is thereby given by 1 − a

b, which will
be 0 if all PCL sensors detect this same target and close to 1 if
only the current PCL sensor detects it. On the other hand Eq.
(20) also states that the higher the number of active radar
detections of the same target (c) the lesser the activity for this
PCL sensor. This formulation of the activity function rewards
the most useful (i.e unique) PCL detections as these detections
cannot be provided by the other passive or active sensors in
the RSN.

Analogously for active radars, the active activation function
for radar i is defined as follows:

x � f i, target( )
� 1.0 − c

d
if target not detected by any PCL sensor

0 otherwise

⎧⎪⎨⎪⎩ (21)

This formulation allows us to reward PCL sensors that detect
targets that are rather undetected by other PCL sensors and by
active radars. Also, active radar detections are considered as
valuable where there is no PCL detection. This allows the
aforementioned exploitation of the added value of PCL sensors
are gap fillers in an active-passive RSN.

In the case of active radars, the same formulation as in Eq.
(20) is used rewarding reciprocally the ranges and sectors
where each active radar has the most unique detection
contributions. Note that in case the value of x in Eq. (20)
is below zero, the learning rule in Eq. (18) leads to the
depression of the corresponding synaptic weight, which can
be compared to forgetting in the biological brain. This is useful
as negative values of x in Eq. (20) is caused when a lot of
sensors detect the same target at its position, which is
unnecessarily redundant when the objective is to maximize
RSN coverage in space.

FIGURE 7 | Two real-world FM transmitters (red circles) with the corresponding horizontal antenna radiation patterns.
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The formulation of our learning problem as a Hebbian
network illustrated in Figure 3 allows us to show the
geographic distribution of active radar synaptic weights in
azimuth-range plots with the active radar at the centre (range
= 0). Such results will be discussed in section 7 in Figures 8–10.

7 RESULTS

We compared the three following scenarios with each other to
quantify the added value of our approach. First we considered a
scenario with merely three active radars (further named scenario
one). Secondly we considered the same three active radars and one
FM passive radar (scenario two). As the third scenario we considered
the same active and passive radars as in scenario two, but with only
foreign (i.e. non Swiss) FM transmitters of opportunity for the passive
radar (scenario three). Firstly this allows to show the resource
allocation optimization possibility when integrating a passive radar
into a given active radar set up (scenario one compared to scenario
two). And further scenario three allows to demonstrate the versatility
of our approach to demonstrate the degradation in resource savings

achieved above if the Swiss FM transmitters are to be shut down in
the next years as currently planned by the Swiss regulators.

All PCL and active radar parameters and locations are
arbitrary and unclassified. The PCL sensor uses eleven FM
transmitters within and outside Switzerland (scenario two) and
six non Swiss FM transmitters (scenario three). Eleven strongest
FM transmitters were chosen from all retrieved from the publicly
available BAKOM dataset (BAKOM). FM transmitter attributes
available from the dataset were position (lat, lon), antenna height
above ground, frequency, power, bandwidth, horizontal radiation
pattern, vertical radiation pattern and polarisation. The
computed coverage for the PCL sensor using all eleven ToOs
is shown in Figure 4. The computed coverage for the PCL sensor
using only foreign ToOs is shown in Figure 5.

For resource optimization using Hebbian learning ADS-B air
traffic recording during a 2 hour period above continental Europe
were used to simulate real-world targets.

The active radar parameters used for target detection were: lat,
lon, height, power, antenna diameter, frequency, pulsewidth,
number of integrated pulses, and bandwidth. The probability
of false alarm and rotation time of all active radars were set to 10–6

FIGURE 8 | Scenario 1: Active Radar Only: learned normalized weights of the three active radars in an azimuth-range polar plot are shown. A mean weight of 80%
(83 + 84 + 73)/3 is obtained, meaning that on average targets in 80% of the range-sector bins are detected.

FIGURE 9 | Scenario 2: Active Radar and Passive Radar with all 11 ToOs: learned normalized weights of the three active radars in an azimuth-range polar plot are
shown. Amean weight of 33% (61 + 22 + 16)/3 is obtained, more than halving the active radar only mean synaptic weight in scenario 1. Hereby, cold (blue) areas indicate
low synaptic weights where active radar detection is made unnecessary thanks to detections of the PCL sensor.
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and 4 s respectively. The above active radar parameters were set
so that a detection range of about 80 kms were achieved for a
target of 10 m2 RCS. Figure 6 for the coverage prediction of all
three active radars at altitude 3000 masl.

Figure 7 illustrates the antenna diagrams of two real world FM
transmitters.

Figures 8–10 illustrate the results of the proposed learning
mechanism to minimize active radar power budget for providing
target coverage for the mentioned real-world target scenario of 2 hour
duration. Figures 8–10 illustrate the synaptic weights of active radars
after the convergence of the Hebbian learning mechanism. The heat
map color coding indicates high synaptic weights to low synaptic
weights from red to blue respectively. Each of these Figures shows
three active radars discussed inFigure 6 in themiddle of each subplot.

