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Headphones-based spatial audio simulations rely on Head-related Transfer

Functions (HRTFs) in order to reconstruct the sound field at the entrance of the

listener’s ears. A HRTF is strongly dependent on the listener’s specific

anatomical structures, and it has been shown that virtual sounds recreated

with someone else’s HRTF result in worse localisation accuracy, as well as

altering other subjective measures such as externalisation and realism. Acoustic

measurements of the filtering effects generated by ears, head and torso has

proven to be one of the most reliable ways to obtain a personalised HRTF.

However this requires a dedicated and expensive setup, and is time-intensive. In

order to simplify the measurement setup, thereby improving the scalability of

the process, we are exploring strategies to reduce the number of acoustic

measurements without degrading the spatial resolution of the HRTF.

Traditionally, spatial up-sampling of HRTF sets is achieved through

barycentric interpolation or by employing the spherical harmonics

framework. However, such methods often perform poorly when the

provided HRTF data is spatially very sparse. This work investigates the use of

generative adversarial networks (GANs) to tackle the up-sampling problem,

offering an initial insight about the suitability of this technique. Numerical

evaluations based on spectral magnitude error and perceptual model

outputs are presented on single spatial dimensions, therefore considering

sources positioned only in one of the three main planes: Horizontal, median,

and frontal. Results suggest that traditional HRTF interpolation methods

perform better than the proposed GAN-based one when the distance

between measurements is smaller than 90°, but for the sparsest conditions

(i.e., one measurement every 120°–180°), the proposed approach outperforms

the others.
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1 Introduction

Spatial audio simulations allow listeners to perceive sounds

as if they were coming from particular locations in the

surrounding space. Applications that could benefit from this

immersive 3D audio experience include extended reality (XR,

comprising virtual, augmented and mixed reality), 3D video

games, auditory displays and hearing assistive devices. The

binaural spatialisation technique attempts to recreate the

soundfield incident at the two ear canals using a simple pair

of headphones, by taking into account how the sound wave is

affected by the head, ears, and torso. Such information is

contained in an acoustic filter known as the head-related

transfer function, which includes both interaural (different

between the two ears) and spectral (i.e., the same at both

ears) localisation cues (Blauert, 1983). For the sake of

simplicity, in this paper we will use the expression ‘HRTF set’

for the full transfer function and, by extension, the full set of

measurements (i.e., one measurement for each possible source

position). We then use the term HRTF to refer to each of the

individual measurements or estimations of this function at

various source locations, which together characterise the

HRTF set.

A HRTF set is strongly dependent on the listener’s specific

anatomical structures (external ear, head, shoulders and torso)

and it has been shown that virtual sounds recreated with

someone else’s HRTF set result in worse localisation accuracy

(Wenzel et al., 1993; Møller et al., 1996) and, potentially, can alter

other subjective measures such as externalisation and realism

(Simon et al., 2016; Werner et al., 2016; Engel et al., 2019).

Furthermore, a high spatial and frequency resolution of HRTF

measurements is required in order to obtain optimal 3D audio

reproduction (Wenzel et al., 1993). Therefore, the use of high-

resolution individual HRTF sets is recommended when the goal

is to provide the best possible experience.

Acoustically measuring spatially dense HRTFs for each

individual listener is not a scalable solution, given its cost in

time and resources (i.e., need for specialised equipment).

Therefore, it is relevant to investigate spatial up-sampling

methods, which would allow us to generate dense HRTFs

from a sparse set of measurements, and therefore simplify the

measurement process (Zhong and Xie, 2014). Traditionally,

spatial up-sampling of HRTFs is achieved through barycentric

interpolation (Cuevas-Rodríguez et al., 2019) or by employing

the spherical harmonics framework (Evans et al., 1998). Such

methods are very efficient from a computational point of view,

but tend to perform poorly (i.e., result in inaccurate

reconstructions) when the provided HRTF data is spatially

very sparse. The main reason for this is due to the fact that

they cannot generate missing data, but only average between

existing data points. For instance, barycentric interpolation

consists in calculating a weighted average of three neighbours

around the target direction. The larger the distance between these

neighbours, the more likely the interpolation will be inaccurate,

e.g., averaging the HRTFs at azimuth angles 0°and 90°will likely

not be a good approximation of the HRTF at 45°.

