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Nuclei segmentation is fundamental and crucial for analyzing histopathological images.
Generally, a pathological image contains tens of thousands of nuclei, and there exists
clustered nuclei, so it is difficult to separate each nucleus accurately. Challenges against
blur boundaries, inconsistent staining, and overlapping regions have adverse effects on
segmentation performance. Besides, nuclei from various organs appear quite different in
shape and size, which may lead to the problems of over-segmentation and under-
segmentation. In order to capture each nucleus on different organs precisely,
characteristics about both nuclei and boundaries are of equal importance. Thus, in this
article, we propose a contextual mixing feature Unet (CMF-Unet), which utilizes two parallel
branches, nuclei segmentation branch and boundary extraction branch, and mixes
complementary feature maps from two branches to obtain rich and integrated
contextual features. To ensure good segmentation performance, a multiscale kernel
weighted module (MKWM) and a dense mixing feature module (DMFM) are designed.
MKWM, used in both nuclei segmentation branch and boundary extraction branch,
contains a multiscale kernel block to fully exploit characteristics of images and a
weight block to assign more weights on important areas, so that the network can
extract discriminative information efficiently. To fuse more beneficial information and get
integrated feature maps, the DMFMmixes the feature maps produced by the MKWM from
two branches to gather both nuclei information and boundary information and links the
feature maps in a densely connected way. Because the feature maps produced by the
MKWM and DMFM are both sent into the decoder part, segmentation performance can be
enhanced effectively. We test the proposed method on the multi-organ nuclei
segmentation (MoNuSeg) dataset. Experiments show that the proposed method not
only performs well on nuclei segmentation but also has good generalization ability on
different organs.

Keywords: nuclei segmentation, multi-organ, pathological images, deep learning, instance segmentation, mixing
feature

1 INTRODUCTION

Histopathology is one of the most important branches in medical care area, which studies and
diagnoses various diseases by examining cells or tissues under a microscope.(Deng et al., 2020).
Histopathologists are those who are in charge of analyzing histology images, looking for changes in
cells and helping clinicians manage patient care. Nuclei segmentation is a fundamental and vital
prerequisite before analyzing and getting medical results. At present, most pathology diagnoses are
conducted by histopathologists, so the diagnostic results and opinions are given subjectively. In fact,
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a histology image is very complicated, which contains tens of
thousands of cells and other tissues, and is time-consuming to be
analyzed manually. Sometimes, even experienced
histopathologists may make wrong judgements and mistakes.
In order to help doctors work efficiently, automatic nuclei
segmentation by computer technology is indispensable, which
can not only display the distribution and structure of nuclei,
saving precious time for doctors to focus on key or tough parts,
but also provide doctors with consultative opinions, such as the
type of disease or disease grading.

However, achieving nuclei segmentation accurately is not an
easy task because there are many challenges that hinder obtaining
good performance, such as inconsistent staining, blur boundaries,
overlapping regions, and various shapes. The examples of
challenges are shown in Figure 1. There have been lots of
studies that try to solve the mentioned challenges and realize
automatic nuclei segmentation. Algorithms such as thresholding
(Phansalkar et al., 2011), region growing (Szénási et al., 2011),
watershed (Veta et al., 2011), and active contours (Al-Dulaimi
et al., 2016) are traditional methods. In addition, in recent years,
the development of deep learning shows great potential in the
computer vision field. Owing to convolution operation, many
classic convolutional neural networks surpass traditional
methods and achieve state-of-the-art performance in many
image competitions. For segmentation task, the FCN (Long
et al., 2015) is the first one using fully convolutional operation
in an end-to-end network. In addition, Unet (Ronneberger
et al., 2015) is an encoder–decoder network that is designed for
medical cell segmentation. Because of the efficiency of Unet,
many methods in medical areas are modified and improved
based on it, such as Vnet (Milletari et al., 2016), SegNet
(Badrinarayanan et al., 2017), and CFPNet-M (Lou et al.,
2021).

