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Depth information captured by affordable depth sensors is characterized by low spatial
resolution, which limits potential applications. Several methods have recently been
proposed for guided super-resolution of depth maps using convolutional neural
networks to overcome this limitation. In a guided super-resolution scheme, high-
resolution depth maps are inferred from low-resolution ones with the additional
guidance of a corresponding high-resolution intensity image. However, these methods
are still prone to texture copying issues due to improper guidance by the intensity image.
We propose a multi-scale residual deep network for depth map super-resolution. A
cascaded transformer module incorporates high-resolution structural information from the
intensity image into the depth upsampling process. The proposed cascaded transformer
module achieves linear complexity in image resolution, making it applicable to high-
resolution images. Extensive experiments demonstrate that the proposed method
outperforms state-of-the-art techniques for guided depth super-resolution.
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1 INTRODUCTION

Depth information of a scene is crucial in many computer vision applications such as 3D
reconstruction (Izadi et al., 2011), driving assistance (Schamm et al., 2009), and augmented
reality. Recently, many low-cost consumer depth cameras were introduced, facilitating the use of
depth information in various day-to-day scenarios. However, these low-cost sensors often suffer
from low spatial resolution, limiting their potential applications. To facilitate such sensors, the depth
information usually needs to undergo an upsampling process in which the corresponding high-
resolution (HR) depth map is recovered from its low-resolution (LR) counterpart.

The upsampling of depth information is not a trivial task since the fine details in the HR depth
map are often missing or severely distorted in the LR depth map, because of the sensor’s limited
spatial resolution. Moreover, there often exists an inherent ambiguity in super-resolving the distorted
fine details. A naive upsampling of the LR image, e.g., bicubic interpolation, usually produces
unsatisfactory results with blurred and unsharp edges. Therefore, numerous advanced methods have
been proposed recently for the upsampling, commonly termed super-resolution (SR), of depth
information.

Current methods for SR of depth maps can be generally categorized as filter-based methods (Yang
et al., 2007; He et al., 2012), energy minimization based methods (Ferstl et al., 2013; Yang et al., 2014;
Jiang et al., 2018) and learning-based methods, which rely heavily on the use of convolutional neural
networks (CNN) (Riegler et al., 2016b; Hui et al., 2016; Guo et al., 2018; Song et al., 2018; Zuo et al.,
2019a). Filter-based methods have a relatively low computational complexity but tend to introduce
apparent artifacts in the resulting HR depth map. On the other hand, energy minimization methods
often require cumbersome and time-consuming computations. They are heavily reliant on
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regularization from a statistic or prior that is unavailable for some
scenarios. Finally, learning-based methods have blossomed in
recent years, and they now provide the best performances in
terms of the quality of the upsampled depth map.

In many cases, an LR depth map is accompanied by a
corresponding HR intensity image. Many of the more recent
methods propose to use this additional image to guide or enhance
the SR of the depth map (Park et al., 2011; Kiechle et al., 2013;
Kwon et al., 2015; Hui et al., 2016; Guo et al., 2018; Zuo et al.,
2019a; Lutio et al., 2019; Li et al., 2020; Ye et al., 2020; Cui et al.,
2021; Kim et al., 2021; Zhao et al., 2021). These methods assume
that correspondence can be established between an edge in the
intensity image and the matching edge in the depth map. Then,
given that the intensity image has a higher resolution, its edges
can determine depth discontinuities in the super-resolved HR
depth map. However, there could be cases in which an edge in the
intensity image does not correspond to a depth discontinuity in
the depth map or vice versa, e.g., in the case of smooth, highly
textured surfaces in the intensity image. These cases lead to
texture copying, where color textures are over-transferred to
the super-resolved depth map at the boundaries between
textured and homogeneous regions. Hence, a more
sophisticated guidance scheme needs to be considered.

In this paper, to alleviate the texture copying problem, we
propose a Cascaded Transformer Guidance Module (CTGM) for
guided depth map SR. Transformers, designed initially for
sequence modeling tasks (Vaswani et al., 2017), are notable for
their use of attention to model long-range dependencies in the
data. Recently, transformers were successfully adapted to
computer vision tasks with promising results. Our proposed
CTGM is constructed by stacking several transformer blocks,
each operating locally within non-overlapping windows that
partition the entire input. Window shift is introduced between
consecutive transformer blocks to enable inter-window
connections to be learned. The CTGM is fed with HR features
extracted from the intensity image and is trained to pass only
salient and consistent features that are then incorporated into the
depth upsampling process. Our proposed CTGM is capable of
learning structural and content information from a large
receptive field, which was shown to be beneficial for SR tasks
(Zhang et al., 2017).

Our overall architecture can be divided into three main parts: a
depth branch, an intensity branch, and the CTGM. The proposed
depth branch comprises several Residual Dilated Groups (RDG)
(Zhang et al., 2018a), and performs the upsampling of the given
LR depth map in a multi-scale manner, as in, e.g., Hui et al.
(2016). Meanwhile, the intensity image is fed into the intensity
branch, which extracts HR features and complements the LR
depth structures in the depth branch via the CTGM. This process
is repeated according to the desired upsampling factor. This
closely guided multi-scale scheme allows the network to learn
rich hierarchical features at different levels, and better adapt to
the upsampling of both fine-grained and coarse patterns.
Moreover, this enables the network to seamlessly utilize the
guidance from HR intensity features in multiple scales. In
Section 4 we show that our proposed method achieves results
with sharper boundaries, more complete details, and better

quantitative values in terms of Root Mean Square Error
(RMSE) compared to competing guided SR approaches. Our
proposed architecture is shown in Figure 1 for the case of an
upsampling factor of 2.

Our contributions are as follows: (1) We introduce a novel
cascaded transformer-based mechanism to produce salient
guidance features from the intensity branch. (2) Our proposed
CTGM exhibits linear memory constraints, making it applicable
even for very large images. (3) Unlike other transformer
architectures, our architecture can handle different input
resolutions, both during training and inference, making it
highly applicable to real-world tasks. (4) We achieve the state
of the art performance on several depth upsampling benchmarks.