Generative adversarial networks (GANs) are a family of

machine learning models characterised by the use of two

networks competing in an adversarial game. GANs are

capable of learning to generate samples from the underlying

probability distribution of an input training dataset. Given the

previous success of GANs when applied to the super-resolution

of photographs (Dong et al., 2015), or improving astronomical

images (Schawinski et al., 2017), it seemed reasonable that they

could also be used to the up-sample sparse HRTFs. The potential

advantage of this technique over traditional interpolation

methods is that it could allow to recreate information which

is missing from the sparse measurements, by using the training

data from other high-resolution HRTFs. To our knowledge, this

is the first time GANs, and more in general machine learning

techniques, are used for up-sampling HRTF data. Other

ensemble techniques (i.e., which combine several models)

have been developed and employed in problems where spatial

dependence in the data is very relevant; an example are the

random decision forests (Hengl et al., 2018). However, in order to

exploit the highly-structured nature of HRTF data, we use a

super-resolution framework, which is a further element of

novelty in the proposed approach.

This work presents a pilot study investigating the use of

GANs to tackle the HRTF up-sampling problem, specifically

looking at very sparse HRTF measurements, and offering an

initial insight about the suitability of this technique and setting

the path for further research in the field. It is important to

underline that, due to the pilot nature of the study, several

simplifications have been carried out (i.e., training and

evaluating the method on 1D data only; using the same ITDs

for all the HRTFs, and employing minimum-phase HRTF

reconstructions) which, considering the success of this first

validation, will be rectified in future research.

2 Background

2.1 Head-related transfer functions

Our auditory system is able to analyse the sound-pressure

signals as they reach the two eardrums, interpret the information

embedded within the signals and perceive the sound as coming

from a particular position in the three-dimensional space

(Blauert, 1997; Cuevas-Rodríguez et al., 2019).

When both sound source and listener are fixed, the acoustical

transmission from a point source to the two ears can be regarded

as a linear-time-invariant (LTI) process. HRTFs are defined as

the acoustical transfer function of the following LTI system. In

spherical coordinates (r, θ, ϕ) where r denotes the source distance

from head centre, θ represents the azimuth angle, which varies
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from 0° to 360°, and ϕ represents the elevation, varying from −90°

to 90°, denoting below and above.

HL r, θ,ϕ, f, a( ) � PL r, θ,ϕ, f, a( )
P0 r, f( )

HR r, θ,ϕ, f, a( ) � PR r, θ, ϕ, f, a( )
P0 r, f( )

(1)

where PL and PR represent sound pressures at the left and right

ears respectively, and P0 represents the free-field sound

pressure at head centre with the head absent (Zhong and

Xie, 2014).

Sound signals from the source undergo scattering,

diffraction, and reflection off the listener’s shoulders, torso,

head and ears. The disturbance to the sound signal varies

depending both on the anatomy of the listener and the

position of the sound source. HRTFs contain both spectral

and temporal cues, and are usually measured in several

different positions around the head, allowing them to be used

for creating virtual free-field stimuli (Wightman and Kistler,

1989). Convolving an anechoic audio signal with a HRTF

provides a listener with the impression of a free-field sound

source originating from the position where that HRTF was

originally measured (Wightman and Kistler, 1989). In order

to accurately reproduce as many positions as possible around

the listener and to enable smooth head-tracked spatial audio

simulations, HRTFs should be measured with a sufficiently high

spatial density.