There are also many Unet-based methods for the multi-organ
nuclei segmentation task. Wang et al., (2020) propose a bending
loss regularized network and Mahmood et al., (2019) utilize a
conditional GAN to train the network in an adversarial pipeline,
REMFA-Net. Chen et al., (2020) apply group equivariant
convolutions to realize automatic segmentation. In addition,
some other methods use multitasks in a whole network. Zhou
et al., (2019) both detect boundaries of nuclei and generate binary
masks; Xu et al., (2019) detect the center of each nucleus as well as
its boundary. But, networks with multitasks often either share the

same part of the network, especially for the encoder part, or are
trained different tasks independently and use post-processing
steps to get the final results. The examples of workflows are shown
in Figures 2A, B. These two ways both have their advantages and
disadvantages. By sharing parts of the network, the whole
network can decrease the parameters. But, the network may
fuzzy the goal because the final outputs contain several tasks,
and it is hard for the network to learn comprehensively and
efficiently. For training independently, each network can focus on
one task and is well-directed in forward and backward
propagation. However, training independently ignores some
features that can be reused and enhances contextual feature
maps. To overcome the problems of these two ways,
Figure 2C is our proposed method that can not only focus on
two sub-tasks dedicatedly and be trained concurrently but also
enhance features by mixing the features from two sub-tasks to
ensure final performances. For the two sub-tasks, we think that
using both nuclei segmentation information and nuclei boundary
information can ease the problems of staining inconsistent and
blur boundaries. In this study, we propose a contextual mixing
feature Unet to solve the multi-organ nuclei segmentation task.
The proposed network has two parallel sub-tasks, generating the
binary mask and detecting the boundary of each nucleus. In
addition, a multiscale kernel weightedmodule and a densemixing
feature module are designed to ensure that the network obtains
rich and integrated features.

The main contributions of our study are summarized as
follows:

1) We propose a contextual mixing feature Unet (CMF-Unet) to
segment nuclei from various organs. The model mixes the
feature maps from both nuclei segmentation branch and
boundary extraction branch to get richer and integrated
contextual information.

2) We design a multiscale kernel weighted module, which
consists of a multiscale kernel block and a weight block to
get discriminative features and provide more weights on
nuclei and boundaries. In addition, a dense mixing feature
module is designed which mixes both information from the
two branches to obtain integrated characteristics.

3) We evaluate our proposed method on the MoNuSeg dataset.
In addition, experiments demonstrate the effectiveness and
generalization ability of our model.

FIGURE 1 | Challenges of multi-organ nuclei segmentation task. (A) shows the clustered nuclei (in red box) with the problems of inconsistent staining and blur
boundary, (B) shows diverse shapes and sizes of nuclei from different organs, and the organs are kidney, breast, and colon separately.
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The remaining of this article is organized as followed: Related
research on medical image segmentation and multi-organ nuclei
segmentation is introduced in Section 2. Details of the proposed
method are explained in Section 3. Experiments and results are
shown in Section 4. In addition, discussion and conclusion are
given in Section 5 and Section 6 separately.

2 RELATED WORK

2.1 Deep Learning–Based Medical Image
Segmentation
The medical image segmentation task has been a hot research
topic for decades. Since 2012, the rise of deep learning technology
brings a brand new future for this field. Image segmentation can
be regarded as a pixel-wise classification task. Initially, the same
with image classification, segmentation networks use a fully
connected way at the end of the network to assign each pixel
a class label. In 2014, Long et al., (2015) proposed a fully
convolutional network to replace the fully connected layers
with convolution operations. Later on, in 2015, Unet
(Ronneberger et al., 2015) was proposed, which uses an
encoder–decoder structure with skip connection to get the best
results on the cell segmentation competition that year. The
encoder extracts important features and the decoder expands
the obtained feature maps and connects low-level features and
high-level features by skip connection. Based on Unet, Unet++
(Zhou et al., 2018) redesigns skip connection and connects layers
in a nested way to aggregate feature maps. Due to the powerful
ability, the encoder–decoder–based networks become the most
popular in segmentation tasks and are widely used in medical
segmentation application.