The remainder of this paper is organized as follows. In Section
2, we present a brief overview of the related work. In Section 3, we
present our proposed architecture for depth map SR in detail. In
Section 4, we conduct extensive experiments and report our
results. Also, an ablation study is performed. Finally, in Section 5,
we conclude and discuss future research directions.

2 RELATED WORK

Classic methods for depth map SR were inspired mainly by works
from the related field of single color image SR. However, due to
the limitation of single depth map SR, such methods usually work
well only for small upsampling factors, e.g., 2 or 4. Guided depth
map SR, on the other hand, is more robust even for more
prominent upsampling factors, e.g., 8 or 16. This improved
robustness is achieved by introducing guidance from cross
domains, e.g., HR intensity image. A more detailed review of
guided depth SR methods is given in the following subsections,
emphasizing methods based on deep neural networks.

2.1 Single Depth Map Super Resolution
Earlier works for SR of depth maps, inspired by single image SR
methods, mainly focused on filtering-based strategies. Mac
Aodha et al. (2012) proposed that the matching HR depth
candidate will be searched from a collected database for a
given LR depth patch. Selecting the most probable candidate
was then formulated as a Markov random field labeling problem.
Hornacek et al. (2013) proposed to perform single depth map SR
by exploring patch-wise scene self-similarity. Lei et al. (2017)
proposed a view synthesis quality-based filtering, which jointly
considers depth smoothness, texture similarity, and view
synthesis quality.

Other works formulated depth map SR as a global
optimization problem. Xie et al. (2015) offered an edge-guided
depth map SR method, which applies Markov random field
optimization to construct the HR edge map from the LR
depth map. Later works considered dictionary learning
strategies. Ferstl et al. (2015) used an external database to
learn a dictionary of edge priors and then used the learned
edge priors to guide the upsampling of an LR depth map in a
variational sparse coding framework. Mandal et al. (2016)
proposed an edge-preserving constraint to preserve the
discontinuity in the depth map and a pyramidal
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reconstruction framework to better deal with higher scaling
factors.

Later, Riegler et al. (2016b) proposed ATGV-Net, which
combined a deep CNN with a variational method to recover
an accurate HR depth map. Recently, Huang et al. (2019)
proposed a pyramid-structured network composed of dense
residual blocks that use densely connected layers and residual
learning to model the mapping between high-frequency residuals
and LR depth maps. A deep supervision scheme in which
auxiliary losses were added at various scales within the
network was utilized to reduce the difficulty of model training.

2.2 Intensity Guided Depth Map Super
Resolution
Unlike an HR depth map, an HR intensity image can usually be
easily acquired by color cameras. Thus, in many real-life
scenarios, a corresponding intensity image can be used to
guide the upsampling process or enhance the low-quality
depth maps. Various methods have been proposed to improve
the quality of depth maps by the guidance of the HR intensity
image. These methods can be categorized as filtering-based
methods (He et al., 2010; Liu et al., 2013; Lu and Forsyth,
2015), global optimization-based methods Dong et al. (2016);
Ferstl et al. (2013); Ham et al. (2015a,b); Jiang et al. (2018); Liu
et al. (2016); Park et al. (2014, 2011); Yang et al. (2012, 2014),
sparse representation-based methods (Kiechle et al., 2013; Kwon
et al., 2015) and deep learning-based methods (Riegler et al.,
2016a; Hui et al., 2016; Zhou et al., 2017; Guo et al., 2018; Zuo
et al., 2019a,b; Zhao et al., 2021; Lutio et al., 2019; Kim et al., 2021;
Li et al., 2020; Ye et al., 2020; Cui et al., 2021), which are in the
focus of this paper.

Liu et al. (2013) utilized geodesic distances to upsample an LR
depth map with the guidance of a corresponding HR color image.
Lu and Forsyth (2015) used the correlation between edges in a
segmentation image and boundaries in depth images to produce
detailed HR depth structures. Yang et al. (2012) formulated the
depth recovery problem to minimize auto-regressive prediction
errors. Ferstl et al. (2013) developed a convex optimization
problem for depth image upsampling, which guides the depth
upsampling by an anisotropic diffusion tensor calculated from an
HR intensity image. Park et al. (2014) extended the non-local
structure regularization by combining the additional HR color
input when upsampling an LR depth map. Kiechle et al. (2013)
introduced a bimodal co-sparse analysis to capture the inter-
dependency of registered intensity and depth information. Kwon
et al. (2015) proposed a data-driven method for depth map
refinement through multi-scale dictionary learning, based on
the assumption that a linear combination of basis functions
can efficiently represent local patches in both depth and RGB
images. Jiang et al. (2018) proposed a depth map SR method in
which non-local correlations are exploited by an auto-regressive
model in the frequency domain. A multi-directional total
variation prior is used in the spatial domain to characterize
the geometrical structures.

Inspired by the great success in the SR of color images, deep
learning methods for depth map SR have recently attracted more
and more attention. Riegler et al. (2016a) used a fully
convolutional network to produce an initial estimation for the
HR depth. This estimation, in turn, was fed into a non-local
variational model to optimize the final result. Hui et al. (2016)
proposed an “MSG-Net,”which infers the HR depth map from its
LR counterpart in multiple stages, and uses a multi-scale fusion
strategy to complement LR depth features with HR intensity