The main directional localisation cue at low frequencies is the

interaural time difference (ITD), which is the time difference

between sound waves at the left and right ears. Whereas the main

cue for frequencies above 1.5 kHz is the interaural level difference

(ILD), the pressure level difference between sound waves at the

two ears. Above 5–6 kHz, spectral cues become important for

front-back discrimination, as well as vertical localisation–these

are sometimes referred to as monaural cues (Blauert, 1983;

Zhong and Xie, 2014). Unfortunately, spectral cues are highly

dependent on the listener’s anatomy, particularly their pinnae

shape (Kahana and Nelson, 2006). Therefore, accurate source

localisation requires for the HRTF to be not only spatially dense,

but also individualised to each listener (Møller et al., 1996; Stitt

et al., 2019).

Typically, a HRTF of a particular listener is obtained via

acoustic measurements (Carpentier et al., 2014), but this process

is unfortunately expensive and impractical as it requires

specialised equipment and a significant time commitment by

the listener. Faster measurement methods exist (Zotkin et al.,

2006; Richter et al., 2016), but the equipment specifications and

cost are very high. Furthermore, denser spatial resolutions

require longer measurement times, which can then result in

errors due to listener movements. Hence, being able to up-sample

sparse measurements in order to obtain spatially dense HRTFs

could alleviate those constraints and facilitate access to

personalised spatial audio for more listeners.

It is important to underline that other methods and

approaches exist, beyond acoustical measurement, in order to

synthesize/select individual/individualised HRTFs - an overview

of such methods can be found in (Picinali and Katz, 2022).

2.2 HRTF spatial up-sampling

Spatial up-sampling of HRTF sets has previously been

attempted using various interpolation methods. One of them is

barycentric interpolation, which calculates the HRTF for a given

direction as a weighted average of the nearest three or four

neighbours (Hartung et al., 1999; Cuevas-Rodríguez et al., 2019).

Barycentric interpolation can be seen as a 2D extension of linear

interpolation, where the HRTF is estimated as the weighted average

of the closest neighbours if the direction is provided along a single

axis. This method has been shown to produce a sufficiently good

agreement between measured and interpolated HRTFs when a

relatively large number of measurements are still present

(Gamper, 2013), becoming though much less reliable with very

sparse measurement grids (i.e., more than 90% of points removed).

Alternatively, HRTFs may be interpolated using the spherical

harmonics (SH) framework (Evans et al., 1998). This is done by

representing the HRTF set as a weighted sum of surface SH, and

then sampling the resulting spherical function at the desired

directions. This interpolation method has been shown to be

most effective if the HRTF set is initially preprocessed to

reduce its direction-dependency, such as removing the ITDs

prior to calculating the SH representation (Arend et al., 2021;

Engel et al., 2022). This method works well when the HRTF set is

sampled evenly around the sphere.

Both of the methods above tend to perform poorly (i.e., the

reconstructed data is very dissimilar from the measured one) when

the provided HRTF data is spatially very sparse: in the case of

barycentric, because the nearest neighbours are too far from the

interpolated direction; in the case of SH, because there are large

unsampled gaps on the sphere. In this paper, a method for

performing the spatial up-sampling of HRTF sets via GANs is

introduced and evaluated through a pilot study, meaning that the

implementation and assessment has been carried out on single

dimension cases (i.e., only horizontal, median, or frontal planes).

Considering that barycentric interpolation is the most common

implementation in available binaural spatialisation tools (Poirier-

Quinot and Katz, 2018; Cuevas-Rodríguez et al., 2019), and that in

single-dimension problems it is equivalent to linear interpolation,

this has been chosen as benchmark method for comparison with

the proposed GAN-based approach.

2.3 Generative adversarial networks

AGAN consists of a classifier, called a discriminator (D), and

a generator (G), which learns to create fake data by incorporating
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feedback from the discriminator. In a conventional GAN, the

input to G (Figure 1) is a vector of random samples from the

standard normal distribution, z, referred to as the input noise.

When performing up-sampling (or super-resolution) tasks, G is

also given the low-resolution (i.e., down-sampled) input. The loss

function of G is adapted to include a term that punishes G for

diverging from the low-resolution input.

D and G are updated iteratively and alternately in training.