2.2 Nuclei Segmentation
2.2.1 Traditional Methods
Before the popularity of the deep learning technique, many
researchers tried to solve the nuclei segmentation task by
traditional methods such as thresholding (Phansalkar et al.,
2011), region growing algorithm (Szénási et al., 2011),
watershed algorithm (Veta et al., 2011), and active contours
(Al-Dulaimi et al., 2016). But with pathology images becoming
more and more diverse and complicated, the shortcomings of
traditional methods are emerging, and segmentation results are
not good enough. This is because these methods are often suitable
for some specific situations and have limitations on more
challenging tasks.

2.2.2 Deep Learning–Based Methods
In recent years, deep learning–based methods are widely used in
nuclei segmentation. Many networks are committed to solving
the multi-organ segmentation task. Wang et al. (2020) propose a
bending loss regularized network to separate overlapping nuclei
by giving high penalties for tough contours. Mahmood et al.
(2019) utilize a conditional GAN to train the network in an
adversarial pipeline and capture more global features. Some
methods include several sub-tasks in a network. CIA-Net
(Zhou et al., 2019) shares the encoder parts and proposes a
multilevel information aggregation module to fully utilize the
benefit of complementary information for two task-specific
decoders. Unet (Xu et al., 2019) also shares the same encoder
and accomplishes the detection task and segmentation task in
decoder parts and uses the post-processing step to refine each
nucleus. SUNet (Kong et al., 2020) is a two-stage learning
framework consisting of two connected, stacked UNets. Pixel-
wise segmentation masks on nuclei are the first output, and then
the output binary masks are combined with original input images
to go through the network together again to obtain final results.

3 PROPOSED METHODS

3.1 Motivation
Since an encoder–decoder structure is effective for the
segmentation task, our proposed network is based on this kind
of structure. In general, H&E staining is applied to pathological
images to see cells and tissues. But, the staining process is made by
humans, so some stained images are in poor quality. For example,
insufficient staining may cause hollow or unclear boundary for a
nucleus. Nuclei segmentation needs to give each pixel a label that
belongs to nuclei or the background, so it is necessary to segment
objects integrally containing intact nuclei and clear boundaries.
In order to segment nuclei from an image in an instance-level,
using one encoder–decoder network to generate a binary mask in
good quality is a bit difficult. Therefore, besides using a branch to
generate nuclei masks, we consider adding a parallel branch to get
the boundaries of nuclei so that both nuclei information and
boundary information can be obtained, and mixing the features
from the two branches can get better representation of an image.
In addition, because nuclei on different organs appear quite
different, to have good generalization ability, richer feature
maps should be obtained as much as possible. Thus, in the
encoder parts, kernels with different sizes can be used to fully
exploit an image, and more weights can be assigned on nuclei

FIGURE 2 | Existing workflows and the proposed method. (A) shares the encoder part between different tasks, (B) trains the network independently for each task,
and (C) is our proposed method, training different tasks simultaneously and mixing features from different branches.
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regions and boundary areas. In view of these considerations, we
propose a contextual mixing feature Unet with a multiscale kernel
weighted module and a dense mixing feature module.

3.2 Image Preprocessing
For pathology images, since tissues and cells at the very beginning
are transparent, images need to be dyed with colors. H&E staining
procedure, using two dyes hematoxylin and eosin, is the principal
stain in histology (Veta et al., 2013). Hematoxylin stains nuclei a
purplish blue and eosin stains the extracellular matrix and
cytoplasm pink so that a pathologist can easily differentiate
between the nuclei and cytoplasm. But, due to different
manufacturers, H&E images vary greatly. So, preprocessing
steps on H&E images are necessary. Stain separation is the
first step to get H channel and E channel by the Beer–Lamber
law (Ruifrok and Johnston, 2001), and then SNMF (Vahadane
et al., 2016) is applied to factor out a specific color appearance
matrix for each image. The normalized H channel images are
selected as input images.