FIGURE 1 | Our proposed architecture for guided depth SR for an upsampling factor of 2. The dashed square marks a single upsampling stage i that can be
duplicated according to the desired upsampling factor s =2m.
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features in the high-frequency domain. Zhou et al. (2017)
concluded that color images are more helpful for the depth
map SR problem when noise is present, and the scaling factor
is large. Guo et al. (2018) proposed exploiting multiple level
receptive fields by constructing an input pyramid and extracting
hierarchical features from the depth map and intensity image.
These features are then concatenated, and the residual map
between the interpolated depth map and the corresponding
HR one is learned via a residual U-Net architecture. Zuo et al.
(2019a) proposed a multi-scale upsampling network in which
intensity features guide the upsampling process in multiple
stages, and both low and high-level features are taken into
account in the reconstruction of HR depth maps thanks to
local and global connections. Zuo et al. (2019b) proposed
another multi-scale network with global and local residual
learning. The LR depth map is progressively upsampled,
guided by the HR intensity image in multiple scales.
Moreover, batch normalization layers were used to improve
the performance of depth map denoising. Zhao et al. (2021)
proposed to use a discrete cosine transform network in which
pairs of color/depth images are fed into the semi-coupled feature
extraction module to extract common and unique features from
both modalities. The color features are then passed through an
edge attention mechanism to highlight the edges useful for
upsampling. Finally, a discrete cosine transform was employed
to solve the SR optimization problem. Lutio et al. (2019) proposed
to find a transformation from the guide image to the target HR
depth map, which can be regarded as a pixel-wise translation.
Kim et al. (2021) proposed to use deformable convolutions (Dai
et al., 2017) for the upsampling of depth maps, where the spatial
offsets for convolution are learned from the features of the given
HR guidance image. Li et al. (2020) proposed a recumbent Y
network for depth map SR. They built the network based on
residual channel attention blocks and utilized spatial attention-
based feature fusion blocks to suppress the artifacts of texture
copying and depth bleeding. Ye et al. (2020) proposed a
progressive multi-branch aggregation network by using the
multi-branch fusion method to gradually restore the degraded
depthmap. Cui et al. (2021) proposed an architecture built on two
U-Net branches for HR color images and LR depth maps. This
architecture uses a dual skip connection structure to leverage the
feature interaction of the two branches and a multi-scale fusion to
fuse the deeper and multi-scale features of two branch decoders
for more effective feature reconstruction.

However, the methods above still use simple schemes such as
concatenation to fuse the guidance features extracted from the
intensity image with the depth features. At the same time, we
propose to use a CTGM, which directs the allocation of available
processing resources towards the most informative components
of the input, thus achieving superior results, as demonstrated in
Section 4.

2.3 Vision Transformers
In recent years, transformer-based architectures (Vaswani et al.,
2017) achieved great success in natural language processing tasks,
enabling long-range dependencies in the data to be learned via
their sophisticated attention mechanism. Their tremendous

success in the language domain has led researchers to
investigate their adaptation to computer vision, where it has
recently demonstrated promising results on certain tasks,
specifically image classification (Dosovitskiy et al., 2020; Liu
et al., 2021; Wang et al., 2021) and object detection (Carion
et al., 2020; Zhu et al., 2020).

A primary transformer encoder, as proposed in Vaswani et al.
(2017), usually consists of alternating layers of multiheaded self-
attention (MSA) and MLP blocks, with Layer Normalization
(LN) before every block and residual connections after
every block.

An MSA block takes as input a sequence of length N of
d-dimensional embeddings X ∈ RN×d and produces an output
sequence Y ∈ RN×d via:

Q � XWQ,K � XWK,V � XWV

A � Sof tmax QKT/ ��
d

√( )
Y � AV

(1)

where WQ, WK, and WV are D × D parameter matrices of 1 × 1
convolutions responsible for projecting the entries of the
sequence X into the three standard transformer paradigms;
keys, queries, and values, respectively. Each entry of the
output sequence Y is a linear combination of values in V
weighted by the attention matrix A, which itself is computed
from similarities between all pairs of query and key vectors.

The transformer’s expressive power comes from computing
the self-attention A and Y. This computation, however, comes
with a quadratic cost; it takes O(N2) time and space to compute
the pairwise similarities between Q and K and to compute the
linear combination of V vectors. This quadratic complexity
makes it impractical to apply self-attention to images directly,
as even for small images X quickly becomes too long a sequence
for self-attention.

In light of this inherent limitation, efforts have been made to
restrict these sequence lengths in a modality-aware manner while
preserving modeling performance. The pioneering work of
Dosovitskiy et al. (2020) proposed to directly apply a transformer
architecture on non-overlapping medium-sized image patches for
image classification. This local self-attention helps mitigate these
memory constraints, as opposed to global self-attention.

3 PROPOSED METHOD

3.1 Formulation
A method for guided depth SR aims to find the nonlinear
mapping between an LR depth map and the corresponding
HR depth map. An HR intensity image guides the process of
finding this nonlinear relation. For a given scaling factor s = 2mwe
denote the LR depth map as DLR ∈ RH/s×W/s and the respective
HR guidance intensity image as IHR ∈ RH×W. Then, the
corresponding HR depth map DHR ∈ RH×W can be found from:

DHR � F DLR, IHR; θ( ) (2)
where F denotes the nonlinear mapping learned by our proposed
architecture, and θ represents the learned network’s parameters.
We note that in our proposed architecture, contrary to some
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other works, DLR is upsampled in a multi-stage scheme of m
stages. In each stage, DLR is upsampled by a factor of two until it
reaches the desired scaling factor s. We note that any upsampling
stagem can also perform an upsampling by a factor of three. Thus
the overall architecture is flexible enough for real applications and
can be configured to achieve upsampling with scaling factors that
are not the exponent of 2.

Throughout the section, we use Conv3 (·) to denote a
convolution layer with a kernel size of 3 × 3 and Conv1 (·) to
denote a convolution layer with a kernel size of 1 × 1.

3.2 Overall Network Architecture
As shown in Figure 1, our architecture mainly consists of three
parts: intensity branch, depth branch, and CTGM, which
provides guidance from the intensity branch to the depth
branch. We now review the general structure of our depth and
intensity branches, and more details of the proposed CTGM
modules will be given in Section 3.3.

3.2.1 Intensity Branch
Our intensity branch consists of two primary modules; (1) a
feature extraction module and (2) a downsampling module.
These two basic modules are repeated in each upsampling
stage i ∈ {1 . . . m}. The feature extraction module consists of
two consecutive convolution layers with a kernel size of 1 × 1,
followed by an element-wise rectified linear unit (ReLU)
activation function. This module extracts essential features
from the intensity image as guidance for the depth branch.
The downsampling module performs a similar operation while
also downsampling the feature maps by a factor of two. It consists
of a convolution layer with a kernel size of 1 × 1 followed by
another convolution layer with a kernel size of 3 × 3 and stride 2,
which performs the downsampling. A ReLU activation then
follows these two convolution layers. In this manner, the
intensity frequency components are progressively
downsampled to provide multiple-scale guidance for the depth
branch via the CTGM, as elaborated in Section 3.3.

