
High Throughput JPEG 2000 for Video
Content Production and Delivery Over
IP Networks
David Taubman1,2*, Aous Naman1, Michael Smith3, Pierre-Anthony Lemieux4,
Hassaan Saadat1,2, Osamu Watanabe5 and Reji Mathew1

1Interactive Visual Media Processing Laboratory (IVMP), University of New South Wales (UNSW), School of Electrical Engineering
and Telecommunications, Sydney, NSW, Australia, 2Kakadu Software Pty Ltd., Sydney, NSW, Australia, 3Wavelet Consulting
LLC, Burbank, CA, United States, 4Sandflow Consulting LLC, SanMateo, CA, United States, 5Takushoku University, Department
of Electronics and Computer Systems, Tokyo, Japan

ITU-T Rec T.814 | IS 15444-15, known as High Throughput JPEG 2000, or simply HTJ2K,
is Part-15 in the JPEG 2000 series of standards, published in 2019 by the ITU and ISO/IEC.
JPEG 2000 Part-1 has long been used as a key component in the production, archival and
distribution of video content, as the distribution format for Digital Cinema, and an
Interoperable Master Format from which streaming video services are commonly
derived. JPEG 2000 has one of the richest feature sets of any coding standard,
including scalability, region-of-interest accessibility and non-iterative optimal rate
control. HTJ2K addresses a long-standing limitation of the original JPEG 2000 family
of standards: relatively low throughput on CPU and GPU platforms. HTJ2K introduces an
alternative block coding algorithm that allows extremely high processing throughputs,
while preserving all other aspects of the JPEG 2000 framework and offering truly reversible
transcoding with the original block coded representation. This paper demonstrates the
benefits that HTJ2K brings to video content production and delivery, including cloud-
based processing workflows and low latency video content streaming over IP networks,
considering CPU, GPU and FPGA-based platforms. For non-iterative optimal rate control,
HTJ2K encoders with the highest throughputs and lowest hardware encoding footprints
need a strategy for constraining the number of so-called HT-Sets that are generated ahead
of the classic Post-Compression Rate-Distortion optimization (PCRD-opt) process. This
paper describes such a strategy, known as CPLEX, that involves a second (virtual) rate-
control process. The novel combination of this virtual (CPLEX) and actual (PCRD-opt)
processes has many benefits, especially for hardware encoders, where memory size and
memory bandwidth are key indicators of complexity.

Keywords: HTJ2K, video coding, video streaming, mezzanine codecs, scalable coding

1 INTRODUCTION

JPEG 2000 provides a rich set of features, including high coding efficiency, scalability, region-of-
interest accessibility, parallelism, the ability to achieve a target compressed size without iterative
encoding and error resilience/resynchronisation capabilities. Quality scalability refers to the
ability to extract reduced quality representations directly from the code-stream, while ensuring
that the extracted representation has the same high coding efficiency as if the content were

Edited by:
Matteo Naccari,

Audinate, United Kingdom

Reviewed by:
Norishige Fukushima,

Nagoya Institute of Technology, Japan
Evgeny Belyaev,

ITMO University, Russia

*Correspondence:
David Taubman

d.taubman@unsw.edu.au

Specialty section:
This article was submitted to

Image Processing,
a section of the journal

Frontiers in Signal Processing

Received: 28 February 2022
Accepted: 29 March 2022
Published: 27 April 2022

Citation:
Taubman D, Naman A, Smith M,

Lemieux P-A Saadat H, Watanabe O
andMathew R (2022) High Throughput

JPEG 2000 for Video Content
Production and Delivery Over

IP Networks.
Front. Sig. Proc. 2:885644.

doi: 10.3389/frsip.2022.885644

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 8856441

ORIGINAL RESEARCH
published: 27 April 2022

doi: 10.3389/frsip.2022.885644

http://crossmark.crossref.org/dialog/?doi=10.3389/frsip.2022.885644&domain=pdf&date_stamp=2022-04-27
https://www.frontiersin.org/articles/10.3389/frsip.2022.885644/full
https://www.frontiersin.org/articles/10.3389/frsip.2022.885644/full
https://www.frontiersin.org/articles/10.3389/frsip.2022.885644/full
http://creativecommons.org/licenses/by/4.0/
mailto:d.taubman@unsw.edu.au
https://doi.org/10.3389/frsip.2022.885644
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://doi.org/10.3389/frsip.2022.885644

encoded directly at the corresponding reduced bit-rate.
Resolution scalability refers to the ability to extract reduced
resolution representations directly from the code-stream.
Accessibility refers to the ability to extract a limited subset
of the code-stream that is sufficient to reconstruct a given
spatial region of interest over a defined set of components,
such that the extracted bytes form an efficient representation
of the region of interest, so long as the region is
sufficiently large.

Most of these features derive from use of the EBCOT
(Embedded Block Coding with Optimized Truncation)
algorithm (Taubman, 2000), while use of the hierarchical
Discrete Wavelet Transform (DWT) also plays an important
role. Additionally, JPEG 2000 supports a huge range of image
dimensions, data precisions and number of components
(image planes), while extended technologies contained in
Part-2 of the standard support non-linear tone curves for
high dynamic range and even floating-point compression,
along with transforms for multispectral, hyperspectral and
volumetric compression. Both lossless and lossy
compression are supported in the same framework, enabling
quality scalable lossy-to-lossless coding. Part-9 of the standard
(a.k.a. JPIP) adds tools for incremental dissemination of JPEG
2000 content that enable highly efficient and responsive
interactive browsing of potentially enormous images,
volumes and even video over low bandwidth reliable or
unreliable networks, taking full advantage of all scalability
and accessibility features of the coded content.

With this rich set of features and capabilities, JPEG 2000 has
found application in many diverse fields, including geospatial
imagery dissemination, defense and surveillance applications,
medical imaging, and document and video archival. JPEG
2000 is also the standard for Digital Cinema and a primary
mezzanine format used in the production, archival and
dissemination of professional motion picture content.

In some of these applications, involving large frame
dimensions or high frame rates, the relatively high
computational cost of the embedded block coding algorithm
in JPEG 2000 has become problematic, however. In particular,
the JPEG 2000 block coder is based on bit-plane coding, at least
formally executing three coding passes for each successive
magnitude bit-plane within each block of subband samples. In
some cases, the adverse impact of incremental coding on
throughput can be offset by the parallelism offered by JPEG
2000. In particular, a typical image or video frame has thousands
of code-blocks, any number of which can be encoded or decoded
in concurrently, but this also increases the working memory
footprint of an implementation.

To address this issue, Part-15 (ISO/IEC 15444-15, 2019) of
the JPEG 2000 family of standards has been developed to
augment the entire family with an alternate “High
Throughput” (HT) block coding algorithm. This new part,
known as High Throughput JPEG 2000 (HTJ2K), defines the
HT algorithm and specifies how it can be used as a drop-in
replacement for the original block coding algorithm (ISO/IEC
15444-1, 2000), identified in this document as the J2K1 block
coder. In comparison to J2K1, the HT algorithm offers order-

of-magnitude increases in throughput on common CPU and
GPU platforms, while also enabling very high throughput
hardware systems, including all-on-chip solutions (no
external memory) on common FPGA platforms. These
innovations allow high bandwidth media to be practically
encoded and decoded with much less working memory and
much lower latencies.

The HTJ2K standard has been developed with a strong focus
on compatibility with the existing JPEG 2000 ecosystem. In
particular, HT and J2K1 block bit-streams are reversibly
interchangeable, meaning that content encoded using the
original J2K1 algorithm can be transcoded to use the much
faster HT representation without losing any information
whatsoever, and HT block bit-streams can be transcoded back
to the J2K1 representation, again without any mathematical loss.
This feature allows existing JPEG 2000 based media repositories1

to be migrated to the HTJ2K format where desirable, without any
risk of information loss, but there are many potential other
benefits that arise from the reversible transcodability of the
HT and J2K1 representations, as discussed briefly in Section 5.

This paper focuses specifically on the benefits HTJ2K brings to
video content production and delivery, and how these benefits
can be realized. Section 2 provides a brief overview of the HT
algorithm and how it is integrated into the JPEG 2000 framework
to form a media compression solution with most of the rich set of
features described above. Section 3 is concerned with encoder
rate control, showing how non-iterative precise rate control can
be achieved in HTJ2K with high throughput and deterministic
complexity, the latter being especially important for hardware
deployments. Section 4 provides evidence for the high
throughput and coding efficiency of HTJ2K, specifically
focusing on professional video content and streaming
applications, considering existing CPU and GPU solutions, as
well as FPGA developments that are approaching maturity.
Section 5 then discusses applications of HTJ2K, focusing on
those relevant to professional video production and delivery,
including the use of HTJ2K as a mezzanine format, the
benefits of no-proxy remote editing strategies based on
HTJ2K, and low latency video streaming over IP networks.

2 OVERVIEW OF THE HT ALGORITHM AND
COMPRESSION TECHNOLOGY

2.1 Relationship between HT and J2K1
Block Coding Passes
Both HT and J2K1 block coders encode quantized subband
samples from a block within a given DWT subband. The
original J2K1 algorithm processes magnitude bit-planes of the

1One example of a large media repository is Library of Congress–National Audio
Visual Conversation Center (NAVCC) which holds 10.825 Petabytes of
JPEG2000 Part-1 MXF files in its archives, as of February 2022; this
information is based on private communication with James Synder, Senior
Systems Administrator Library of Congress - National Audio Visual
Conversation Center (NAVCC).

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 8856442

Taubman et al. HTJ2K: Video Production and Delivery

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

quantized samples one by one, starting from the coarsest bit-
plane p � Pstart that contains any non-zero bits, and working
towards the finest bit-plane p � 0, performing three coding
passes for each bit-plane and generating one or more so-called
codeword segments to represent the entire sequence of coding
passes. The representation can be truncated at the end of any
coding pass, which provides a finely embedded representation of
the underlying sample values with near optimal rate-distortion
characteristics at almost all truncation points. This process is both
the origin of JPEG 2000s quality scalability and non-iterative
optimal rate control features, as well as the cause of significant
complexity.