3.3 Network Details
3.3.1 Overall Architecture
Figure 3 shows the overall architecture of CMF-Unet. For an
input image, it is sent into two branches to extract features related
to nuclei and nuclei boundaries. The two branches are in the same
structure, except they use different loss functions to guide them to

focus on their own task. The upper branch, nuclei segmentation
branch, is chosen as the main example to illustrate the whole
process.

First, an image is sent into the encoder part which consists of
several convolution blocks with downsampling operation to
reduce the size of feature maps. Each convolution block
contains two convolution layers, and between them, there is a
multiscale kernel weighted module (MKWM). This module
contains a multiscale kernel block and a weight block, which
uses two different kernel sizes to capture more refined features
and gives more weight on important areas. Each weighted feature
map is combined with the feature maps from the other branch to
mix nuclei information and boundary information. The mixed
feature maps are densely connected with other feature mixed
layers. The whole mixing feature part is called dense mixing

FIGURE 3 | Overall architecture of CMF-Unet.

FIGURE 4 | Constitution of the MKWM.
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feature module (DMFM). Then, back to the upper branch, the last
feature maps in the encoder part are enlarged in size through
upsampling operation. Then, the enlarged feature maps
concatenate with the feature maps in the encoder part and
DMFM of the same size, and finally, the segmentation output
can be obtained.

3.3.2 Multiscale Kernel Weighted Module
To fully exploit features of an image, the multiscale kernel
weighted module (MKWM) is designed. Details of the
MKWM are shown in Figure 4. The aim of this module is to
fully excavate features by multiscale kernel block and highlight on
the important areas through weight block.

For multi-organ nuclei segmentation, nuclei on different
organs appear in diverse sizes and shapes. In order to
capture various nuclei, kernels with different sizes are
helpful. This is because kernels with large size can capture
more detailed information, and kernels with small size can
capture more edge structure information (Tan and Le, 2019).
Inspired by the study by Li et al., (2018), besides using 3 × 3
kernel size as a general rule, the multiscale kernel block
additionally uses kernel size in 5 × 5 so that the network can
adaptively capture characteristics. Moreover, to further utilize
the local feature maps extracted from two paths with different
kernels, the feature maps from two paths are concatenated with

each other mutually to obtain more efficacious information.
After that, the two paths are combined together through a 1 × 1
convolution layer to fuse features and reduce computation
complexity at the same time. Residual connection is added to
link the original feature maps with the strengthened feature
maps. The details of the multiscale kernel block are shown in
Figure 5A.

For feature maps Ei ∈ RH×W×C, where E means the encoder
part, imeans the sequence number of the convolution block, and
H, W, and C mean height, width, and channel number,
respectively, the whole process can be written in the following
formulas:

Ei_3 � γ ϕ Ei( )( ), (1)
Ei_5 � γ φ Ei( )( ), (2)

Ei_3′ � γ ϕ Ei_3, Ei_5[ ]( )( ), (3)
Ei_5′ � γ φ Ei_3, Ei_5[ ]( )( ), (4)

Ei′� γ ω Ei_3′, Ei_5′[ ]( )( ) + Ei, (5)
where ϕ(·), φ(·),and ω(·) are convolution operations with kernel
size of 3 × 3, 5 × 5, and 1 × 1, respectively, γ(·) is an
activation function, and [·] is a concatenation operation.
Through these steps, discriminative feature maps
Ei′∈ RH×W×C are obtained.

FIGURE 5 | Details of multiscale kernel block and weight block. (A) is the multiscale kernel block and (B) is the weight block.
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After getting the discriminative feature maps Ei′, the weight
block will calculate the feature importance of each pixel in the
space domain, extract key information of an image, and assign
more weights. So, the two branches can better focus on nuclei
information and boundary information, instead of treating each
pixel equally.