Specifically, a single upsampling stage i ∈ {1 . . . m} of the
intensity branch can be formulated as:

Yi
FE � σ Conv1 Conv1 Yi−1

DS( )( )( ) (3)
Yi
DS � σ Conv3,2 Conv1 Yi

FE( )( )( ) (4)
where i ∈ {1 . . . m} denotes the current upsampling stage, σ is a
ReLU activation function, and Conv3,2 (·) is a convolution layer
with a kernel size of 3 × 3 and stride 2. The input Yi−1

DS for
upsampling stage i is either the output of upsampling stage i−1 or
the input HR intensity image IHR in the case of i = 1, meaning
Y0
DS � IHR.

3.2.2 Depth Branch
The depth branch plays the primary role of finding the nonlinear
mapping between the LR and the super-resolved HR depth maps.
Motivated by Zhang et al. (2018a), we use global and local
residual learning, allowing for high-frequency details needed
for super-resolving DHR to be learned in the network and its
sub-networks.

In our depth branch, we first extract shallow features from the
LR input DLR by feeding it through two consecutive convolution
layers as suggested by, among others, Haris et al. (2018); Zhang
et al. (2018b):

D0 � Conv3 Conv3 DLR( )( ) (5)
D0 is then progressively upsampled in m stages by a factor of

two in each stage. Each such upsampling stage is composed of an
RDG as proposed by Zhang et al. (2018a), followed by an
upsampling module, and finally, a second RDG. This
upsampling stage is duplicated according to the desired
upscaling factor s.

An RDG is composed of stacking G Residual Dilated Blocks
(Zhang et al., 2018a), where each such block is composed of
stacking L layers of dilated convolution. A long skip connection
connects the RDG’s input to its output, stabilizing the training
process Haris et al. (2018) and allowing the network to suppress
low-frequency information from earlier layers and recover more
useful information.

The first RDG in each upsampling stage performs a deep
feature extraction. For the RDG to successfully recover high-
frequency details from its LR input, we first scale its input via the
CTGM, as elaborated in Section 3.3. Features extracted by the
first RDG are upsampled by a factor of two via a pixel shuffle
module (Shi et al., 2016). Thus the upsampling operators are
learned in a data-driven way to improve the representation ability
of our model. Finally, the upsampled feature maps are scaled once
more by the output of another CTGM and fused with the
unscaled feature maps via a convolution layer. The fused
feature maps are then passed through a second RDG to
explore deeper relations between the depth and intensity features.

A single upsampling stage i can be formulated as:

Fi
RDG1 � H1

RDG Di−1 ⊗ H1
CTGM( ) ⊕ Di−1 (6)

Fi
UP � HPS Fi

RDG1( ) (7)
Di � H2

RDG Conv1 Fi
UP© Fi

UP ⊗ H2
CTGM( )( )( ) ⊕ Fi

UP (8)
where HRDG denotes the function learned by our RDG, HPS is a
pixel shuffle upsampling module, ⊗ denotes element-wise
product, ⊕ denotes element-wise sum, HCTGM denotes the
scaling features produced from our CTGM, © denotes a
concatenation operation and Di−1 is the output of the previous
upsampling stage. More implementation details are given in
Section 4.1.

3.3 Cascaded Transformer Guidance
Module
Guidance from the intensity image in most previous CNN-based
guided SR methods is usually achieved by extracting feature maps
from the intensity image and concatenating them to features
extracted in the depth branch. This guidance scheme effectively
treats all features equally, in both spatial and channel domains,
which is not optimal. Moreover, feature maps extracted from the
intensity image via CNN usually have a limited receptive field,
which affects the guidance quality. In comparison, we propose to
exploit long-range dependencies in the guidance image via a
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novel cascaded transformer guidance module. The motivation is
that in image SR, high-frequency features are more informative
for HR reconstruction, and a large receptive field is also beneficial
(Zhang et al., 2017). Our proposed CTGM is shown in Figure 2.

Before elaborating on the structure of our proposed CTGM,
we observe significant challenges in transferring the transformer’s
high performance in the language domain to the visual domain,
and specifically to low-level vision tasks. First, unlike word tokens
that serve as the essential processing elements in language
transformers, images can vary substantially in scale in real-life
scenarios. However, in most existing transformer-based models,
tokens must all be of a fixed scale. Another difference is the higher
number of pixels in images than words text passages. Specifically,
the task of SR requires dense prediction at the pixel level while
avoiding down-scaling the input as much as possible to prevent
loss of HR information. Working with such HR inputs would be
intractable for transformers, as the computational complexity of
its self-attention is quadratic to image size.

To overcome these issues, we build upon the work of Liu et al.
(2021) and propose a cascaded transformer module, which
operates on non-overlapping windows that partition the entire
input image. The number of pixels in each such window is fixed,
and by computing self-attention locally within each window, the
complexity becomes linear to image size. Moreover, our proposed
CTGM constructs hierarchical representations by applying
several such transformer layers consecutively. We shift the
partitioning windows with each layer, gradually merging
neighboring patches in deeper transformer layers. The shifted
windows overlap with the preceding layer windows, providing
connections that significantly enhance modeling power. Our
transformer model can conveniently extract meaningful
information suitable for dense tasks such as SR and encode
distant dependencies or heterogeneous interactions with these
hierarchical feature maps. Furthermore, the window-based local
self-attention is scalable; the linear complexity makes working
with large inputs feasible while also enabling working with
variable size inputs (given input size is divisible by window size).

Formally, given an intermediate feature map FI ∈ RC×H×W as
input, our CTGM first splits FI into non-overlapping patches of size
(P, P) to form FI,p ∈ RC×Ĥ×Ŵ where Ĥ � H/P and Ŵ � W/P. A
trainable convolution layer with a kernel size of P × P and stride P is
applied to construct an initial patch embedding FI,p,emb ∈ RĈ×Ĥ×Ŵ.
Next, we apply window partitioning such that the windows partition
FI,p,emb in a non-overlapping manner, where each window is of size
M × M. Every such window is flattened to form the window
embeddings Fwin ∈ RM2×Ĉ, which forms the input sequence for
the cascaded transformer module. During both the patches and
windows partitioning, zero padding of the input is applied if
necessary.