The HT algorithm notionally processes exactly the same set
of three coding passes per bit-plane, which are designated
“Cleanup”, “SigProp” and “MagRef.” As in J2K1, the SigProp
and MagRef passes encode a next finer magnitude bit for a
data-dependent set of samples2. However, where the J2K1
Cleanup pass encodes a next finer magnitude bit only for
those samples not refined by the preceding SigProp and
MagRef passes, the HT Cleanup pass encodes all sample
values to the precision associated with the relevant bit-plane
p. That is, the HT Cleanup pass for each bit-plane redundantly
re-encodes the information found in all preceding coding
passes. This is illustrated in Figure 1.

During code-stream formation, at most one Cleanup pass
is included for a code-block, optionally followed by one
SigProp and/or one MagRef coding pass, so that the
redundancy exists only within the encoder itself and the
decoder only needs to decode at most three coding passes
(one of each type). This works because the JPEG 2000 packet

headers that describe code-block contributions, explicitly
encode the value of Pstart for each code-block that makes a
contribution. HTJ2K co-opts this mechanism for encoding
the index of the bit-plane p that is associated with the Cleanup
pass actually included for the code-block— as if bit-plane p
were the one at which the J2K1 algorithm would have started
with its first Cleanup pass.

While an HT encoder notionally produces coding passes,
from which optimal truncation points are determined using
the Post-Compression Rate-Distortion Optimization (PCRD-
opt) algorithm (Taubman, 2000), efficient encoding strategies
aim to generate only a limited collection of coding passes,
which are sufficient to provide almost all interesting
truncation points for a given target bit-rate. For hardware
encoders, in particular, it is critical that the number of coding
passes generated for each code-block is deterministically
bounded. As we shall see, it turns out that six coding
passes, are generally adequate, organized into two
consecutive “HT Sets”, each consisting of a Cleanup pass, a
SigProp pass and a MagRef pass, as shown in Figure 1.

The non-incremental nature of HT Cleanup passes is one
important factor that contributes to the high throughput of
HTJ2K, both for encoders and decoders, since it
deterministically bounds the number of coding passes that
must be performed, and indeed all of the passes can be
performed concurrently. However, it does mean that the
quality scalability feature of JPEG 2000 is largely lost, since
HT block bit-streams have at most three coding passes,
presenting only a very limited set of embedded truncation
options for decoders and content streaming systems.

In fact, quality scalability is the only JPEG 2000 feature that is
sacrificed by HTJ2K, but it is readily retrievable by reversibly
transcoding some or all code-blocks back to the highly embedded
J2K1 representation. HTJ2K code-streams can contain an
arbitrary mixture of code-blocks encoded with J2K1 and HT
technologies and HTJ2K code-streams are also fully compatible
with all aspects of the JPIP standard (Part-9) mentioned earlier,
for efficient remote browsing of imagery and even video assets.
HTJ2K code-streams are also capable of embedding or preserving
all of the quality layer boundaries and associated coding pass
truncation point information associated with regular JPEG
2000 code-streams, regardless of whether the HT or J2K1
algorithm is used for encoding.

For video applications in the media/entertainment industry,
however, quality scalability has not been used in practice. In

FIGURE 1 | Bit-plane contributions of the coding passes produced by
the J2K1 and HT algorithms.

FIGURE 2 |HT codeword segments and their constituent byte-streams.

2The fact that J2K1 and HT block bit-streams can be reversibly transcoded derives
from the fact that the data-dependent decisions regarding which samples should be
refined within the SigProp and MagRef passes are exactly the same for both
algorithms. If HT used a different set of coding passes, or only one pass per bit-
plane, this reversible transcoding property would be lost, along with some rate-
distortion optimisation benefits associated with sub-bit-plane coding passes.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 8856443

Taubman et al. HTJ2K: Video Production and Delivery

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

particular, the Digital Cinema, Broadcast and IMF profiles of
JPEG 2000 disallow the use of multiple quality layers.

2.2 Introduction to the HT Block Coding
Algorithm
For the sake of conciseness, we provide only a very brief overview
here of the actual HT block coding algorithm. As mentioned
earlier, JPEG 2000 block coder output is comprised of one or
more so-called codeword segments. For the HT block coder, each
HT Set involves one or two codeword segments: the Cleanup pass
produces its own HT Cleanup segment, while the SigProp and
MagRef refinement passes, if present, contribute to an HT
Refinement segment. Figure 2 reveals the relationship between
HT codeword segments and their constituent byte-streams.

The Cleanup pass produces three separate byte-streams, which
are packed into the Cleanup codeword segment. In addition to
the segment length, Lcup, which is identified by JPEG 2000 packet
headers, 12 bits are reserved at the end of the segment to store an
interface locator word (ILW), which allows the boundary between
the first and second byte-streams to be discovered by the decoder.
The boundary between the last two byte-streams need not be
explicitly communicated since the streams grow in opposite
directions. The HT refinement segment employs the same
forward-backward strategy to avoid the need to explicitly
signal the boundary between its two constituent byte-streams.
These features facilitate the concurrent encoding and decoding of
any or all of the byte-streams, which is especially important for
hardware deployments, but beneficial also in optimized CPU and
GPU implementations.

The HT refinement passes are similar to those in J2K1, except
that all refinement information is emitted as raw uncoded bits,

and the information is reordered to allow vectorized and table-
based accelerated encoding and decoding strategies that are not
possible with J2K1.3

The HT Cleanup algorithm, however, is quite different to that
in J2K1. Figure 3 reveals the core elements of the HT Cleanup
pass encoder. Code-block samples indexed by n, having
magnitude μp[n] and sign χ[n] with respect to bit-plane p, are
coded in 2 × 2 quads q, following a line-pair oriented scanning
pattern. The information in each sample is split into significance
σn (1 if μp[n] ≠ 0, else 0) and the residual magnitude and sign
information

v[n] � { 2(μp[n] − 1) + χ[n] σn � 1
0 σn � 0

The residual values v[n] of each quad q are further split into a
so-called EMB bit-plane ϵq and the remaining less significant bit-
planes. The EMB bit-plane is usually the most significant bit-
plane containing non-zero bits from the residuals v[n] in the
quad, but is formally determined by an exponent bound Uq. A
central element in the HT Cleanup algorithm is a variable-to-
variable context-dependent variable length coder, identified as

FIGURE 3 | Main elements of the HT Cleanup encoding algorithm.

3The J2K1 algorithm provides so-called “Bypass” options that allow the SigProp
and MagRef refinement passes also to emit raw uncoded bits, bypassing the
arithmetic coder. This has relatively limited impact on coding efficiency,
considering that the data-dependent selection of samples to process in these
passes leaves the binary refinement digits with substantially unskewed
probability distributions. However, the ordering conventions for these bits in
J2K1 limits the throughput enhancement that can be achieved with its Bypass
option.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 8856444

Taubman et al. HTJ2K: Video Production and Delivery

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

CxtVLC, which encodes the following information jointly for a
quad:

1) the 4-bit significance pattern ρq that consists of each sample’s
significance symbol σ;

2) some or all of the quad’s 4-bit EMB pattern ϵq; and
3) information about whether the unsigned residual uq � Uq −

κq that indicates how the exponent bound Uq should be
recovered from a predictor κq is zero or not.

This information involves most of the quantities describing a
quad that have significantly skewed statistics, yet it is sufficiently
compact to be encoded jointly using variable length codewords
that are at most 7 bits long. Constraining codewords to lengths of
at most seven is quite critical to high throughput decoding
implementations, since it allows CxtVLC decoding to proceed
on a quad-by-quad basis using lookup tables of small size.
However, since 7 bits are not sufficient to efficiently capture
all combinations of the above quantities, a variable-to-variable
length code is employed, which encodes only some of the EMB
pattern bits in a data-dependent manner. Those EMB bits that are
not encoded are packed along with the less significant bits of the
v[n] residual values into the encoder’s MagSgn bit-streams. The
decoded codeword is sufficient for a decoder to deduce the
number of MagSgn bits it needs to unpack for each sample, if
any, along with how it should decode the exponent bound
residual uq, if it turns out to be non-zero. The exponent
bound predictors κq themselves are formed from previously
decoded sample magnitudes on the line immediately above
quad q, if any.

Finally, we note that the HT Cleanup encoder provides a
method to efficiently encode quads that are entirely insignificant,
using an adaptive run-length coding state machine (MEL coder),
that is derived from the MELCODE in the JPEG-LS standard
(ISO/IEC 14495-1, 1999). The MEL coding algorithm shares
many features and a common heritage with multiplier-free
arithmetic coding algorithms, including the MQ arithmetic
coder used in J2K1, which may be traced back to the “skew
coder” (Langdon, 1991). Importantly, the MEL code has a very
small state machine that can be unwrapped to encode or decode
multiple symbols concurrently, in optimized CPU or GPU
deployments, while the algorithm is also very simple to
implement in hardware.

In this way, the HT Cleanup encoder produces three bit-
streams that are packed into byte-streams with a bit-stuffing
procedure that allows error resilient decoding and
resynchronization. Both software and hardware encoders
benefit from the ability to produce these bit-streams in any
order, allowing them to issue CxtVLC and zero or more
variable-length coded bits from non-zero residuals uq to
the VLC bit-stream, either concurrently with or well ahead
of emitting uncoded bits to the MagSgn bits-stream, with the
option to defer MEL coding to whatever point is most
convenient, or generate the MEL bit-stream concurrently
with the others. Both software and hardware decoders also
benefit from the ability to consume these bit-streams in their
preferred order. For example, a beneficial strategy in CPU and

GPU decoders is to pre-decode MEL symbols in batches, using
them to decode VLC bits using table lookup methods, and then
later unpack the MagSgn bits to form complete decoded
products. The most efficient GPU decoding strategies
typically defer the MagSgn unpacking strategy until a large
batch of code-blocks have already been subjected to MEL and
VLC decoding, using a different kernel that exploits GPU
threads in a different way. Meanwhile, hardware decoders
will generally perform all decoding steps in parallel to
minimize their dependence on precious on-chip memory
resources.

In addition to a deterministically limited number of coding
passes and concurrency at the code-block, coding pass and sub-
bit-stream levels, what makes the HT algorithm fast is the careful
design of the individual coding tools mentioned above so that
almost everything can be vectorized, and those elements that
cannot be vectorized can be greatly accelerated using modest
lookup tables.