During training of D, this is passed a batch of real (i.e., measured)

HRTFs, and then a batch of “fake” HRTFs generated by G. Each

fake sample is generated by down-sampling a real HRTF, which

is passed to D alongside a noise vector to G. The loss function is

then calculated and the weights of D are updated using stochastic

gradient descent. During training of G, a batch of measured

FIGURE 1
Up-sampling GAN architecture for HRTFs.

FIGURE 2
(A): magnitude error, averaged over both ears and over all available directions. (B): improvement of the GAN compared with linear interpolation
(values greater than zero indicate that the GAN obtained a lower magnitude error than linear interpolation). Data of all three planes were pooled
together.
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HRTFs is down-sampled, has noise concatenated, passed

through G, and then passed through D.

3 Methods

The HUTUBS HRTF dataset was chosen for the experiment,

thanks to the relatively large number of measured HRTFs, and its

high spatial resolution (Brinkmann et al., 2019). Of the 94 subjects

whose HRTFs sets were measured for the HUTUBS database,

HRTFs sets from 89 subjects are used for training the GANs. For

each subject’s HRTF set, the horizontal, frontal, andmedian planes

for each ear are separately used to train multiple independent 1D

GANs. A 2D GAN would require methods to handle spatial

curvature inherent in the dataset, and is not included in this

pilot study. HRTF data on each plane are also spatially down-

sampled and used to train each GAN. The whole process is then

repeated for a range of down-sampling factors.

3.1 Preprocessing

The original HUTUBS dataset is provided in the SOFA file

format, as standardised by the Audio Engineering Society (AES),

and consists of head-related impulse responses (HRIRs) from

440 directions for both ears. Each HRIR is a time-domain signal

consisting of 256 samples at 44,100 Hz sample rate. The ITD was

removed for each HRIR using an onset threshold detection

method, as described by Andreopoulou and Katz, (2017). A

Hanning window was applied prior to performing the Fourier

transform, ensuring that most of the HRIR energy was preserved

after the windowing. Then, the HRIRs were transformed to the

frequency domain using the discrete Fourier transform (DFT) to

obtain the HRTFs. Then the log-magnitude of the HRTFs was

calculated, which was used as input for the GANs. The HRTF

phase was disregarded, assuming that the up-sampled HRTFs

would be reconstructed using a minimum-phase approximation

and a simple ITD model. It is known that such simplifications

could have an impact on certain perceptual features of the HRTFs

Andreopoulou and Katz, (2022), therefore further research

beyond this pilot will probably need to also consider phase

information.

The GAN is implemented in Python and takes sets of HRTF

magnitudes for either training or up-sampling, once the training

is complete. The output up-sampled set of HRTFs is over

36 directions for each plane.

From each of the HRTF sets we extracted data points on each

of the horizontal plane, median plane, and frontal plane; for the

HUTUBS dataset, there are 36 such data points on each plane,

separated in 10° intervals. Data for each plane were used to train

separate and independent GANs. Left and right ear HRIRs at

each spatial location were also processed separately, and used to

train independent GANs.

Each layer of G consists of 129 channels (linearly-spaced

frequency bins). Information from any frequency can be

combined in the following layer, irrespective of their

frequency separation. An alternative approach would have

been to also use sliding convolutional kernels in the frequency

dimension (Thickstun et al., 2016).

3.2 Model architecture

Each layer in D consists of a 1D convolution layer followed by

a leaky ReLU activation (Xu et al., 2015). In G, each layer consists

of a 1D transpose convolution layer followed by a batch

normalisation and then a ReLU activation, with the output

layer having a final hyperbolic tangent activation. The ReLU

and leaky ReLU were found to give better performance over the

sigmoid activation function - the latter caused vanishing

gradients and stopped useful training. The full structures of D

and G are provided in the Supplementary Material.

The recommended Adam optimiser hyperparameters by

Radford et al. (2015) were used (α = 0.0002, β1 = 0.5 and

β2 = 0.999). This implementation of the GAN uses the

canonical minimax formulation, as introduced by Goodfellow

et al. (2016).