Similar to Hu et al. (2019), relative position embeddings are
added to the window embeddings Fwin to retain positional
information. We use standard learnable 1D position embeddings
since we have not observed significant performance gains from using
more advanced 2D-aware or global position embeddings. We refer
to this joint embedding Z0 which is the input to the following
transformermodule. Note that for computations efficiency, we batch
all Ĥ × Ŵ/(M × M) window embeddings before feeding them to
the transformer module.

Our proposed transformer module receives Z0 as input and
computes a hierarchical local self-attention within each window.
We construct our transformer module by concatenating two
modified transformer blocks, as shown in Figure 2. Each such
transformer block is modified from the original transformer
block by replacing the standard MSA module with a windows-
based MSA (MSAw) while keeping the other layers unchanged. In
an MSAwmodule, we apply Eq. 1 locally within eachM ×M, thus
avoiding computing self-attention on the entire input.
Specifically, as illustrated in Figure 2, our modified
transformer block consists of an MSAw module, followed by a
2-layer MLP with GELU non-linearity in between. An LN layer is
applied before each MLP and MSAw module, and a residual
connection is applied after each module.

We propose a shifted window partitioning approach that
alternates between two partitioning configurations in the two

FIGURE 2 | Our proposed cascaded transformer guidance module.
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consecutive transformer blocks to increase modeling power and
introduce cross-window connections. The first block uses a regular
window partitioning strategy which starts from the top-left pixel.
Then, the next block applies a windowing configuration shifted from
the preceding block by displacing the windows by M/2, M/2 pixels
from the regularly partitioned windows. We denote the MSA
module that operates with the shifted window partitioning
approach as MSAsw. Finally, the two consecutive transformer
blocks are computed as -

Ẑ
1 � MSAw LN Z0( )( ) + Z0 (9)

Z1 � MLP LN Ẑ
1( )( ) + Ẑ

1
(10)

Ẑ
2 � MSAsw LN Z1( )( ) + Z1 (11)
Z2 � MLP LN Ẑ

2( )( ) + Ẑ
2

(12)

where Ẑ
1
and Z1 denote the output features of the MSAw and

MLP modules of the first block, respectively. Similarly, Ẑ
2
and Z2

denote the output features of the MSAsw andMLPmodules of the
second block, respectively. This shifted window partitioning
approach introduces connections between neighboring non-
overlapping windows in the previous layer, which improves
modeling performance as shown in Section 4.

The overall CTGM module can be summarized as:

FCTGM � σ̂ Z2( ) (13)
where σ̂ denotes the sigmoid function.

Finally, FCTGM, the features generated by the CTGM are used
to scale the corresponding depth features in the depth branch by
element-wise multiplication.

4 EXPERIMENTS

4.1 Training Details
To make a fair comparison to other competing depth map SR
methods, we constructed our train and test data similarly to Guo
et al. (2018); Huang et al. (2019); Hui et al. (2016), and more. We
collected 92 pairs of depth and color images from the MPI Sintel
depth dataset (Butler et al., 2012) and from the Middlebury
dataset (Scharstein and Szeliski, 2002; Scharstein and Pal,
2007; Scharstein et al., 2014). We followed the same training
and validation split as in Hui et al. (2016) and used 82 pairs for
training and ten pairs for validation.

Instead of using the full-scale HR depth and intensity images
as input in the training process, we randomly extracted patches
and used these as input to our network. We opted to use an LR
patch size of 96 × 96 pixels, having observed that using a larger
patch size did not significantly improve the training accuracy.
However, the memory requirements and computation time
increase substantially with patch size. Therefore, for
upsampling factors of 2 and 4, we extracted HR patches of
sizes 192 × 192 and 384 × 384, respectively. For the
upsampling factors of 8 and 16, we used smaller LR patch
sizes of 48 × 48 and 24 × 24, respectively, due to memory
limitations and the fact that some full-scale images had a

resolution of < 400. The LR patches were generated by
downsampling each HR patch with bicubic interpolation
according to the desired scaling factor. We augmented the
extracted patches by randomly performing either a horizontal
flip, a vertical flip, or a 90° rotation during training.

4.2 Implementation Details
In our proposed architecture, we set the number of RDBs in each
RDG to G = 20 RDBs, and each such RDB has L = 4 dilated
convolution layers as described in Section 3.2.2. These values for
G and L provided the best performance to network size trade-off
in our experiments. All convolution layers throughout our
network have a stride of 1, and C = 64 filters, unless otherwise
noted. A zero-padding strategy is used to keep size fixed for
convolution layers with a kernel size of 3 × 3. The final
convolution layer has only one filter, as we output depth
values. In our CTGM implementation, we use a patch size of
p = 4, an embedding dimension of Ĉ � 64, and set the number of
patches in each window to be M = 12 throughout the CTGM.
Each MSAw and MSAsw module has four attention heads.

We trained a specific network for each upsampling factor s ∈ 2,
4, 8, 16, and used the Pytorch framework Paszke et al. (2019) to
train our models. We used a batch size of 4 in all our experiments,
with random initialization of the filter weights of each layer. We
trained each network for 3 × 105 iterations of back-propagation.
Our model was optimized using the L1 loss and the ADAM
optimizer Kingma and Ba (2014) with β1 = 0.9, β2 = 0.999 and ϵ =
10–8. The initial learning rate was set to 10–4 and then divided by 2
every 1 × 105 iterations. All our models were trained on a PC with
an i9-9960x CPU, 64GB RAM, and two Titan RTX GPUs.

Our code and trained models will be made public upon
publication.

4.3 Results
This section provides both quantitative and qualitative
evaluations of our guided depth map SR method. We report
the results of bicubic interpolation as a baseline, and compare our
results to state-of-the-art global optimization-based methods
Ferstl et al. (2013); Liu et al. (2016); Park et al. (2014), a
sparse representation-based method (Kiechle et al., 2013) and
mainly deep learning-based methods (Guo et al., 2018; Huang
et al., 2019; Hui et al., 2016; Zuo et al., 2019a,b; Zhao et al., 2021;
Kim et al., 2021; Li et al., 2020; Ye et al., 2020; Cui et al., 2021). We
evaluated our proposed method on the noise-free Middlebury
dataset and the more challenging noisy Middlebury dataset.
Moreover, we demonstrate the generalization capability of our
proposed method by evaluating on the NYU Depth v2 dataset.