2.3 HTJ2K Compression and
Decompression Systems
Figure 4 illustrates the elements of an HTJ2K encoding system,
along with the corresponding decoder. The only departures from
a traditional JPEG 2000 codec are the HT block coding algorithm
itself and the optional “complexity control” module. The PCRD-
opt rate control procedure is used to discard generated coding
passes so as to achieve a rate or distortion target, which may be
global (whole code-stream) or local (small window of code-
blocks), as is common in most JPEG 2000 encoders. The
purpose of the complexity control module is to determine
which coding passes should actually be generated by the HT
encoder, noting that as little as one HT Cleanup pass may be
sufficient, but a larger collection of coding passes presents more
options to the PCRD-opt stage, allowing it to form code-stream
content that meets its rate or distortion targets with high overall
coding efficiency.

With the original J2K1 algorithm, complexity control is not
always necessary, since the sequential processing of coding
passes for any given code-block can be terminated at any time,
although heuristics have been developed to make good
decisions regarding early termination of the encoding
process, e.g. (Taubman, 2002). With the HT algorithm,
complexity control becomes more important, both for
computational reasons and because each Cleanup pass
redundantly encodes information contained in coarser
coding passes, so that the memory consumed by coded
passes ahead of the PCRD-opt stage can become
problematic. Again, this is especially important for hardware
encoders. The term FBCOT has been coined (Taubman et al.,
2017) for the combination of high throughput (HT) non-
incremental encoding with complexity control ahead of
PCRD-opt to stress its connection with the original EBCOT
algorithm on which JPEG 2000 is based, along with the
importance of complexity control in the non-incremental
setting required for fast execution. Complexity control is the
primary subject of the next section.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 8856445

Taubman et al. HTJ2K: Video Production and Delivery

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

3 HTJ2K ENCODING WITH PCRD-OPT
RATE CONTROL AND DETERMINISTIC
COMPLEXITY
In this section, we introduce a family of related strategies for the
complexity control module in Figure 4. We will consistently refer
to these as “CPLEX” complexity control, since they first appeared
in Kakadu’s JPEG 2000 toolkit4 under that name, where they are
controlled by its “Cplex” coding parameter attribute. The CPLEX
algorithm’s purpose is to efficiently compute a good choice for the
coarsest bit-plane p(1)

b that is used to generate the first HT Set for
each code-block b. Starting from this bit-plane, the block coder
produces at most Z consecutive coding passes, where Z is a
constant. As we shall see, it is generally sufficient to limit Z to six
coding passes, so that the block encoder generates two HT Sets,
where the second HT Set has bit-plane p(2)

b � p(1)
b − 1. The

refinement passes in each HT Set refine selected samples to
the next finer bit-plane, so these two HT Sets allow samples of
the code-block to be encoded to bit-plane p(1)

b , p(1)
b − 1 or p(1)

b − 2.
The CPLEX algorithm is driven by an overall length constraint

Lmax on the overall size of the code-stream that will be produced
by the encoder, which can be supplemented with individual
length constraints for smaller collections of code-blocks whose
codeword segments must be stored within memory resources of
limited size–very important for hardware deployments. The
PCRD-opt rate control stage works with the same length
constraint Lmax, for which it has Z + 1 possible trunation
options for each code-block b, including the option to discard
all encoded content. There is no risk that the PCRD-opt
algorithm will fail to constrain the generated code-stream size
to at most Lmax bytes, but there is a risk that in order to do this it is
forced to entirely discard some code-blocks whose first generated
Cleanup pass was very large, resulting in substantial distortion
and visual artefacts.

To avoid this risk, the CPLEX algorithm must choose the p(1)
b

values such that the total number of bytes produced by the first HT
Cleanup pass of every code-block will be less than Lmax with
extremely high confidence. The challenge is to do this while also
ensuring that the p(1)

b values are well balanced and not any larger
than necessary, so that the Z generated coding passes for each code-
block are sufficient for the PCRD-opt algorithm to make truncation
decisions that are identical to those that would bemade in the absence
of complexity constraints, or at least nearly so.

To do this, the CPLEX algorithm implements a “virtual rate
control loop” that is driven by conservative rate estimates.
Specifically, for each code-block or collection of code-blocks
belonging to a given subband s, a set of length estimates L(s)p
are formed for each potential bit-plane boundary p, such that L(s)p
is almost certainly less than the number of bytes that would be
produced by the HT Cleanup passes of those code-blocks,
operating at bit-plane p. These are collected into vectors L(s)
that represent all estimated lengths for a subband or a group of
code-blocks within a subband.

To combine the estimated length vectors from all subbands, it
is necessary to first introduce bias factors βs, that represent the
relative significance of distortions found at corresponding bit-
planes in different subbands. If the objective of the PCRD-opt
algorithm is simply to minimize squared error distortion (i.e., to
maximize PSNR), then the distortion contribution associated
with a single bit-error in bit-plane p of subband s is
proportional to 22p · Δ2

s · Gs, where Δs is the quantization step
size employed within subband s, and Gs is its synthesis energy
gain (squared Euclidean norm of its wavelet synthesis basis
functions)—see, e.g. (Taubman and Marcellin, 2002). This can
be rewritten as 4p+βs by assigning βs � log4(Δ2

s · Gs). More
generally, visual weighting factors can be included into the
distortion weighting factors and hence the bias factors βs.

It is well-known that the solution to the optimal rate control
problem involves quantizing the samples of each subband such that
each sample is expected to produce roughly the same contribution to
the overall distortion (Pearlman, 1991). Thus, we expect the solution
to the optimal rate control problem to involve truncating the subband
samples of subband s to bit-plane ps, such that ps + βs � pQ, where

FIGURE 4 | HTJ2K encoding system based on FBCOT (Fast Block Coding with Optimized Truncation).

4See http://www.kakadusoftware.com for more information on Kakadu and
downloadable tools, which are used for many of the experimental results
presented in this paper.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 8856446

Taubman et al. HTJ2K: Video Production and Delivery

http://www.kakadusoftware.com/
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

pQ is a global constant that controls the trade-off between overall
coded length and distortion. Since βs is not generally integer-valued,
in practice we replace this condition by

ps � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
QP − β̃s

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
,

where

QP � 4pQ and β̃s � ⌈4βs + 2.5⌉.
We can think of QP � 4pQ as an integer-valued global

“quality” parameter. The idea is to set p(1)
b � ps(b), where s(b)

is the subband to which code-block b belongs, after choosing QP
as small as possible such that the estimated lengths for the
corresponding bit-planes satisfy:

∑
b

L(s)
ps(b) ≤ Lmax

To make the QP decision efficiently, the estimated length
vectors L(s) are expanded into globally compatible vectors ~L

(s)
, by

4-fold replication and shifting by β̃s, so that element k within ~L
(s)

satisfies

~L
(s)
k � L(s)

k′ , where k′ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
k − β̃s
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
.

Then, the global length vector ~L � ∑
b

~L
(s)

is simply analysed
to find

QP � min {k | L̃k ≤ Lmax}

3.1 Local and Global CPLEX-Based
Encoding
While space does not permit us to provide details of the length
estimation process itself, the important thing to note is that the length
estimates L(s)p are derived from statistics of the quantized subband
samples in code-block set s. In practice, very simple statistics can
suffice. The method used in all experimental results reported in this
paper starts with counting the number of 2 × 2 quads that are
significant with respect to bit-plane p, during the quantization step
itself, after which these statistics are used to drive a model of an
encoder that is inherently less efficient than the actual HT block
encoder, by omitting some but not all of the entropy coding steps.
TheMEL and CxtVLC coding efficiency is modeled using zero-order
entropy of the quad significance statistics, while the number of
MagSgn and unsigned residual VLC bits are modeled largely by
accumulating quad significance counts. These operations are all
amenable to low complexity, high throughput implementation in
CPU, GPU and FPGA platforms.

The simplest way to perform CPLEX-based encoding is to
transform and quantize all subband samples in an entire image or
video frame, collecting the length estimate vectors L(s) along the way,
after which QP is found, from which ps is found, and hence each

code-block’s first bit-plane p(1)
b . In this strategy, the block encoding

operations are deferred to the end, incurring a full frame period of
latency and requiring sufficient workingmemory to store all subband
samples. While this approach is not recommended for high
throughput hardware, it is the preferred strategy for GPU-based
encoders, since GPU platforms benefit from the high parallelism
introduced by being able to encode all code-blocks of an image
together.

Where encoding latency or working memory are tightly
constrained, essentially the same approach can be employed
incrementally over small “flush-sets,” as shown in Figure 5.
Code-block dimensions are selected such that each subband
has the same number of stripes of horizontally adjacent code-
blocks, which means that the number of subband rows in each
stripe decreases exponentially with depth in the DWT hierarchy.
Each “flush-set” consists of one stripe of code-blocks from each
subband, and both the CPLEX “virtual rate control” and PCRD-
opt “actual rate control” operations are performed independently
within flush-sets. In this case, block encoding for a stripe can
begin as soon as its CPLEX decision (QP value) has been made,
which can happen once all subband samples within the flush-set
have been collected. Block encoding then proceeds in parallel
with the arrival of the next stripe in each subband, while final
PCRD-opt rate control and incremental code-stream flushing are
performed for the preceding flush-set.

The encoding latency for such an approach is roughly three flush-
set heights plus any additional latency associated with the pipelined
DWT transform. The main disadvantage of such low latency
encoding strategies is that relatively few vertical levels of wavelet
decomposition can be supported, and the PCRD-opt rate control
algorithm only has a limited window into the image, over which to
optimize the way in which the coded length constraint is achieved.

Although low latency encoding is naturally compatible with low
memory footprints, allowing the development of all-on-chip (no
external memory) hardware encoding solutions, it is a mistake to
assume that memory requirements are directly related to latency. In
particular, it is possible to increase thewindowoverwhich the PCRD-
opt algorithm forms its rate control decisions, without increasing the
window over which CPLEX estimates and block encoding are
performed. That is, the virtual CPLEX rate control process and
the actual PCRD-opt rate control process can be run at different time
scales, because the two processes are entirely decoupled. This is
illustrated in Figure 6. The benefit of this is that statistical
multiplexing efficiency can be increased significantly, with a
consequent increase in latency, but without a large increase in
working memory footprint, because the block encoder outputs
that are consumed by the PCRD-opt algorithm are in the
compressed domain.