The loss functions for D and G are defined as follows:

Dloss � 0.5 · BCE, σ Dreal( ), 1( ),+, B, C, E, σ Dfake( ), 0( )[ ] (2)
Gloss � BCE σ Dfake( ), 1( ) + αpixelwise · PWL Dreal,ds, Dfake,ds( )

(3)
The loss function for G is the sum of the binary cross-entropy

criterion loss, BCE, and a pixelwise loss term, PWL, which is used to

anchor the output HRTFs to the down-sampled data points that

were provided. Analogous to 2D images, the value at each pixel is

considered to be the HRTFmagnitude corresponding to one spatial

location and one frequency value. The pixelwise loss is defined as the

mean squared error between the down-sampled real HRTFs and the

down-sampledGAN-up-sampledHRTFs, averaged across all values

at each frequency value and spatial location. αpixelwise is the pixelwise

loss coefficient set at 50. In a hyperparameter sweep, using different

values of αpixelwise ranging from 0.1 to 100 did not have a large

impact on the training. The losses defined above drives D to try to

output 1 for real and 0 for fake, while driving G to output samples

that D will classify as real (i.e., 1).

As mentioned above, three subsets of directions were

extracted from each HRTF set: horizontal plane, median

plane, and frontal plane. Each plane contains 36 directions,

separated in 10°intervals. For each plane, five different sparse

(down-sampled) subsets of directions with different angular

separations were extracted: 20°, 40°, 60°, 90°, and 180°.

The dataset consisting of 94 subjects was divided into three parts

of 45, 44, and 5 subjects. These were used while training the

discriminator, the generator, and as a hold-out test set
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respectively. The motive for splitting the data in this way was to

avoid a particular kind of overfitting. TheGAN is performing an up-

sampling operation inwhich it is being asked to learn to generate full

angular resolution outputs from low-resolution inputs. This is being

done stochastically, as the low-resolution inputs do not contain

sufficient information to perform this reconstruction exactly, which

is whywe concatenate noise to the input. However, if the training set

was not divided, then D would have previously seen the exact full

resolution output corresponding to each input and could then

punish G for using the noise to add variation.

3.3 Evaluation of HRTFs

HRTFs can be evaluated experimentally by supplying real

subjects with virtual sound sources and assessing their ability to

accurately localise the sound (Kim et al., 2020). However, subjects

should be extensively trained in order to provide a reliable level of

localisation ability (Andreopoulou and Katz, 2016), and as such this

validation approach was beyond the scope of this study. Other

perceptual attributes, such as timbral quality or externalisation, may

also be assessed (Lindau et al., 2014).

In this work, HRTFs are evaluated by predicting localisation

performance using the perceptual model described in Barumerli

et al. (2020), as implemented in the Auditory Modelling Toolbox

(Majdak et al., 2022). This model simulates how a human listener

would perform in a sound localisation task when provided with a

HRTF different than their own. Therefore, the quality of both the

GAN-reconstructed and linearly interpolated HRTFs can be

assessed by looking at the predicted localisation error. This

error is reported as the average great-circle distance between

the actual and the predicted directions.

For the model-based evaluation, the HRTFs were

reconstructed as minimum-phase filters from the interpolated

log-magnitudes, according to Oppenheim et al. (2001). Then,

ITDs were reinserted using the classic Woodworth formula

(Woodworth et al., 1954). Note that this procedure was also

applied to the linearly interpolated HRTFs as well as the reference

full-resolution HRTFs, in order to ensure a fair comparison. The

implications of this choice are discussed in Section 5.

4 Results

4.1 GAN training and output

Each GAN is trained with an early stopping criterion defined

where pixelwise loss falls below 0.002. The pixelwise loss is used

as a metric of similarity and indicates that the GAN is able to

reproduce data at the spatial locations where HRTF magnitudes

were provided to it. A batch size of 5 subjects are used in each

iteration. Losses were monitored for both D and G to detect

issues such as vanishing gradients.