The structure of the weight block is shown in Figure 5B. For
feature maps Ei′∈ RH×W×C, two weight maps, Ei_avg and Ei_max,
are first obtained by average pooling and max pooling. Ei_avg and
Ei_max have the same width and height with Ei′, except that the
channel number changes from C to 1. Then, two weight maps are
concatenated together and carried on convolution operation and
produce Ei_w ∈ RH×W×1. Following this, Ei_w is product-wise with
Ei′to get Ei_w′. Finally, Ei_w′is added with Ei′ to get the weighted
enhanced feature maps E′′

i ∈ RH×W×C. The whole process can be
written as follows:

Ei_w � ϕ Ei_avg, Ei_max[ ]( ) � ϕ avgpool Ei′( ), maxpool Ei′( )[ ]( ),
(6)

Ei_w′ � Ei · Ei_w, (7)
E ′′
i � Ei_w′ + Ei, (8)

where avgpool (·) andmaxpool (·) are two pooling operations, and
ϕ(·) is a convolution operation.

Through the MKWM, the network can fully identify distinct
and important features from images.

3.3.3 Dense Mixing Feature Module
Although two branches aim to extract features related to nuclei
and nuclei boundaries, these two tasks are highly relevant and
their feature maps are meaningful for each other. Therefore,
mixing the features from the two branches can enhance
representation of images. For H&E images with the problems
of inconsistent staining and blur boundary, mixing the feature
maps containing nuclei information with feature maps related to
boundary information is helpful to integrate two kinds of
characteristics.

In order to make full use of the extracted features, inspired by
the study by Huang et al., (2017), instead of singly
concatenating feature maps from two branches, we design a
dense mixing feature module (DMFM) to reuse the features
from the former layers and further strengthen the information.
The details are shown in the pink frame of Figure 3. Taking the
first convolution block as an example, through the MKWM, the
network gets the enhanced feature maps SE′′1 and BE′′1 , where S
and B are short for the segmentation extraction branch and
boundary detection branch, Emeans encoder part, and 1 means
the first convolution block. The two feature maps, having
already given important areas more weights, are added
together so that the feature map M1 can highlight both the
nuclei and boundary areas. Except the last convolution block,
other blocks in the encoder part are carried on the same
operation. To reuse these feature maps, dense connection is
used to improve the representation ability, absorbing the
information from multiscale feature maps.

The following formulas describe the workflow of the DFMM:

M1′ � γ ϕ M1( )( ) � γ ϕ SE ′′
1 + BE ′′

1( )( ), (9)
M2′ � γ ϕ d2 M1′( ),M2[ ]( )( ) � γ ϕ d2 M1′( ), SE ′′

2 + BE ′′
2( )[ ]( ),

(10)
M3′ � γ ϕ d4 M1′( ), d2 M2′( ),M3[ ]( )( )

� γ ϕ d4 M1′( ), d2 M2′( ), SE ′′
3 + BE ′′

3( )[ ]( ), (11)
where ϕ(·) is a convolution operation, γ(·) is an activation
function, [·] is a concatenation operation, di (·) is a
downsampling operation, and subscript i is the stride.

Through the DMFM, feature maps can be enhanced bymixing
information from two branches and M1′ , M2′ , and M3′ can be
obtained. These three groups of feature maps are used as
additional skip connection for the decoder part.

3.4 Loss Function
3.4.1 Loss Function for Nuclei Segmentation Branch
The nuclei segmentation branch aims to judge each pixel that is
background or nuclei, so cross-entropy loss (Zhang and Sabuncu,
2018) is used. Binary cross-entropy is a measurement of the
difference between two probability distributions. It compares the
prediction and the ground truth pixel-wise. The loss function is
shown as follows:

l1 � − 1
N
ΣN
i�1 yilog ŷi( ) + 1 − yi( )log 1 − ŷi( )( ), (12)

whereN is the total number of image pixels, i is the i − th pixel, y is
a ground truth, and ŷ a prediction result.