3.2 Low Memory CPLEX-Based Encoding
With Length Forecast Vectors
We can think of the CPLEX-based HTJ2K encoding procedures
described above as “deterministic” in the sense that theCPLEX virtual
rate allocation process is deferred until all associated quantized
subband samples have become available. An alternate approach,
however, is to perform CPLEX rate allocation incrementally with

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 8856447

Taubman et al. HTJ2K: Video Production and Delivery

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

a full frame length constraint Lmax by including forecasts of the
complexity associated with as-yet unseen subband samples.

The idea is illustrated in Figure 7. One potentially very short
“active stripe” of subband samples is maintained for each subband b
in working memory, comprised of horizontally adjacent code-blocks
from that subband. Estimated length vectors (records) L(b)k are
formed from the quantized sample statistics in stripe k of
subband b ahead of block encoding for the stripe. These are
supplemented by forecast records Λ(b)

k that hold much less
reliable estimates of the HT Cleanup pass lengths at each bit-
plane p, for all stripes beyond the active stripe k. The CPLEX
algorithm then combines the L(b)k and Λ(b)

k to determine a local
QP value for stripe k, taking into account the global length constraint
Lmax, and the cumulative number of “virtually committed bytes”
derived from the reliable length records L(b)j of previous stripes j< k
and their corresponding local QP decisions.

Although the forecast length records Λ(b)
k are not reliable, there is

no risk that the PCRD-opt algorithm is forced to entirely discard
code-blocks whose first Cleanup pass is too large, resulting in large
distortions. This is because reliable length estimates for code-blocks
that are about to be encoded are always included in the local QP
decisions that drive the encoding process, and so the PCRD-opt
algorithm is certain to be able to retain the first HTCleanup pass that
was encoded for every code-block without violating the global length
constraint Lmax. Of course, the PCRD-opt process that is executed at
the end of frame is likely to havemany even better options available to
it, so that lower distortion solutions are almost certain to be found.

The simplest way to form length forecasts Λ(b)
k is to directly

extrapolate from the reliable length records L(b)j , j≤ k, produced up
to and including stripe k. We refer to this as spatial extrapolation.
Spatial extrapolation is often successful, but can be adversely
impacted by images with dramatic variations in scene complexity

FIGURE 5 | Low-latency CPLEX-based encoding over flush-sets.

FIGURE 6 | Decoupled virtual (CPLEX) and actual (PCRD-opt) rate control processes for memory efficient video encoding.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 8856448

Taubman et al. HTJ2K: Video Production and Delivery

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

between the top and the bottom of the image. For example, if the top
of an image is dominated by low complexity content (e.g., “sky” or
“clouds”), spatial forecasting tends to encode this content more finely
than would be optimal overall.

For video encoding, an alternative to spatial forecasting is
temporal forecasting, where forecast records for as-yet unseen
subband samples are derived from the reliable length records
formed in a preceding frame. Again, temporal forecasting has
its own weaknesses, in the event of sudden frame changes or
very large frame-to-frame motions. However, it is not hard to
develop hybrid forecasting strategies that combine spatial and
temporal forecasts, using reliable estimates from the current
frame to estimate the reliability of temporal forecasts and
adapt the way in which spatial and temporal forecasts are
combined. Since length records are very small in comparison
to the subband data that they represent, these strategies are all
compatible with low memory software and hardware
deployment. In fact, a spatio-temporal forecasting strategy
may be the preferred CPLEX-based encoding solution for
hardware platforms with external memory, since the
reliable length estimates allow memory bandwidth to be
deterministically constrained, while external memory allows
PCRD-opt decisions to be deferred until the end of
each frame.

To demonstrate the robustness of low-memory CPLEX-based
video encoding, we encode a short 4K video sequence with
dramatic spatial and temporal variations in scene complexity using
the Kakadu compression tool “kdu_compress” with three different
complexity control strategies, with results presented in Figure 8.5 The
HT-FULL trace in the figure corresponds to the strategy described in
(Taubman, 2002) that has been widely used for regular JPEG 2000

video compression, where each code-block sequentially generates all
possible coding passes, from coarse to fine, until the ratio between
incremental distortion reduction and coded length increase becomes
smaller than the smallest global PCRD-opt distortion-length slope
threshold seen in the last two frames. This method does not encode a
deterministic number of coding passes, so is not suitable for high
throughput hardware, and generally encodes many more passes than
necessary. The CPLEX-SPATIAL and CPLEX-SPACE-TIME traces
both involve the encoding of exactly Z = 6 coding passes for every
code-block based on theCPLEX algorithm,with each stripe consisting
of one row of code-blocks only, for minimal working memory
consumption–the first uses spatial forecasting alone, while the
second uses spatio-temporal forecasting.

FIGURE 7 | Forecast-based incremental CPLEX-based encoding.

FIGURE 8 | Robustness of low memory CPLEX-based video encoding
with spatio-temporal forecasting, illustrated using a temporal trace of the
frame-by-frame decompressed PSNR resulting from three different
complexity constrained encoding strategies.

5The sequence itself has been constructed by stitching together content cropped
from highly diverse challenging photographic images, and may be found in the
Supplementary Material for this paper.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 8856449

Taubman et al. HTJ2K: Video Production and Delivery

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

Interestingly, the muchmore complex HT-FULL strategy does
not perform as well as the deterministic 6-pass encoding
methods, due to huge variations in scene complexity between
some pairs of frames. The spatial-only forecasting strategy
performs well, but suffers a little when coding some frames
whose upper half is mostly covered by “fog” and extremely
compressible. Due to its superior robustness and deterministic
low encoding complexity, all video encoding results presented in
this paper other than low-latency encoding results, are obtained
using the forecasting method presented here with spatio-
temporal forecasting.

We note that all of the results presented here and
elsewhere in this paper involve deterministic non-iterative
PCRD-opt based rate control, targeting a fixed number of
coded bytes per frame. This is important for rate constrained
communication channels, such as IP networks, where the
objective is to obtain the maximum possible compressed
image quality, subject to the available network bandwidth.
Of course, variable bit-rate (VBR) variants of PCRD-opt (and
indeed the CPLEX algorithm) are possible, allowing even
lower average reconstructed frame distortions for a given
average data rate, but such approaches are less suitable for
high quality communication over dedicated IP networks. For
the results presented in Figure 8, rate-control is performed at
the frame level, which requires sufficient working memory to
store one or more entire frames of compressed data. In
Sections 4.3 and 4.5, however, we consider evaluate
efficiency and describe hardware systems suitable for
constant bit-rate video compression with much less
working memory and sub-frame end-to-end latencies.

4 HTJ2K THROUGHPUT AND CODING
EFFICIENCY

In this section, we provide a selection of experimental results to
demonstrate both the coding efficiency and high throughput of
HTJ2K. Many more experimental results may be found at http://
www.htj2k.com. A short, called Meridian, produced using a
modern ACES production workflow with high-quality visual
effects and post-production techniques was released by Netflix
under the “Creative Commons” license and is available from
https://opencontent.netflix.com/. Small thumbnails from every
1000-frames of the full 17,345-frame sequence are shown in
Table 1. Different forms of the Meridian short were used for
the compression tests reported in Sections 4.1 and 4.2 below, as
well as Section 5.1.

4.1 CPU-Based HTJ2K Encoding and
Decoding Throughput
Speed testing was performed on a MacBook Pro (15-inch,
2018) with 2.9Ghz 6-core Intel i9-8950HK CPU with 16 GB of
RAM, using BlackMagic DaVinci Resolve 17.4.4, Apple
Compressor 4.5.4 and the Kakadu v8.2.1 applications
“kdu_vcom_fast” and “kdu_vex_fast.” BlackMagic DaVinci
Resolve6 and Apple Compressor7 are commonly used software
applications for high quality editing, mastering and

TABLE 1 | Thumbnails of Meridian short.

Frame 87,000 Frame 88,000 Frame 89,000

frame 90,000 frame 91,000 frame 92,000

frame 93,000 frame 94,000 frame 95,000

6https://www.blackmagicdesign.com/products/davinciresolve/.
7https://www.apple.com/final-cut-pro/compressor/.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 88564410

Taubman et al. HTJ2K: Video Production and Delivery

http://www.htj2k.com/
http://www.htj2k.com/
https://opencontent.netflix.com/
https://www.blackmagicdesign.com/products/davinciresolve/
https://www.apple.com/final-cut-pro/compressor/
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

compression within the professional media industry. The
Kakadu kdu_vcom_fast and kdu_vex_fast applications are
example applications included with the Kakadu SDK8 that
perform JPEG2000 encoding and decoding respectively. The
test clip spans 1 min from the Meridian short in 3,840 × 2,160
24 4:2:2 10bit BT709 format. Encoding and decoding speed
testing results are shown in Figure 9. These results show that
HTJ2K has comparable encoding and decoding speed to
ProRes HQ, while HTJ2K is much faster than J2K1.

When performing high-performance speed testing, the time spent
reading andwriting uncompressed and compressed data to/fromdisk
can itself become a bottleneck. Typical real-time capture applications
store uncompressed imagery inmemory that can be accessed directly
by the encoder, while real-time playback applications store decoded
data in memory not on disk. The BlackMagic Resolve and Apple
Compressor speed results included reading/writing a Quicktime
V210 10bit 4:2:2 uncompressed file (~32 GB), while the Kakadu
speed results included reading/writing a YUV 16bit 4:2:2
uncompressed file (~48 GB). With HTJ2K decoding at 68.6
frames per second, Kakadu’s “kdu_vex_fast” results in decoded
data being written to disk at 68.6 frames/second × (3,840 × 2,160
pixels/frame) × 2 samples/pixel × 2 Bytes/sample = 2,275, 983, 360
Bytes/second ~2.12 GB/s, which is close to the upper limits of the
sustainedwrite-rate of theNVMPCIe 3.0 1.0 TB SSD includedwithin
the 2018 Macbook Pro. If no output file argument (-o) is used with
the Kakadu “kdu_vex_fast” application, it decodes the input file to
memory instead of disk. Decoding the same HTJ2K file in this way

takes 11.1 s, which corresponds to 129.7 frames per second and is
almost twice as fast as when writing the decoded image data to disk.

FIGURE 9 | Encoding and decoding speed test results.