4.3.1 Results on the Noise-Free Middlebury Dataset
Similar to recent works, we first evaluate the performances of the
different methods on the noise-free hole-filled Middlebury
RGB-D datasets for various scaling factors s ∈ 2, 4, 8, 16.
The Middlebury datasets provide high-quality depth maps
and RGB pairs in complex real-world scenes. In Tables 1, 2
we report the RMSE values for different scale factors, where the
best RMSE for each evaluation is in boldface, whereas the
second best one is underlined. All results in Tables 1, 2 are
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generated by the authors’ code or calculated directly from the
upsampled depth maps provided by the authors.

From Tables 1, 2 it can be seen that deep learning based
architectures for SR, such as Guo et al. (2018); Huang et al. (2019);
Hui et al. (2016); Zuo et al. (2019a,b); Zhao et al. (2021); Kim et al.
(2021); Li et al. (2020); Ye et al. (2020); Cui et al. (2021), have
obvious advantages compared with other methods. Moreover,
our proposed architecture, benefiting from our CTGM, achieves
the best performance on almost all scaling factors in terms of
RMSE values. This holds especially for large scaling factors, which
are difficult for most methods. The average RMSE values
obtained by our method on the whole test set are 0.48/1.04/
1.70 for scaling factors x4/x8/x16, respectively. Compared to the
second-best results, our results outperform them in terms of
average RMSE values with a gain of 0.15/0.14/0.25, respectively.
For a scale factor of x2, our method achieved similar average
RMSE as the second best method.

To further demonstrate the performance of our method, Figure 3
shows upsampled depth maps for different approaches on the “Art”
and “Reindeer” datasets and a scale factor of 8. Our results are
compared with bicubic interpolation as a baseline and 3 state-of-the-
art methods which are RDGR (Liu et al., 2016), MSG (Hui et al.,
2016), and DSR (Guo et al., 2018). It is observed that our proposed
architecture can alleviate the blurring artifacts better and recover
more detailed HR depth boundaries than the competing methods.
Moreover, our approach can overcome the texture copying issue
apparent with other methods, as marked by a red arrow. The
evaluations suggest that our CTGM plays an important role in
the success of depth map SR.

4.3.2 Results on the Noisy Middlebury Dataset
To further test the robustness of our proposed method, we carry
additional experiments on the noisy Middlebury dataset. Depth
maps are often corrupted by random noise during the acquisition

TABLE 1 | Quantitative comparisons on “art.” “books” and “laundry” from the noise-free middlebury dataset in terms of RMSE values for different scaling factors.

Method Art Books Laundry

x2 x4 x8 x16 x2 x4 x8 x16 x2 x4 x8 x16

Bicubic 2.64 3.88 5.60 8.58 1.02 1.56 2.24 3.36 1.30 2.11 3.10 4.47
TGV Ferstl et al. (2013) 3.19 4.06 5.08 7.61 1.52 2.21 2.47 3.54 1.84 2.20 3.92 6.75
RDGE Liu et al. (2016) 2.31 3.26 4.31 6.78 1.14 1.53 2.18 2.92 1.47 2.06 2.87 4.22
NLMR Park et al. (2014) 3.01 4.24 6.32 10.04 1.25 1.96 2.92 4.34 1.88 2.64 3.78 6.13
JID Kiechle et al. (2013) 1.18 1.92 2.76 5.74 0.45 0.71 1.01 1.93 0.68 1.10 1.83 3.62
PSR Huang et al. (2019) 0.66 1.59 2.57 4.83 0.54 0.83 1.19 1.70 0.52 0.92 1.52 2.97
MSG Hui et al. (2016) 0.67 1.49 2.79 5.95 0.37 0.66 1.09 1.87 0.67 1.02 1.35 2.03
MFR Zuo et al. (2019b) 0.71 1.54 2.71 4.35 0.42 0.63 1.05 1.78 0.61 1.11 1.75 3.01
PMBA Ye et al. (2020) 0.61 1.19 2.47 4.37 0.41 0.53 1.10 1.51 0.38 0.80 1.54 2.72
RDN Zuo et al. (2019a) 0.56 1.47 2.60 4.16 0.36 0.62 1.00 1.68 0.48 0.96 1.63 2.86
DSR Guo et al. (2018) 0.53 1.21 2.23 3.95 0.42 0.60 0.89 1.51 0.44 0.75 1.21 1.89
RYN Li et al. (2020) 0.26 0.98 2.04 3.37 0.18 0.36 0.73 1.37 0.22 0.64 1.21 2.01
CUN Cui et al. (2021) 0.27 1.05 2.27 3.67 0.16 0.35 0.73 1.45 0.19 0.59 1.15 2.25
GDC Kim et al. (2021) 0.33 1.09 2.04 3.58 0.19 0.38 0.68 1.41 0.24 0.64 1.13 2.13
Ours 0.31 0.73 1.89 2.76 0.21 0.35 0.66 1.22 0.18 0.43 0.87 1.62

We report the RMSE values for different scale factors, where the best RMSE for each evaluation is in boldface, whereas the second best one is underlined.

TABLE 2 | Quantitative comparisons on “dolls,” “moebius” and “reindeer” from the noise-free middlebury dataset in terms of RMSE values for different scaling factors.