In addition, smooth truncated loss (Zhou et al., 2019) is also
used in the nuclei segmentation branch to control the contribution
of both false positive and false negative, promoting the network
learning the beneficial information and relieving over-
segmentation. The smooth truncated loss function is shown as follows:

l2 � −log θ( ) + 1
2

1 − ŷi
2

θ2
( ), ŷi ≤ θ

−log ŷi( ), ŷi ≥ θ

⎧⎪⎨⎪⎩ , (13)

where ŷi is a prediction result on the i − th pixel. If the ground
truth yi = 1, ŷi � ŷ. Otherwise, ŷi � 1 − ŷ. θ is a truncated point,
and its value is 0.3.

3.4.2 Loss Function for the Boundary Extraction
Branch
Since pixels of nuclei boundaries only take up a small part of the
image, pixels are unbalanced between the background and
foreground. So, soft dice loss (Sudre et al., 2017) is used for
the boundary extraction branch to learn contour information.
The formula of soft dice loss is as follows:

l3 � 1 − ΣN
i�1ŷiyi

ΣN
i�1ŷi

2 + ΣN
i�1y

2
i

, (14)

where i is the i − th pixel, y is the ground truth, and ŷ is a
prediction result.
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3.4.3 Loss Function for Whole Network
The total loss function for the whole model is the combination of
the two branches. The formula is as follows:

loss � αl1 + βl2 + μl3, (15)
where α, β, and μ are hyperparameters of three loss functions. We
set α = 0.3, β = 1, and μ = 0.5 in our article.

4 EXPERIMENTS

4.1 Datasets and Implementation Details
In our experiments, we use the multi-organ nuclei segmentation
(MoNuSeg) dataset that comes from the 2018 MICCAI
challenge. The dataset contains 30 training images from
seven diverse organs (breast, kidney, prostate, liver, colon,
bladder, and stomach). In addition, another 14 images are
included as testing images from seven organs, where five
organs (breast, kidney, prostate, colon, and bladder) are the
same categories of the training set, and two additional organs
(lung and brain) are not included in the training set. Two
experiments are conducted. The first experiment is to split the

training image into the training set and testing set. The splitting
way is the same as in the study by Kumar et al., (2017). In
addition, the second experiment is to use the whole dataset to
train and test. Table 1 shows the details of the MoNuSeg dataset
on two experiments.

All images are H&E images with the size of 1000 × 1000. In
consideration of time overhead, the images are cropped into
512 × 512, and then each patch is further cropped into 256 ×
256. So, for one image, 16 patches are obtained. With regard to
data augmentation, we use random crop, random flip,
random rotation, and elastic transformation. We optimize
the loss by using the momentum SGD method with an
initial learning rate of 0.001. The learning rate decays by a
factor of 10 for every 50 epochs. We implement the proposed
network on Pytorch 1.4.0 with NVIDIA GTX1080Ti GPU. In
addition, the training loss curves on the two experiments are
shown in Figure 6.

4.2 Evaluation Metrics
We use four metrics, AJI, F1-score, recall, and precision, to
evaluate the effectiveness of our method. AJI, the abbreviation
of aggregated Jaccard Index, is proposed by Kumar et al., (2017),

TABLE 1 | Number of images on different organs of the MoNuSeg dataset.