FIGURE 10 | PSNR and SSIM performance.
8https://kakadusoftware.com/.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 88564411

Taubman et al. HTJ2K: Video Production and Delivery

https://kakadusoftware.com/
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

4.2 Rate-Distortion Performance of HTJ2K
Rate Distortion performance of HTJ2K, J2K1 and ProRes HQ was
compared by first compressing 1min of Meridian with ProRes HQ
usingApple Compressor 4.5.4, and then computing the actual data rate
of the output ProRes HQ file, which was determined to be 758Mbs.
HTJ2K and J2K1 streams with the same bit-rate are then generated
using Kakadu v8.2.1 “kdu_v_compress,” with a constant coded length
constraint for each frame. The PSNR and SSIM results are shown in
Figure 10. These results show that HTJ2K outperforms ProRes HQ by
a similar margin to that by which J2K1 outperforms HTJ2K.

FFMPEG 5.0 was used to calculate these PSNR and SSIM
results, which includes the “PSNR Average” and “SSIM All”
metrics that are shown in Figure 10. The “PSNR Average”
calculation for 4:2:2 content is computed as

PSNR Average � 10 × log10
10232

MSE WEIGHTED AVERAGE
,

where

MSE WEIGHTED AVERAGE � MSE Y
2

+ MSE Cb
4

+ MSE Cr
4

,

and MSE_Y, MSE_Cb, MSE_Cr are the mean square error of the
luma and chroma components at their native sampling
resolution. “SSIM All” is computed with a weighted average in
a similar way, as

SSIM ALL � SSIM Y
2

+ SSIM Cb
4

+ SSIM Cr
4

.

4.3 Ultra-Low Latency Coding With HTJ2K
JPEG 2000 was designed to support incremental low latency
compression. In fact, it is possible to achieve extremely low end-

to-end latencies, down to a few tens of lines of an image or video
frame, without partitioning frames into independent sub-images or
tiles. At very low latencies, however, the number of code-blocks
available for concurrent processing necessarily reduces, which can
make it hard or even impossible to achieve very high throughputs
with the original JPEG 2000 block coding algorithm, even in
hardware. HTJ2K provides the solution to this problem, by
delivering a block coding algorithm with both much lower
complexity and much higher levels of internal concurrency.

Figure 11 reveals the rate-distortion performance of HTJ2K as a
function of end-to-end latency, corresponding to configurations
involving two levels of vertical wavelet transformation with the
LeGall 5/3 transform kernels and three levels of vertical wavelet
transformation with the Cohen-Daubechies-Foveaux (CDF) 9/7
transform kernels. The results presented here are obtained using
the CPLEX-based encoding strategy described in Section 3.1,
generating Z = 6 coding passes (two HT Sets) for each code-
block. We follow the encoding paradigm introduced in Figure 5,
with flush-set heights of 8 and 16 video lines, for the cases with two
and three vertical transform levels, respectively, while five levels of
wavelet transformation are employed in the horizontal direction. The
experiments are performed using the Kakadu tools9 “kdu_compress”
and “kdu_expand” with the following encoding options:

1. Corder = PCRL Cblk = {41,024} Qstep = 0.0001 Clevels = 5
Cdecomp = B(-:-:-),B(-:-:-),H(-) Cprecincts =
{88,192},{48,192},{28,192} Scbr = {1,10} Catk = 2 Kkernels:
I2 = I5X3 Cmodes = HT Cplex = {6,EST,0.25,-1} –no_weights

2. Corder = PCRL Cblk = {8,512} Qstep = 0.0001 Clevels = 5
Cdecomp = B(-:-:-),B(-:-:-),B(-:-:-),H(-) Cprecincts =
{16,8192},{88,192},{48,192},{28,192} Scbr = {1,18} Cmodes =
HT Cplex = {6,EST,0.25,-1} –no_weights

FIGURE 11 |Rate-distortion performance of HTJ2K over 10 RGB 4:4:4 test images in low latency configurations, with fundamental end-to-end latencies of 24 lines
(HT 53L24 has two levels of vertical 5/3 DWT) and 76 lines (HT 97L76 has three levels of vertical 9/7 DWT), compared with JPEG-XS and with full-frame (i.e., not low-
latency) HTJ2K (5 levels of 9/7 DWT). Fundamental latencies exclude computation time, which may increase the end-to-end latency by up to 50% in a typical hardware
implementation. According to Annex E of ISO/IEC 21122-2:2018, the Light, Main and High profiles of JPEG-XS have 2, 10 and 20 video lines of latency
respectively.

9These can be downloaded from https://kakadusoftware.com/documentation-
downloads/downloads.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 88564412

Taubman et al. HTJ2K: Video Production and Delivery

https://kakadusoftware.com/documentation-downloads/downloads
https://kakadusoftware.com/documentation-downloads/downloads
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

PSNR results presented for this study are averaged over a diverse
set of ten 444 RGB test frames from the test set maintained by the
JPEG standards working group. The images are: ARRI_AlexaDrums
(3840 × 2160, 12bit P3, frame 0); ARRI_AlexaHelicopterView (3840
× 2160, 12bit P3, frame 0); EBU_PendulusWide (3840 × 2160, 10bit
BT709, frame 1); VQEG_CrowdRun (3840 × 2160, 8bit BT709,
frame 7,111); VQEG_ParkJoy (3840 × 2160, 8bit BT709, frame
15,523); RICHTER_Screen_Content (3840 × 2160, 8bit sRGB,
frame 1); APPLE_BasketBallScreen (2560 × 1440, 8bit sRGB,
frame 0); BLENDER_Sintel2 (4096 × 1744, 10bit sRGB, frame
4,606); BIKE (2048 × 2,560, 8bit sRGB); and WOMAN (2048 ×
2,560, 8bit sRGB). PSNR is the rate control optimization objective
used for both the presented HTJ2K encoding results, and also for the
reference JPEG-XS encoding results, that are obtained by exercising
the public JPEG-XS reference software (ISO/IEC 21122-5, 2020) over
its Main, High and Light profiles. Edwards performed a similar
comparison between low-latency codecs HTJ2K, JPEG-XS and VC-2
using 4:2:2 content (Edwards and Smith, 2021).

4.3 GPU-Based HTJ2K Encoding and
Decoding Throughput
The HT block coding algorithm and all other aspects of HTJ2K
compression and decompression systems, as shown in Figure 4, are
amenable to high-throughput implementation on GPUs. GPU-based
HTJ2K decoding and quantization-based encoding results have
previously been presented in (Naman and Taubman, 2019) and
(Naman and Taubman, 2020); those results were obtained with code
that has been heavily optimized to perform decoding and encoding
for a particular configuration of HTJ2K codestream, in order to
demonstrate what can be achieved.

In this section, we focus on a full GPU-based encoding solution,
incorporating global CPLEX-based complexity control, following the
approach in Section 3.1, with PCRD-opt rate control. We note that
the encoding implementation described here has yet to be fully
optimized, but provides nonetheless a strong indication of the
potential for very high throughput full GPU-based encoding
solutions with non-iterative rate control. We also discuss possible
usage scenarios for GPU-based HTJ2K compression and
decompression in general.

For HTJ2K encoding, a typical scenario involves transferring raw
image data to the GPU, encoding the data on the GPU and then
transferring the compressed code-stream back to the CPU to
complete codestream assembly. The raw data is transferred to the
GPU through the PCI-Express (PCIe) interface. The current
generation of CPU and GPU hardware support 16 lane
bidirectional PCIe 4.0; for a GPU, this translates to approximately
24 GB/s of usable bandwidth in each direction. For 16K video frames
(15360 × 8640), it is possible to transfer 30 frames per second of 4:4:4
full RGB content at 16-bit per channel; for 8K and 4K video, transfer
rates of 120 and 480 frames per second are possible, respectively. The
amount of compressed data transferred back to the host (or CPU) is
significantly smaller than the raw data transferred to the GPU;
additionally, compressed data transfers can exploit the
bidirectionality of the PCIe interface, and in practice have
negligible effect on the achievable throughput of the system. Next
generation of hardware should support the PCIe 5.0 standard, which

doubles the bandwidth of PCIe 4.0; in fact, current 12th generation
Intel CPUs (codenamed Alder Lake) already support this standard,
and it is expected that someGPUs released before the end of this year
will support it.

For HTJ2K decoding, a typical scenario involves transferring
compressed code-streams to the GPU, which decodes them; then,
decoded frames can either be transferred to the frame buffer of the
GPU for display or transferred back to the host (CPU) for further
processing.

All results presented here are obtained using a floating-point 9/7
CDF wavelet transform for lossy compression, and the integer 5/3
LeGall wavelet transform for lossless compression. We employ seven
levels of decomposition and 64 × 64 code-blocks. We present results
for encoding a 4K 4:4:4 12 bit video frame from the
ARRI_AlexaDrums JPEG video test sequence10. For lossy
compression, we show results at a bit-rate of 2 bits/pixel, which
yields a PSNR of around 45 dB. 16K content is obtained by
concatenating 16 copies of each 4K frame on a 4 × 4 grid.

Qstep results refer to quantization-based encoding, where each
subband is quantized with a quantization step size derived from a
common base step size based on the synthesis energy gains Gs of the
wavelet basis functions, so as to target maximum PSNR (minimum
MSE). Qstep-based compression requires only a single HT Cleanup
pass to be generated for each code-block, encoding the quantized
coefficients, but does not provide direct control over the size of the
compressed code-stream. The full CPLEX and PCRD-opt base
encoding, by contrast, generates six coding passes (2 full HT-Sets)
for each code-block, and offers optimized non-iterative rate control.

The presented results are obtained using code developed for the
nVidia CUDA platform. Results are obtained for the GT1030 and
GTX1660Ti GPUs, which are members of previous generation of
GPUs offered by nVidia. TheGT1030 is considered a low-end device,
while the GTX 1660Ti is a mid-range card with a manufacturer
recommended price of around 300 USD when it was first released in
early 2019. In the current (preliminary) implementation, the colour
transform is actually performed by the CPU, rather than the
GPU–this will change in the future. Data is then transferred to
theGPU,which employs a variety of kernels before transferring code-
stream data back to the host.