For example a high synaptic weight after learning (color coded red) at
a given azimuth and range froma radar indicates that the contribution
of this specific radar in detecting targets at this azimuth and range is
high. Likewise a low synaptic weight (blue) indicates irrelevant
contribution of this radar at this azimuth and range.

By comparing Figure 8 (scenario 1) with Figure 9
(scenario 2) we observe that the relative contributions of
all three active radars in scenario two is much lower than
that in scenario 1. Quantitatively this is shown by the mean
synaptic weight of 33% in scenario two compared to 80% in
scenario 1. This means that by adding a single PCL sensor to
the three active RSN group we can drastically reduce the
critical coverage requirement of active radars for providing
the same air picture (i. e. while maintaining the detection

FIGURE 10 | Scenario 3: Active Radar and Passive Radar with only six non Swiss ToOs: learned normalized weights of the three active radars in an azimuth-range
polar plot are shown. For the three active radars a mean weight of 46% (65 + 48 + 27)/3 is obtained, which means increment of 13% compared to scenario 2.

FIGURE 11 | Normalized learned weights of individual ToOs over learning epochs when all 11 (both Swiss and foreign) FM transmitters are used. The ToOs with
higher weights contribute to much more detections than the ToOs with low weights.
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sensitivity). It has to be noted that a typical real-world PCL
system possibly cannot provide the same 3D position accuracy
as a 3D active radar depending on the used ToO signal
bandwidth and the relative geometry of the receiver, ToOs
and targets. Furthermore it has to be noted that synpatic
weight at lower range is irrelevant when the weight at a greater
range is high. In such cases the active radar has to illuminate
indeed all ranges in a sector. The added value of the learning
mechanism is when complete sectors can be singled out that
need not be illuminated (e.g. Figure 9 middle 0–90° azimuth).

By comparing Figure 10 (scenario 3) with Figure 9
(scenario 2) we observe that the mean synaptic weight of
active radars is raised from 33 to 46% when the PCL sensor
uses just ToOs outside Switzerland. This means that although
the usage of CH inland FM ToOs do contribute to the PCL air
picture, a significant part of that air picture can be provided by
using just ToOs outside Switzerland. This again means that
PCL FM sensors in Switzerland would be useful even if the FM
transmitters were to be shut down in the near future. Note that
the result in Figure 10 owing to scenario three was achieved
dynamically from scenario two shown in Figure 9 by simply
switching off the Swiss FM transmitters. This transition in the
learned synaptic weights shows that our approach can relearn
dynamically.

Figures 11, 12 illustrate how the same Hebbian learning
mechanism is used to learn the most useful ToOs, i.e. the ones
contributing to the most number of target detections. For this
we consider scenario 2. Figure 11 illustrates how the synaptic
weights of individual ToOs develop over the learning epochs.
Figure 12 summarizes these ToO synaptic weights in
boxplots. Here we see that there are four ToOs with

considerably more contributions to target detections than
the others. This learned result can be used by a PCL
system to prioritize processing of ToOs as often
computational resources are limited especially for mobile
PCL systems operating in harsh alpine conditions.

8 CONCLUSION

Given a set of active radars and PCL sensors on certain
locations, we addressed the problem of simultaneously
determining the most useful ToOs for each PCL sensor and
the most effective sectors and ranges for each active radar.
From this optimal power budget strategies (e. g avoiding
emissions in some sectors) can easily be derived. We proposed
an unsupervised learning approach for this topology optimization
and energy-efficient detection in combined active-passive radar
sensor networks. Our approach shows how and where the power
budget of active radars can be drasticallyminimized by introducing
PCL sensors. Although PCL systems seem promising as cost-
effective gap fillers of active radar coverage they are sensitive to
changes of ToO. To this end we demonstrated how our approach
dynamically relearns to achieve robust performance when changes
in the ToO of PCL sensors occur. The most useful ToOs for PCL
target detection are learned while providing a means to select
sectors of no emission for active radars, and thus for minimizing
their power budgets.

Our approach critically contributes towards the goal of
minimizing active radar power budget and PCL
computational resources in a RSNs. Widely used
approaches to attack power budget optimization in RSNs

FIGURE 12 | Boxplots of individual ToO weights after learning when all 11 (both Swiss and foreign) FM transmitters are used. The ToOs with higher weights can be
clearly distinguished from the ToOs with low weights.
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include game-theoretic approaches and network cost
based strategies, which mostly do not consider detailed
models of active and passive radars and terrain models.
Our approach using Hebbian learning allows to integrate
user defined models of PCL and active radar systems.
Furthermore, our approach allows scenario dependent
optimization of active radar power budget and PCL ToO
selection. Recordings of real-world air traffic, simulated
targets or a combination of both can be used to train our
model catering to several scenarios in military and civilian air
surveillance.

Further work is envisioned to consider more sophistic models
of PCL and active radar detection models including bistatic RCS
modelling, clutter modelling, direct signal suppression and digital
beamforming.
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