Experiment 1 Experiment 2

Organs Training set Testing set Organs Training set Testing set

Breast 4 2 Breast 6 2
Liver 4 2 Liver 6 -
Kidney 4 2 Kidney 6 3
Prostate 4 2 Prostate 6 2
Bladder - 2 Bladder 2 2
Colon - 2 Colon 2 1
Stomach - 2 Stomach 2 -
- - - Lung - 2
- - - Brain - 2

FIGURE 6 | Training loss curves on two experiments.
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and it is an evaluation metric considered in both pixel-level and
object-level aspects. The formula of AJI is as follows:

AJI � ΣN
i�1Gi ∩ Pj

ΣN
i�1Gi ∪ Pj + Σk∈OPk

, (16)

where G and P are sets of ground truth and prediction results,
respectively, and G = {G1, G2, . . . , Gn}, P = {P1, P2, . . . , Pm}, and
j � argmaxk

Gi ∩ Pk
Gi ∪ Pk

. O is the set of indices of prediction results
without any intersection to ground truth.

Precision shows that the proportion of positive identifications
is actually correct, while recall shows that proportion of actual
positives is identified correctly. The formulas of precision and
recall are as follows:

Precision � TP

TP + FP
, (17)

Recall � TP

TP + FN
, (18)

where TP is true positive, FP is false positive, and FN is false
negative.

F1-score is a measurement based on the metrics of recall and
precision, which can judge the ability of a model. The higher the
score is, the more robust the model is. The formula of F1 score is
as follows:

F1 � 2Precision · Recall
Precision + Recall

� 2TP
2TP + FP + FN

. (19)

4.3 Comparison Results
Table 2 shows comparison results of experiment 1. And the
proposed method achieves 0.8191 on F1 score and 0.608 9 on AJI
score. Although the F1 score of our method is lower than RIC-
Unet (Zeng et al., 2019) and SUNet (Kong et al., 2020), our AJI
score exceeds other methods.

Table 3 is comparison results of experiment 2. gLog (Kong
et al., 2013) is a unsupervised method and Unet (Ronneberger
et al., 2015) and Unet++(Zhou et al., 2018) are two popular
methods used for medical segmentation. This table shows that
our proposed method can perform better than Unet and
Unet++, which achieves 0.822 6 on F1 score and 0.615 3 on
AJI metrics. The visualization results among Unet, Unet++
and the proposed method are displayed in Figure 7. We
choose four patches in size of 256 × 256 from four
different organs. It is observed that our proposed method

can separate tough regions and has less misjudgment than
other two methods.

Comparison results between Unet and the proposed method
on different organs are shown in Table 4. The performance of the
proposed method surpasses the Unet on two evaluation metrics
in all 7 organs.

5 DISCUSSION

5.1 Ablation Study on theMKWMandDMFM
Table 5 shows the ablation study on twomodules. In the situation
of only using the MKWM, the feature maps from the two
branches are simply concatenated, and the network
performance is not good. The F1-score is only 0.776 5. This
may be because there is a great difference between the nuclei
extraction branch and boundary detection branch. In addition,
simply concatenating and sending these features directly to the
decoder part make the segmentation performance worse. If only
using the DMFM, the F1-score is 0.807 4. Despite of not using the
MKWM, the DMFM densely connects the feature maps from
the two branches and enhances image representations. If both
two modules are included in the network, the overall
performance is improved. This is because by utilizing the
MKWM, the important regions can be highlighted, and it is
easier for the DMFM to extract useful features. It can be
observed that the performance of mixing the feature maps
from the two branches with the MKWM and connecting
them in a dense way improves from 0.8074 to 0.8226 on F1-
score. This shows that on the one hand, fusing information from
the MKWM can make the feature maps highlight both nuclei
information and their boundary information, which is helpful
to get more integrated features of images; on the other hand,
through the DMFM, feature maps in the former layers can be
reused to fuse with the latter layers so that the feature maps
contain multi-scale characteristics and are helpful for the
decoder part.

5.2 Comparison Among Unet, Unet++, and
CMF-Unet
Unet and Unet++ are two well-known networks and compared to
them, our method has the following improvements. First, we add
a MKWM to utilize two different sizes of kernels to adaptively
extract features and give more weights on important areas, rather
than simply using the same kernel size and treating every pixel in
equal. Second, we shorten the gap between the encoder part and
decoder part through the DMFM. There is a thinking that a huge

TABLE 2 | Comparison results of experiment 1 on four evaluation metrics.