In Table 2 we provide the time consumed by some of the key
encoding steps. The “DWT” step includes the time consumed by
DWT for all decomposition levels. The DWT step also includes
wavelet coefficient quantization, since performing quantization
concurrently with the DWT reduces memory bandwidth
consumption. The “Cleanup” time includes the time taken to
produce all MagSgn, VLC, and MEL byte-streams. While
producing the MagSgn byte-stream, the MagSgn kernel saves one
32-bit state variable for each quad; this state variable contains the data
needed for VLC andMEL coding. It also contains all needed data for
the HT SigProp and HTMagRef passes that follows the HT Cleanup
pass. The MagSgn kernel also collects statistics for distortion-length
convex hull analysis of that code-block, which is required by the
PCRD-opt rate control procedure. “SPP/MRP” is the time taken to
perform the SigProp andMagRef passes, which are performed in one

10Frame 0 of this sequence is part of the test set described in Section 4.3.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 88564413

Taubman et al. HTJ2K: Video Production and Delivery

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

kernel. The “TX to Host” time is the time taken to transfer code-
stream back to the host, which is currently performed by a CUDA
kernel as opposed to using a GPU driver call. The total time includes
other kernels, such as the CPLEX algorithm evaluation kernels and
the convex hull analysis kernel; it also includes some gaps where the
GPU is idling waiting for the completion of unknown internal events.

To employ the CPLEX algorithm, we collect statistics for
quantized wavelet coefficients during the DWT step; this is
followed by a kernel that employs the CPLEX algorithm to
determine the first bit-plane p(1)

b to encode for all code-blocks b
within a given subband s. These CPLEX decisions require the
collection of quantized subband sample statistics, as described in
Section 3. This statistical collection process increases the time taken
by the DWT step by approximately 20%; for example, in the case of
4K video, the DWT time on the GTX 1660 Ti increases from
1.628ms (no CPLEX statistics) to 1.967ms. The CPLEX kernel
itself, which is not shown in the table, takes less than 100
microseconds to complete. Overall, going from quantization-based
encoding (one HT Cleanup pass only) to full-frame rate control with
CPLEX and six HT coding passes increases the processing time by
65% or less.

These results indicate that previous generation mid-range GPUs
are able to perform full HTJ2K encoding with rate control, at a rate
that is approximately half the maximum transfer bandwidth of their
PCIe 3.0 express bus. Our future workwill explore the full potential of
an optimized encoding solution across a wider range of GPU
platforms, including current and next generation PCIe five
capable devices.

4.5 HTJ2K Hardware in Development
This project describes a full HTJ2K hardware encoding
solution, whose development is approaching maturity. The
first stage of this development activity focuses on all-on-chip
FPGA encoders with no external memory, targeting video
formats from 4K to 16 K. As in Section 4.4, we use the term
“full HTJ2K encoding solution” to refer to a system equipped
with PCRD-opt and complexity control machinery, so that
precise non-iterative rate control is available together with
deterministic high throughput.

The most precious resource for an all-on-chip encoder is on-
chip memory, which is conserved by employing the low-latency
CPLEX-based encoding framework of Figure 5. Memory
requirements are constrained by: 1) working with short flush-

sets, spanning as few as 8 video lines; 2) limiting the number of
vertical levels of wavelet decomposition, while allowing a larger
number of horizontal decomposition levels; and 3) executing the
PCRD-opt rate control procedure after all code-blocks in a flush-
set have been produced and emitting the corresponding portion
of the code-stream. This is the same framework employed for the
low-latency encoding experiments in Section 4.3, but our chief
concern is memory rather than latency.

The encoder uses memory in four primary ways. Each stage
of vertical wavelet transformation utilizes a small number of
“DWT line buffers” for a vertical lifting state machine; five line
buffers are required for the CDF 9/7 wavelet transform of JPEG
2000 Part-1, while three line buffers are sufficient if only the
LeGall 5/3 wavelet transform is implemented11. “Collector
memory” is required to collect quantized subband samples so
that they can be processed by the HT block encoder. The HT
encoder is actually able to process code-block samples
sequentially line-pair by line-pair, without first buffering
entire code-blocks in memory, but our collectors fully buffer
short, wide code-blocks prior to encoding, so that the CPLEX
algorithm can generate encoding parameters that avoid the risk
of overflowing the memory pools allocated for block encoder
products. “Encoder pool” memory captures the six coding
passes produced by the HT block encoders, allowing selected
passes to be retrieved after the PCRD-opt stage has determined
optimal truncation points for the flush-set. Encoder pools are
managed in banks, with at least one bank to absorb encoder
products that are being generated within one flush-set, while a
second bank holds content from a previous flush-set that is
accessed by the PCRD-opt algorithm and code-stream
generation machinery. The fourth way in which memory is
used in the encoder is for a “drain buffer,” that receives
generated codestream data and drains it to a network packet
generator that emits a stream of RTP packets over an IP
network at a constant data rate.

The last three types of memory can be flexibly dimensioned to
achieve different trade-offs between memory consumption, coding
efficiency and latency. Our basic architectures correspond to the “HT

TABLE 2 | Time (in milliseconds) consumed by different CUDA kernels for encoding 4K and 16K video frames. The “Total time” includes the time needed by additional
kernels, not discussed here. The bottom row shows achievable frame rate.

GT 1030 (4K) GTX 1660 Ti (4K) GTX 1660 Ti (16K)

Qstep
1 Pass

Cplex
6 Passes

Qstep
1 Pass

Cplex
6 Passes

Qstep
1 Pass

Cplex
6 Passes

~2 bpp 2 bpp Lossless ~2 bpp 2 bpp Lossless ~2 bpp 2 bpp Lossless

DWT 10.289 10.899 8.197 1.628 1.967 0.998 16.280 19.839 12.629
Cleanup 10.182 13.539 12.707 1.570 2.414 2.116 22.921 34.049 31.530
SPP/MRP - 4.344 - - 0.683 - - 9.454 -
TX to Host 0.866 1.221 7.565 0.187 0.299 1.574 2.930 4.709 25.894
Total time 21.587 31.621 28.852 3.528 5.841 4.925 42.373 69.519 70.393
Frames/s 46 31 34 283 171 203 23 14 14

11A reversible integer version of the 5/3 transform is defined in Part-1 of the JPEG
2000 standard, but we work with the irreversible (truly linear) 5/3 transform that
requires the syntactical extensions of JPEG 2000 Part-2.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 88564414

Taubman et al. HTJ2K: Video Production and Delivery

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

53L24” and “HT 97L76” configurations shown in Figure 11, for
which end-to-end latencies are already extremely low. However,
increasing latency by adding additional encoder pool memory and
drain buffer memory is desirable, since it allows the PCRD-opt
algorithm to optimize the allocation of data to code-blocks over a
larger extent within the original image or video frame. Importantly,
encoder pools and the drain buffer hold compressed data, rather than
original frame samples or wavelet subband samples; as a result, it is
relatively inexpensive to extend the latency and broaden the
optimization horizon of an all-on-chip HTJ2K encoder.

At this stage, we are able to provide substantial insight into the
resource consumption, operating frequencies and capabilities of
our full HTJ2K encoding hardware that is under development.
The most critical modules have been fully designed and
synthesized, while others have been designed down to the
register-transfer-level. For modules that have not been fully
synthesized, resources are derived using a comprehensive yet
conservative estimation methodology. The modular architecture
is supported by a software-based composer that can be used to
form and analyze encoding designs with a wide range of
capabilities. Out of these, we choose to report here the
number of LUTs12, DSP slices, flip-flops and Block RAM
resources required on Xilinx Series 7 platforms13 for basic 4K/
60 and 8K/60 video encoding solutions.

A basic 4K video encoder, supporting the “HT 53L24” encoding
configuration of Figure 11, can be assembled with just under 40K
LUTs, around 45K flip-flops, 111 36kbit Block RAM modules and
around 135 Xilinx DSP48E1 slices. To put this into perspective, these
correspond to just under 30%, 17%, 31% and 19%, respectively, of the
LUTs, flip-flops, Block RAM and DSP resources available on a Xilinx
Artix-7 XC7A200T FPGA. At 60 frames/second, with standard 4K
CTA pixel- and line-rates14, the encoder’s front-end operates at
297MHz, processing two pixels per clock-cycle, while encoding,
rate control and code-stream formation operate at a back-end clock
rate of approximately 205MHz.

An 8K video encoder, supporting the “HT 97L76” encoding
configuration of Figure 11, can be assembled with around 115 K
LUTs, around 135 K flip-flops, 374 36 kbit Block RAM modules
and around 500 Xilinx DSP48E1 slices. For comparison
purposes, these correspond to approximately 86%, 50%,
102% and 67% of a Xilinx Artix-7 XC7A200T platform, but
will comfortably fit on most of the larger Kintex-7 platforms and
all Virtex-7 FPGAs. To achieve 60 frame/second encoding, with
standard 8K CTA pixel- and line-rates15, the encoder’s front-end
operates at 297MHz, processing eight pixels per clock-cycle, while
encoding, rate control and code-stream formation operate at a

back-end clock rate of approximately 262MHz. All critical
elements of the design have been synthesized and verified at
these clock frequencies even on the Artix-7 XC7A200T with
speed-grade 2, although the larger and faster Kintex devices are
likely to be required to comfortably meet timing constraints once
the entire solution is instantiated.

The preliminary designs documented above provide
sufficient encoder pool and drain buffer memory to support
minimal latency encoding, suitable for overall compressed bit-
rates of up to 3 bits/pixel. In particular, 4K/60 over 1 Gbps IP
networks and 8K/60 over 5 Gigabit ethernet or 6 Gbps SDI links
are a particular focus. Memory can easily be increased to
support optimized rate control at higher compressed bit-
rates. Moreover, as mentioned above, it is relatively
inexpensive to increase the PCRD-opt rate allocation
horizon, along with latency, by adding memory to the
encoder pool and drain buffer, since these hold only
compressed data.

Regarding the HT block encoder itself, we note that 51% of all
LUTs in the basic 4K design and 57% of all LUTs in the basic 8K
design are devoted to concurrently generating 6 HT coding passes
for each code-block and arranging for the 10 resulting byte-
streams (2 MagSgn, 2 VLC, 2 MEL, 2 SigProp and 2MagRef byte-
streams) to be recorded within the relevant encoder pool
memories.

A further 18% of all LUTs and 11% of all DSP resources in the
basic 4K design are associated with the PCRD-opt rate control
algorithm, including calculation of the impact of each coding pass
on reconstructed frame distortion (with optional visual
weighting), rate-distortion convex hull analysis of the seven
truncation options available for each code-block and iterative
determination of an optimal distortion-length slope threshold for
each flush-set. For the 8K design, these tasks also represent
approximately 18% of all LUTs, but only about 7% of the DSP
resources of the overall encoder.