Method Dolls Moebius Reindeer

x2 x4 x8 x16 x2 x4 x8 x16 x2 x4 x8 x16

Bicubic 0.78 1.21 1.78 2.57 0.93 1.40 2.05 2.95 1.52 2.51 3.92 5.72
TGV Ferstl et al. (2013) 1.17 1.42 2.05 4.44 1.47 2.03 2.58 3.50 2.41 2.67 4.29 8.80
RDGE Liu et al. (2016) 1.14 1.49 1.94 2.45 0.97 1.44 2.21 2.79 1.82 2.58 3.24 4.90
NLMR Park et al. (2014) 1.16 1.64 2.39 3.71 1.12 1.76 2.62 4.07 2.25 3.20 4.63 6.94
JID Kiechle et al. (2013) 0.70 0.92 1.26 1.74 0.64 0.89 1.27 2.13 0.90 1.41 2.12 4.64
PSR Huang et al. (2019) 0.58 0.91 1.31 1.88 0.52 0.86 1.21 1.87 0.59 1.11 1.80 3.11
MSG Hui et al. (2016) 0.46 0.72 0.99 1.59 0.36 0.68 1.14 2.07 0.94 1.33 1.72 2.99
MFR Zuo et al. (2019b) 0.60 0.89 1.22 1.74 0.42 0.72 1.10 1.73 0.65 1.23 2.06 3.74
PMBA Ye et al. (2020) 0.36 0.66 1.08 1.75 0.39 0.55 1.13 1.62 0.40 0.92 1.76 2.86
RDN Zuo et al. (2019a) 0.56 0.88 1.21 1.71 0.38 0.69 1.06 1.65 0.51 1.17 1.60 3.58
DSR Guo et al. (2018) 0.49 0.81 1.10 1.60 0.43 0.67 0.96 1.57 0.51 0.96 1.57 2.54
RYN Li et al. (2020) 0.27 0.59 0.97 1.37 0.24 0.50 0.81 1.37 0.24 0.74 1.41 2.22
CUN Cui et al. (2021) 0.22 0.61 0.97 1.43 0.20 0.48 0.77 1.31 0.24 0.82 1.51 2.38
GDC Kim et al. (2021) 0.28 0.63 0.97 1.44 0.23 0.49 0.79 1.37 0.28 0.84 1.51 2.43
Ours 0.25 0.50 0.90 1.49 0.27 0.46 0.76 1.31 0.21 0.43 1.19 1.84

We report the RMSE values for different scale factors, where the best RMSE for each evaluation is in boldface, whereas the second best one is underlined.
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process. Thus we added random Gaussian noise with mean 0 and a
SD of 5 to our LR training data, similarly to Guo et al. (2018); Zuo
et al. (2019a,b).We retrained all ourmodels and evaluated them on a
test set corrupted with the same Gaussian noise. We report the
RMSE values for the noisy case in Table 3.

It is observed that noise added to the LR depth maps significantly
affects the reconstructed HR depth maps across all methods.
However, our proposed architecture still manages to outperform
competing methods and generate clean and sharp reconstructions.

To further test our method’s robustness to noise, we added
Gaussian noise with a mean 0 and SD of 5 to the guidance HR
color images of our training and test data. This simulates a realistic
scenario in which data acquired by both the depth and intensity
sensors is corrupted with noise. We retrained our models and report
the obtained average RMSE values in Table 4.

Table 4 demonstrate our method’s insensitivity to noise
added to the color image. We observe that models evaluated
with noise in both LR depth and HR guidance image achieve

very similar results to models evaluated with LR depth noise
alone, thus demonstrating the effectiveness of our
proposed CTGM.

4.3.3 Results on NYU Depth v2 Dataset
In this subsection, to demonstrate the generalization ability of our
proposed architecture, we carry out experiments on the
challenging NYU Depth v2 public benchmark dataset
(Silberman et al., 2012). The NYU Depth v2 dataset comprises

FIGURE 3 | A visual quality comparison for depth map SR at a scale factor of 8 on the noise-free “art” and “Reindeer” datasets. (A) HR color and depth images, (B)
extracted ground truth patches, and upsampled patches by (C) Bicubic, (D) RDGE (Liu et al., 2016), (E)MSG (Hui et al., 2016), (F) DSR (Guo et al., 2018) (G) RDN (Zuo
et al., 2019a) (H) PMBA (Ye et al., 2020) (I) our proposed method (best viewed on the enlarged electronic version).

TABLE 3 | Quantitative comparisons on the noisy middlebury dataset in terms of RMSE values for scaling factors 4 and 8.

Method Art Books Laundry Dolls Moebius Reindeer

x8 x16 x8 x16 x8 x16 x8 x16 x8 x16 x8 x16

Bicubic 6.74 9.04 4.68 5.30 5.35 6.53 4.51 4.90 4.54 5.02 5.71 7.12
TGV Ferstl et al. (2013) 7.26 12.05 2.88 4.73 4.45 8.06 2.82 5.14 3.01 6.11 4.65 9.03
NLMR Park et al. (2014) 8.01 11.01 3.29 4.91 4.51 6.35 3.33 4.45 3.27 4.61 5.33 7.56
MSG Hui et al. (2016) 4.24 7.42 2.48 4.19 3.31 4.88 2.53 3.41 2.47 3.76 3.36 4.95
MFR Zuo et al. (2019b) 3.97 6.14 2.13 3.17 2.82 4.57 2.25 3.30 2.13 3.33 3.01 4.86
RDN Zuo et al. (2019a) 4.09 6.62 2.11 3.36 2.88 5.11 2.33 3.59 2.18 3.69 3.09 4.93
DSR Guo et al. (2018) 6.96 5.66 7.54 4.28 3.39 5.25
RYN Li et al. (2020) 3.47 1.88 2.47 1.97 1.87 2.68
GDC Kim et al. (2021) 3.31 4.77 1.69 2.46 2.20 3.36 1.89 2.59 1.72 2.68 2.57 3.44
Ours 3.26 4.72 1.61 2.96 1.63 3.47 1.64 2.16 1.63 2.24 1.79 3.59

we report the RMSE values for different scale factors, where the best RMSE for each evaluation is in boldface, whereas the second best one is underlined.

TABLE 4 | Average RMSE Values of Our Proposed architecture for Different
Scaling Factors on Various Datasets.

Middlebury dataset version x2 x4 x8 x16

Noise-Free 0.23 0.48 1.04 1.70
Depth Noise 1.05 1.37 1.92 3.19
Depth and Color Noise 1.17 1.69 2.08 3.41
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1449 high-quality RGB-D image pairs of natural indoors scenes,
taken with a Microsoft Kinect camera. In this dataset, there are
unavoidable local structural misalignments between depth maps
and color images, which may affect the performance of guided SR
methods. We note that no RDB-D pair from the NYU Depth v2
dataset was included in the training data of our models.