Method Precision Recall F1 score AJI

Kumar et al. (2017) - - 0.762 3 0.508 3
Naylor et al. (2018) - - 0.786 3 0.559 8
MC-Unet (Hu et al., 2019) 0.779 2 0.715 4 0.420 8 -
RIC-Unet (Zeng et al., 2019) - - 0.827 8 0.563 5
Mahbod et al. (2019) - - 0.818 8 0.568 7
Kang et al. (2019) - - 0.807 9 0.589 5
SUNet (Kong et al., 2020) - - 0.824 7 0.596 5
Proposed 0.852 3 0.788 4 0.819 1 0.608 9

TABLE 3 | Comparison results of experiment 2 on four evaluation metrics.

Method Precision Recall F1 score AJI

gLog 0.298 8 0.711 5 0.420 8 -
Unet 0.817 2 0.745 9 0.778 4 0.524 4
Unet++ 0.828 5 0.772 5 0.799 5 0.570 8
Proposed 0.844 1 0.796 5 0.822 6 0.615 3
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difference exists between feature maps from an encoder and
from a decoder, so concatenating feature maps directly
through skip connection has disadvantages. So, Unet++
redesigns a nested way to connect layers in the network. In

addition, our method not only densely links different layers but
also adds new characteristics for the network to learn and further
strengthen feature maps. Thus, CMF-Unet can perform better than
Unet and Unet++.

Our proposed method also has limitations. Compared to Unet
and Unet++, CMF-Unet has more parameters. Table 6 shows the
number of total parameters of the three networks. The number of
parameters of Unet++ approaches Unet, but there is a big gap
between Unet++ and CMF-Unet. So, the proposed method needs
more training time.

6 CONCLUSION

This study proposes a contextual mixing feature Unet (CMF-
Unet) to segment nuclei for pathology images. Due to challenges
of inconsistent staining, blur boundary, and diverse organs, we
consider that using two encoder–decoder structures are beneficial
because each branch has a clear goal of extracting nuclei features

FIGURE 7 | Visualization results on four different organs among Unet, Unet++, and the proposed method.

TABLE 4 | Comparison results between Unet and the proposed method on
different organs.

F1 score AJI

Organ Unet Proposed U-Net Proposed

Breast 0.735 4 0.789 1 0.460 2 0.579 4
Kidney 0.773 1 0.831 5 0.536 5 0.634 2
Prostate 0.796 9 0.804 2 0.557 3 0.647 3
Bladder 0.809 1 0.861 4 0.560 9 0.628 9
Colon 0.740 3 0.806 9 0.497 3 0.593 5
Lung 0.798 0 0.826 5 0.541 6 0.614 2
Brain 0.777 4 0.838 5 0.517 2 0.609 3

TABLE 5 | Ablation study on the MKWM and DMFM.

MKWM DMFM Precision Recall F1 score

√ 0.753 3 0.801 1 0.776 5
√ 0.829 7 0.786 1 0.807 4

√ √ 0.844 1 0.796 5 0.822 6

TABLE 6 | Number of total parameters of Unet, Unet++, and CMF-Unet.

Methods Params (M)

Unet 34.5
Unet++ 36.6
Proposed 51.4
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and nuclei boundaries separately, and these two features are
helpful to segment each nucleus. In order to fully exploit
image features and improve image representations, two
modules, MKWM and DMFM, are designed. The MKWM
uses two different kernel sizes to capture both detailed
information and margin information and then assigns more
weights on important areas so that the nuclei information
and the boundary information can be highlighted. The DMFM
aims to combine the feature maps through two branches in a
densely connected way so as to enhance feature maps. Because the
decoder part receives the feature maps with rich information,
segmentation performance can be improved.We test our network
on the MoNuSeg dataset which contains nuclei from various
organs. In addition, experiments show that our method is
effective, and the generalization ability also performs well.
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