The CPLEX complexity constraint machinery consumes
approximately 10% of all LUTs and 20% of DSP resources
in the 4K encoder, but less than 7% of the LUTs and 8% of DSP
resources in the 8K encoding solution. The algorithm
implemented in hardware is identical to that implemented in
the Kakadu software tools used to generate the results of
Section 4.3. These figures suggest that the CPLEX “virtual
rate control” machinery is less expensive than the
corresponding PCRD-opt true rate control machinery,
especially at larger frame sizes, where both CPLEX and
PCRD-opt together consume around 25% of the overall
encoder’s logic resources.

5 APPLYING HTJ2K TO MEDIA AND
ENTERTAINMENT WORKFLOWS

As noted earlier, the relatively low throughput of JPEG 2000 on
CPUs and GPUs has limited its reach in M&E workflows. This
has been exacerbated by the steady increase of image size driven
by improvements in camera sensors and displays: 4K workflows,
which use 8 MP images sampled at 16 bit per channel and 24

12Xilinx Series 7 FPGAs have four 6-input LUTs and eight flip-flops in each
configurable logic block (CLB).
13See https://www.xilinx.com/support/documentation/selection-guides/7-series-
product-selection-guide.pdf.
143,840 × 2,160 frames are contained within a window with 4400 pixels per line and
2250 lines separating consecutive frames, such that the pixel-rate is 594 MHz and
the line-rate is 135 kHz.
157,680 × 4,320 frames are contained within a window with 8800 pixels per line and
4500 lines separating consecutive frames, such that the pixel-rate is 2.376 GHz and
the line-rate is 270 kHz.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 88564415

Taubman et al. HTJ2K: Video Production and Delivery

https://www.xilinx.com/support/documentation/selection-guides/7-series-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/7-series-product-selection-guide.pdf
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

frames per second, are now common, with workflows using
32 MP (8K) images on the horizon.

By addressing this shortcoming, HTJ2K allows current JPEG
2000 infrastructure to immediately benefit from the reduction
in compute cost offered by HTJ2K and allows JPEG 2000 to
extend its reach across M&E workflows–thereby significantly
simplifying operations, improving quality, and reducing
R&D costs.

5.1 Lossy and Lossless Coding for
Interactive Viewing of Large Images on
Everyday Computing Platforms
Table 3 provides an example of the throughput and coding
efficiencies that can be expected from HTJ2K in comparison
to J2K1, for professional M&E content. These results
demonstrate that HTJ2K can achieve faster-than-real-time
decoding of large images, lossless and lossy alike, without the
need for specialized computing platforms. In fact, HTJ2K’s
advantage over J2K1 grows with the size of the compressed
images, since HTJ2K improves the throughput of the entropy
coder whose relative contribution to the overall compute costs
increases with amount of coded data.

This allows JPEG 2000 to be used in applications that require
interactive viewing and editing of large images on everyday PC,
server and mobile devices. Such applications include:

Mathematically lossless coding of archival images. Images
generated from the production process are routinely
exchanged and stored using baseband file formats such as
TIFF, DPX and OpenEXR. While such formats preserve the
creative intent in its totality, they also result in very large files
(approximately 8 TB for a 2-h movie) and correspondingly
long transfer time to, from and within storage, whether in the
cloud or on-premises. Uploading a 2-h movie to the S3 service
of Amazon AWS at 2 Gbps requires approximately 9 h using a
baseband file format. HT typically cuts this time by 50%. The
4.5 h saved can instead be turned into additional production
time, which is particularly precious as delivery
deadlines loom.

Lossy coding for high-quality mezzanine images. For many
M&E workflows, it is customary to lightly encode the images

generated from production, trading a visually transparent coding
loss for an order of magnitude reduction in file size. The resulting
mezzanine images can be used for editing and transcoding to
emission formats. HT brings JPEG 2000 to the party with other
codecs in this space, such as ProRes and AVC-I, which allow real-
time editing and browsing of image sequences on PCs and mobile
devices.

5.2 No-Proxy Workflows
The interactive browsing of the large images used in M&E
workflows has always been a challenge. For example, a typical
lossless UHD image sequence sampled at 24 frames per second
and 16 bits per color requires a 5 Gbps storage channel, which
exceeds all but the fastest local storage options. A common
approach is to create a separate low-resolution proxy of the
sequence, often using a different codec. This approach has
several limitations: latency is required to create the proxies,
multiple proxies are required to match varying storage channel
bandwidth, and both image and metadata fidelity are
compromised.

The resolution scalability features inherent to JPEG 2000,
and preserved by HTJ2K, allow the creation of proxies to be
avoided. This can readily be achieved by storing images in
resolution major order and reading from them only the
number of bytes available to the storage channel at a given
time. This approach is applicable to remote viewing over
networks as well as local browsing over slower storage
channels. HTJ2K further simplifies this approach by allowing
the resulting images to be processed on even lower-power client
platforms.

A preliminary demonstration of this strategy is available at
https://demo.noproxy.cloud/, where the HTJ2K decoder
is implemented in JavaScript16 within the web-browser and
the image sequence is stored in MXF and accessed over
plain HTTP.

TABLE 3 |Comparison of J2K1 andHTJ2K compressed sizes and decoding throughput over a 10 s portion of theMeridian short in 3,840 × 2,160 4:4:4 SDRBT.709 format.
The content is encoded first using JPEG 2000 Part-1 (J2K1) and then losslessly transcoded to HTJ2K code-streams, using the HT block coding algorithm exclusively
(i.e., there is no mixing of J2K1 and HT encoding options in the transcoded result). The table reports the increase in compressed size associated with the much faster HTJ2K
representation of exactly the same information as the J2K1 original, as well as the decoding throughputs that are achieved using the Kakadu “kdu_vex_fast” application, on a
MacBook Pro 15-inch 2018 platformwith 2.9 GHz Intel Core i9 (6-core) processor, 16 GB RAM and 1 TB SSD. Note that the labels “HTJ2K Lossy 400 Mb” and “HTJ2K
Lossy 800 Mb” are indicative only; the actual HTJ2K bit-rates are larger by the amount indicated in the last column. Encoding throughput speedup factors for HTJ2K
over J2K1 are substantially similar.

Test format Decoding frame rate Effective storage read
rate (MB/Second)

HTJ2K
Decoding Speedup Factor

HTJ2K Average (%) size
Increase over J2K1

J2K1 Lossy 400 Mb 24 47
HTJ2K Lossy 400 Mb 111 228 5× 6.00
J2K1 Lossy 800 Mb 11 44
HTJ2K Lossy 800 Mb 91 374 9x 5.16
J2K1 Lossless 2 43
HTJ2K Lossless 70 1,303 30× 5.41

16The decoder uses the OpenJPH open source implementation at https://github.
com/aous72/OpenJPH, compiled to WebAssemblyd.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 88564416

Taubman et al. HTJ2K: Video Production and Delivery

https://demo.noproxy.cloud/
https://github.com/aous72/OpenJPH
https://github.com/aous72/OpenJPH
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

5.3 Accelerating Applications While
Maintaining CompatibilityWith Legacy J2K1
Systems
As described in Section 2.1, it is possible to transcode HTJ2K to/
from J2K1 mathematically losslessly, regardless of whether the
coding is irreversible (lossy) or reversible (lossless). This allows
workflows to mix-and-match HTJ2K and J2K1 to fit their needs.
As illustrated in Figure 12, a system (a) can use HTJ2K internally
for throughput performance and for interchange with an HTJ2K-
capable external system (d), but transcode to J2K1 for
compatibility with external legacy systems (b) and (c).
Similarly, it can store images in J2K1 for long-term storage
(e), where the additional coding efficiency might be cost-
effective, but otherwise store images in HTJ2K (f).

5.4 Reducing Cloud Compute Costs
HT can immediately result in significantly lower compute costs
per image compared to J2K1 on popular cloud platforms such as
AWS and Azure, where monetary costs are proportional to
compute costs. The resulting monetary savings can be used,
for example, to purchase additional compute resources or to
purchase carbon offsets to achieve carbon neutrality.

5.5 Professional Media Streaming Over IP
Networks
The wide availability of cost-effective and flexibly switched IP
network infrastructure makes it particularly attractive for the
transport of professional video content, both during content
acquisition (contribution) and post-production, including
live editing workflows. As discussed earlier, HTJ2K is well
matched to such streaming applications, achieving both high
coding efficiency and exceptionally high throughputs at the
transport data rates offered by modern IP networks. The
results provided in Section 4.3, indicate that HTJ2K

provides an attractive solution for 4K/60 video streaming
over Gigabit ethernet based IP networks, for which the
usable compressed bit-rate is in the range 1.7–2 bits/pixel.
By extrapolation, HTJ2K provides an attractive solution for
8K/60 video streaming over 5 Gigabit ethernet and 16K/30
video streaming over 10 Gigabit ethernet.

Since HTJ2K is part of the JPEG 2000 family, IP streaming
solutions can be based around the RTP payload formats for
JPEG 2000 developed by the Internet Engineering Task Force
(IETF): (IETF RFC 5371, 2008); and (IETF RFC 5372, 2008).
These formats provide sufficient payload header information
(8 bytes) to associate RTP packets with corresponding J2K
packets and assign RTP packet priorities based on the
significance of the coded content within those J2K packets.
This correspondence can potentially be used to resynchronize
a decoder in the event of network packet loss, so as to decode
as much usable content as possible for any given frame.
However, the mechanism for doing this relies upon a
decoder being able to map absolute byte offsets within a
frame’s compressed codestream to J2K packets, which is
only possible with the inclusion of random access (PLM or
PLT) marker segments within the codestream headers. This is
unfortunate, firstly because these random access marker
segments are not themselves resilient to packet loss, and
secondly because PLM and PLT marker segments must
precede the coded data, but cannot be generated until after
the content has been encoded, so they are not compatible with
low latency or low memory encoding solutions.