In Table 5 we report the RMSE value averaged across all RGB-
D pairs in the NYU Depth v2 dataset for a scaling factor of x4,
where the best achieved RMSE is boldface. We compare our
results with Bicubic interpolation as a baseline and competing
guided SR methods; ATGV-Net (Riegler et al., 2016b), MSG (Hui
et al., 2016), DSR (Guo et al., 2018), RDN (Zuo et al., 2019a), RYN
(Li et al., 2020) and PMBA (Ye et al., 2020). Our proposed
architecture achieves the lowest average RMSE, improving over
the second-best method by 0.11, demonstrating our proposed
method’s generalization ability and robustness.

4.3.4 Inference Time
To show the real-world applicability of our proposed method, we
compare the inference time of our proposed architecture to
competing approaches. Inference times were measured using the

same setup described in 4.2 running on a 1320 × 1080 pixels image.
We report the average inference times in seconds in Table 6.

From Table 6 we conclude that deep learning based methods,
such as our proposed architecture as well as Hui et al. (2016); Li
et al. (2020); Guo et al. (2018), achieve significantly faster
inference times than traditional methods. Moreover, our
proposed method performs similarly to Hui et al. (2016); Guo
et al. (2018) and faster then Li et al. (2020) while achieving lower
RMSE values. In contrast, the speed of Yang et al. (2014); Liu et al.
(2016); Ferstl et al. (2013), which require multiple optimization
iterations to achieve good reconstructions, is slower, limiting their
practical applications.We also note that methods such as Liu et al.
(2016) and Guo et al. (2018) which upsample the LR depth as an
initial preprocess step exhibit very similar inference times across
different scaling factors.

4.4 Ablation Study
We carry out an ablation study to demonstrate the effectiveness
of each component in the proposed architecture. We conduct
the following experiments: (1) Our architecture without
intensity guidance and the CTGM denoted as “Depth-Only.”
(2) Our architecture with fewer RDBs in each RDG, i.e., G = 4,
denoted as “proposed (S).” (3) Our architecture without shifted
windows in the transformer block denoted as “proposed w/o
ws.” (4) Our architecture with absolute position embedding,
instead of relative position embedding in the CTGM module
denoted as “proposed - ape”. In these experiments, we use the
same network parameters with the settings as mentioned earlier.
We evaluate the performance using average RMSE on our
evaluation dataset at scaling factors 4, 8 and 16. As shown in
Table 7, we observe that: (1) As expected, our guided
architecture with CTGM performs better than a non-guided
version that operates on depth data alone. (2) Our architecture
with fewer RDBs still achieves competitive results. However, it is
inferior to our full architecture. This implies that the network’s
depth also plays a significant role in the success of SR
architectures. Our proposed architecture with long and short
skip connections and close guidance from the CTGM module
enables the effective training of such deep networks. (3) our
cascaded transformer with the shifted window partitioning
outperforms the counterpart built on a single-window
partitioning. The results indicate the effectiveness of using
shifted windows to build connections among windows in the
preceding layers. (4) Relative position bias improves over
absolute position bias, indicating the effectiveness of the
relative position bias. Although recent image classification
models Dosovitskiy et al. (2020) opted to abandon
translation invariance, using an inductive bias that

TABLE 5 | Quantitative comparisons on the NYU depth v2 dataset in terms of
average RMSE values for a scaling factor of 4.

Method Average RMSE on
NYU depth v2

dataset

Bicubic 2.36
ATGV-Net Riegler et al. (2016b) 1.28
MSG Hui et al. (2016) 1.31
RDN Zuo et al. (2019a) 1.21
DSR Guo et al. (2018) 1.34
RYN Li et al. (2020) 1.06
PMBA Ye et al. (2020) 1.06
Ours 0.95

we report the RMSE values for different scale factors, where the best RMSE for each
evaluation is in boldface, whereas the second best one is underlined.

TABLE 6 | Average inference time (seconds) for different scaling factors.

Method x2 x4 x8 x16

Bicubic 0.01 0.01 0.01 0.01
TGV Ferstl et al. (2013) 45.73 49.78 46.34 46.20
AR Yang et al. (2014) 158.01 157.73 157.95 158.77
RDGE Liu et al. (2016) 68.07 67.69 68.45 68.17
MSG Hui et al. (2016) 0.26 0.30 0.38 0.42
DSR Guo et al. (2018) 0.22 0.23 0.23 0.23
RYN Li et al. (2020) 0.46 0.63 0.72 0.88
Ours 0.15 0.38 0.48 0.53

TABLE 7 | Quantitative comparisons of our ablation experiments. Reported results are average RMSE on the noise-free middlebury dataset for scaling factors 4, 8 and 16.

Depth-only Proposed (S) Proposed w/o ws Proposed - ape Proposed

x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16

0.55 1.30 2.67 0.57 1.57 2.90 0.51 1.26 2.29 0.51 1.38 2.51 0.48 1.04 1.70

we report the RMSE values for different scale factors, where the best RMSE for each evaluation is in boldface, whereas the second best one is underlined.
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encourages certain translation invariance is still preferable for
dense prediction tasks such as SR. Moreover, we observe from
Table 7 that the advantages of our complete proposed
architecture are more prominent in larger scaling factors,
e.g., 8 and 16.

5 CONCLUSION

We have introduced a new method to address the problem of depth
map upsampling by using a cascaded transformermodule for guided
depth SR. An LR depth map is progressively upsampled using
residual dilated blocks and a novel guidance module, based on
the cascaded transformer that operates on shifted window
partitioning of the image, scales the intermediate feature maps of
the network. Our proposed architecture achieves state-of-the-art
performance for super-resolving depth maps using such a design.

In future work, we intend to explore even more realistic noise
and artifacts in our test sets (e.g., missing depth values,
misregistration between RGB image and depth map, etc.).
Moreover, we will examine the proposed architecture on

upsampling Dynamic Elevation Model (DEM) data using LR
DEM and HR raster data, which acts as guidance.
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