The noise had little to no effect on the output of G suggesting

mode collapse has occurred. This lack of stochasticity and reduction

in the diversity of outputs could potentially impact the quality of

training, as mode collapse results in D receiving the same signal

from G. The suspected cause of the mode collapse is insufficient

training data. Some potential methods to mitigate this include using

a Wasserstein GAN with gradient penalty or training a smaller, less

complex D although these were not in the scope of this project.

Usually, mode collapse is to be avoided if the GAN produces a large

variety of outputs. However, in this case we only require a single

useful high-resolution output, therefore the model was still able to

generate useful results.

4.2 Interpolation error and perceptual
model output

The HRTF interpolation error was calculated as the absolute

difference between the log-magnitude of the original HRTFs and the

interpolated/up-sampled ones. The results, averaged across

directions, across the five test subjects (i.e., the untrained HRTFs)

and across the left and right channels, are shown in Figure 2

(horizontal, median and frontal planes pooled together) and

Figure 3 (separated per plane). The plots show (Figure 2A and

top in Figure 3) the error for both the GAN-reconstructed HRTFs

and the linearly interpolated ones, as well as the difference between

the two (Figure 2B and bottom in Figure 3).

According to these visualisations, the HRTFs reconstructed by

the GAN displayed significantly smaller magnitude errors than the

linearly interpolated ones for the sparsest conditions, such as 120°and

180°angle steps. On the other hand, this did not happen for the denser

conditions, such as 20°and 40°angle steps. Furthermore, these plots

suggest that the magnitude error improvement of the GAN with

respect to linear interpolation was greater for the median and frontal

planes than for the horizontal plane.

The results of the localisation model evaluation are displayed in

Figure 4. For each test subject and each interpolated/up-sampled

HRTF direction, themodel simulated 100 repetitions of a perceptual

experiment where a listener is asked to localise a sound source

spatialised with saidHRTF. The reason for themultiple repetitions is

to account for the stochasticity of the model, which mimics the

behaviour of listeners in real experiments. The plots show the

average great-circle distance between the direction of the actual

HRTF the one predicted by the model.

According to these plots, localisation errors increase

monotonically with sparsity for linearly interpolated HRTFs,

providing the best performance for the smallest angle step (20°)

and very large errors for the largest step (180°). In comparison,

GAN-up-sampledHRTFs are less affected by the sparsity, displaying

comparatively small errors for the sparsest conditions. This trend

seems to hold true for all three planes, although the errors are overall

larger in the median plane compared to the other two. It is worth

noting that consistent magnitude errors of at least 1 dB are observed
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in the sparser conditions when using theGANmethod, increasing to

at least 3 dB for frequencies above 6 kHz (larger errors appear when

using linear interpolation). This is likely to lead to perceivable tonal

differences in the binaural signals rendered with said HRTFs, and

will need to be addressed in future research.

5 Discussion

Before discussing each specific output of the numerical

evaluations, it is important to note that the results of the

magnitude error analysis generally agree with the localisation

model predictions; as expected, larger magnitude errors seem to

lead to larger localisation errors.

Looking at the linear interpolation (used as benchmark

method), errors increase with sparsity, as expected. For the

sparsest conditions (120°and 180°steps), errors are very large,

which indicates that the interpolated HRTFs will very probably

provide poor spatial audio quality, likely resulting in low localisation

performances and reduced realism of the rendering. Also for the

GAN up-sampling errors increased with sparsity, but seem to

plateau after 90°separation steps, outperforming linear

interpolation for the sparsest conditions. This suggests that, for

situations where only a few directions of the HRTF set are available,

FIGURE 3
(A): magnitude error, averaged over both ears and over all available directions. (B): improvement of the GAN compared with linear interpolation
(values greater than zero indicate that the GAN obtained a lower magnitude error than linear interpolation). Data were split in horizontal, median and
frontal planes.

FIGURE 4
Average localisation error, as predicted by the model by Barumerli et al. (2020) (lower is better). The dashed line represents the ideal case of a
real listener’s performance when localising a sound source with their own HRTF.
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the GAN is superior to linear interpolation and will likely provide

higher quality spatial audio renderings in terms of localisation

accuracy. In contrast, for the conditions with steps smaller than

90°, traditional interpolation methods would be a better option.