We propose to overcome these weaknesses of the existing
RTP streaming formats for JPEG 2000 by using a similar 8-byte
RTP payload header that encodes the semantic identity of the
first J2K packet found within the RTP packet, rather than its
absolute location within the codestream. Specifically, for all
packets other than those containing the codestream main
header, it is sufficient to include: 1) a 4-bit “sync” field that
indicates the existence and type of any resynchronization point

FIGURE 12 | The ability to transcode HTJ2K to/from J2K1 mathematically losslessly allows an HTJ2K workflow to retaining compatibility with legacy J2K1 systems.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 88564417

Taubman et al. HTJ2K: Video Production and Delivery

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

within the packet; 2) a 12-bit packet offset (“poff”) field that
indicates the byte offset, relative to the start of the RTP packet, at
which the resynchronization point occurs, which is necessarily
the first byte of a J2K packet; and 3) a 32-bit precinct-id (“pid”)
field that uniquely identifies that J2K packet within the
codestream. For the “sync” field we propose to use 3 bits to
identify the J2K packet progression order that applies from the
synchronization point, with two special values (e.g., 0 and 1) to
indicate the lack of any synchronization point and the first
packet in the codestream, respectively. For fourth bit of “sync”
can be used to indicate whether or not the tile associated with
the resynchronization point has coding parameters that differ
from those found in the main codestream header and its first
tile-part header, which a decoder can use to deduce whether or
not it has received sufficient additional tile-part headers to use
the resynchronization point.

In most streaming applications, and especially with HTJ2K
content, we expect only to have one quality layer, so there is only
one J2K packet per J2K precinct, and the “pid” field is then a
unique precinct identifier. An excellent choice for the value of this
field is the unique precinct identifier defined in the JPIP standard
(ISO/IEC 15444-9, 2005), which fits within 32 bits for all video
frame sizes one expects to encounter in practice. For the general
case of codestreams with multiple quality layers, usable
resynchronization points can occur at non-initial packets of a
J2K precinct only when one of the following two progression
orders is used: 1) layer-resolution-component-position; and 2)
resolution-layer-component-position. These progression orders
are not useful for very low-latency or low memory footprint
streaming applications, but the proposed RTP payload format
could be adapted to support them by using 24 bits of the “pid”
field as a unique precinct identifier and the eight remaining bits to
encode the quality layer index of the relevant J2K packet, only
when the “sync” field identifies one of these two progression
orders.

We finish this section by pointing out that the payload format
enhancements above are not strictly required for RTP streaming
of HTJ2K content over IP networks. The enhancements are
valuable, however, in that they can allow a decoder to skip
over lost RTP packets, while still decoding most content
available for a codestream. This property could also be
exploited by a network agent to generate derived RTP streams
that deliberately omit packets associated with the highest one or
two video resolution levels, or perhaps packets associated with
spatial regions of a frame that are of no interest to a recipient of
the derived stream, thereby taking advantage of the rich
scalability and region-of-interest accessibility attributes of
JPEG 2000 and HTJ2K codestreams.

6 CONCLUSION

HTJ2K is an extremely valuable addition to the JPEG 2000 family of
standards, enriching the entire family with the ability to operate at
extremely high throughputs, and enabling practical high speed video
streaming solutions at low latencies and/or with very small memory
footprints.

By building on JPEG 2000 and addressing its primary shortcoming,
HTJ2K leverages existing code, infrastructure, and expertise,
minimizing technical risks and deployment costs. As evidence, there
are now multiple independent implementations of HTJ2K, the
majority of which are open-source. Examples include: OpenJPH17;
OpenHTJS18; OpenHTJ2K19; MatHTJ2K20; Grok21; OpenJPEG22; the
Kakadu SDKused for experimental results in this paper; and the formal
HTJ2K reference software23 (ISO/IEC 15444-5, 2021).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

DT is the primary developer of the HT block coding algorithm,
the FBCOT compression principle and the CPLEX algorithm for
complexity constrained encoding. AN was involved with the
original development of the HT algorithm; he is author of the
OpenJPH implementation of HTJ2K, and developer of the GPU
implementations described in Section 4.4. MS is co-editor of the
HTJ2K standard; he produced the experimental results in
Sections 4.1 and 4.2 and has been actively contributing to
standards and tools to support the deployment of HTJ2K in
professional video production, archiving and distribution. P-AL
was the chief editor of the HTJ2K standard and has been very
active in developing supporting standards and professional tools
for HTJ2K, including championing MXF file support for HTJ2K
within SMPTE and the open source community. HS is the chief
hardware developer working on FPGA-based HTJ2K solutions
described in Section 4.5. OW made many contributions to the
HTJ2K standard’s development and is a co-editor of the standard;
he is also author of the HTJ2K implementations MatHTJ2K and
OpenHTJ2K identified in this paper. RM was involved with the
original development of the HT block coding algorithm, along
with evaluation and early implementations of what became the
HTJ2K standard.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frsip.2022.885644/
full#supplementary-material

17https://github.com/aous72/OpenJPH.
18https://www.npmjs.com/package/openht.
19https://github.com/osamu620/OpenHTJ2K.
20https://github.com/osamu620/MatHTJ2K.
21https://github.com/GrokImageCompression/grok.
22https://github.com/uclouvain/openjpeg.
23https://gitlab.com/wg1/htj2k-rs.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 88564418

Taubman et al. HTJ2K: Video Production and Delivery

https://www.frontiersin.org/articles/10.3389/frsip.2022.885644/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frsip.2022.885644/full#supplementary-material
https://github.com/aous72/OpenJPH
https://www.npmjs.com/package/openht
https://github.com/osamu620/OpenHTJ2K
https://github.com/osamu620/MatHTJ2K
https://github.com/GrokImageCompression/grok
https://github.com/uclouvain/openjpeg
https://gitlab.com/wg1/htj2k-rs
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

REFERENCES

Edwards, T., and Smith,M.D. (2021). High Throughput JPEG 2000 for Broadcast and IP-
Based Applications. SMPTE Mot. Imag. J. 130, 22–35. doi:10.5594/jmi.2021.3066183

IETF RFC 5371 (2008). RTP Payload Format for JPEG 2000 Video Streams. Internet
Engineering Task Force.

IETF RFC 5372 (2008). Payload Format for JPEG 2000 Video: Extensions for
Scalability and Main Header Recovery. Internet Engineering Task Force.

ISO/IEC 14495-1 (1999). Information Technology - JPEG-LS - Lossless and Near-
Lossless Compression of Continuous-Tone Still Images. Geneva: International
Standards Organization.

ISO/IEC 15444-1 (2000). Information Technology — JPEG 2000 Image Coding
System: Core Coding System. Geneva: International Standards Organization.

ISO/IEC 15444-15 (2019). Information Technology — JPEG 2000 Image Coding System
— High-Throughput JPEG 2000. Geneva: International Standards Organization.

ISO/IEC 15444-5 (2021). Information Technology — JPEG 2000 Image Coding System
— Part 5: Reference Software. Geneva: International Standards Organization.

ISO/IEC 15444-9 (2005). Information Technology — JPEG 2000 Image Coding System:
Interactivity Tools, APIs and Protocols. Geneva: International Standards Organization.

ISO/IEC 21122-5 (2020). Information Technology — JPEG XS Low-Latency
Lightweight Image Coding System — Part 5: Reference Software. Geneva:
International Standards Organization.

Langdon, G. (1991). Probabilistic and Q-Coder Algorithms for Binary Source
Adaptation. Data Compression Conference. Utah: Snowbird.

Naman, A., and Taubman, D. (2019). Decoding High-Throughput JPEG2000
(HTJ2K) on a GPU. Taipei, Taiwan: IEEE International Conference on
Image Processing ICIP.

Naman, A., andTaubman,D. (2020).EncodingHigh-Throughput Jpeg2000 (Htj2k) Images
on A GPU. Taipei, Taiwan: IEEE International Conference on Image Processing ICIP.

Pearlman, W. (1991). “Performance Bounds for Subband Coding,” in Subband Image
Coding. Editor J. Woods (Kluwer). doi:10.1007/978-1-4757-2119-5_1

Taubman, D. (2000). High Performance Scalable Image Compression with
EBCOT. IEEE Trans. Image Process. 9, 1158–1170. doi:10.1109/83.
847830

Taubman, D., Naman, A., and Mathew, R. (2017). FBCOT: A Fast Block Coding
Option for JPEG 2000. San Diego: SPIE Optics & Photonics: Applications of
Digital Imaging.

Taubman, D. S., and Marcellin, M. W. (2002). JPEG2000 : Image Compression
Fundamentals, Standards, and Practice. New York: Springer.

Taubman, D. (2002). Software Architectures for JPEG2000. Greece: Proc. IEEE Int.
Conf. DSP. Santorini.S

Conflict of Interest: DT and HS were employed by Kakadu Software Pty Ltd. MS
was employed by Wavelet Consulting LLC. P-AL was employed by Sandflow
Consulting LLC.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Taubman, Naman, Smith, Lemieux, Saadat, Watanabe and
Mathew. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 88564419

Taubman et al. HTJ2K: Video Production and Delivery

https://doi.org/10.5594/jmi.2021.3066183
https://doi.org/10.1007/978-1-4757-2119-5_1
https://doi.org/10.1109/83.847830
https://doi.org/10.1109/83.847830
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

	High Throughput JPEG 2000 for Video Content Production and Delivery Over IP Networks
	1 Introduction
	2 Overview of the HT Algorithm and Compression Technology
	2.1 Relationship between HT and J2K1 Block Coding Passes
	2.2 Introduction to the HT Block Coding Algorithm
	2.3 HTJ2K Compression and Decompression Systems

	3 HTJ2K Encoding With PCRD-Opt Rate Control and Deterministic Complexity
	3.1 Local and Global CPLEX-Based Encoding
	3.2 Low Memory CPLEX-Based Encoding With Length Forecast Vectors

	4 HTJ2K Throughput and Coding Efficiency
	4.1 CPU-Based HTJ2K Encoding and Decoding Throughput
	4.2 Rate-Distortion Performance of HTJ2K
	4.3 Ultra-Low Latency Coding With HTJ2K
	4.3 GPU-Based HTJ2K Encoding and Decoding Throughput
	4.5 HTJ2K Hardware in Development

	5 Applying HTJ2K to Media and Entertainment Workflows
	5.1 Lossy and Lossless Coding for Interactive Viewing of Large Images on Everyday Computing Platforms
	5.2 No-Proxy Workflows
	5.3 Accelerating Applications While Maintaining Compatibility With Legacy J2K1 Systems
	5.4 Reducing Cloud Compute Costs
	5.5 Professional Media Streaming Over IP Networks

	6 Conclusion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