Considering specifically the perceptual model output, and the

average error for the three separate planes, it is important to

underline that horizontal errors are attributed to interaural cues.

Since both the GAN-up-sampled and linearly interpolated HRTFs

were generated asminimum-phase filters, we can safely assume that

ITDs are identical in all cases, so ILDs are the only relevant

interaural cue influencing horizontal localisation errors. Looking

at the second subplot in Figure 4, we can infer that the GAN-up-

sampled HRTFs obtained smaller ILD errors, and therefore smaller

localisation errors than the linear counterpart for angle steps greater

than 90°. In the case ofmedian plane localisation, monaural cues are

dominant, and we observe that GAN-up-sampled HRTFs

outperformed the linear version for angle steps of 120°and 180°,

but with the differences smaller in this case. Frontal plane

localisation involves both interaural and monaural cues, and as

expected it displays similar trends to the other two planes.

Since all HRTFs have been transformed tominimum phase, it is

safe to assume that all the localisation predictions are largely based

on spectral features. This is not only true for the median plane but

also for the horizontal and frontal planes, where up/down and front/

back reversals are still possible, and ILDs become a relevant factor.

The results suggest that, when compared to linear interpolation, the

GAN performs better at reconstructing interaural spectral cues than

monaural ones. This would explain why the predicted localisation

improvements by the GAN are larger for the horizontal and frontal

planes than for the median plane. This could be due to the GAN

needing a larger training dataset (e.g., more HRTFs) in order to

predict monaural cues more accurately. Furthermore, we speculate

that once the the GAN is trained on full-sphere rather than

individual plane data, these results will significantly improve.

Considering the initial aim of this pilot study, which was to

investigate the use of GANs to tackle the HRTF spatial up-

sampling problem, comparing its performances with a traditional

linear interpolation method, and offering an initial insight about

the suitability of this technique, the results of the numerical

evaluations seem to validate the proposed GAN-based method.

This performs notably better than the interpolation benchmark

for steps larger than 90°. This was validated both by spectral

magnitude error analyses, and by computing the output of a

perceptual model predicting sound sources localisation accuracy.

6 Conclusion and future work

Acoustic measurement of HRTFs is currently time consuming

and expensive to obtain due to the personalised nature of HRTF sets

and the need for them to be spatially dense. This study demonstrates

that up-sampling a HRTF through a data-driven approach using

GANs has the potential to achieve better localisation performance

than when using linear interpolation. The GANs provides similar

localisation results to linear interpolation whenmany data points are

provided, but outperforms it when the spatial resolution is

dramatically reduced (e.g., sampling every 120°or 180°). This

opens up the potential impact of the proposed work to being

able to predict high resolution individual HRTFs using only a

very low number of source positions (e.g., in the order of four to

six measurements), which could be measured also in uncontrolled

environments and without the need for expensive hardware setups.

It has to be underlined though that this study presents only a

pilot experiment; the GAN architecture is relatively simple and

future research is likely to produce improvements. However,

transferring this approach from a great circle to the entire surface

of a sphere is non-trivial. One option for achieving this is graph

neural networks, which have been used to build GANs for

arbitrary particle detector topologies (Kansal et al., 2020).

The current GAN-based approach cannot yet be directly

compared to other state-of-the-art HRTF interpolation methods,

such as the ones described by Arend et al. (2021), since it up-samples

over 1 dimension only. Introducing up-sampling over an additional

dimension (e.g., azimuth, in addition to elevation) would allow a

direct comparison, but would require a compression or mapping of

the 3D surface to 2D, possibly using graph networks and 2D

convolutional layers for both the discriminator and the generator.

Furthermore, the localisation model could be added into the loss

function so that the GAN can optimise for its performance directly.

Additionally, future work should look into processing the HRTF

phase as well as its magnitude, and training themodel using both left

and right ear signals on the same input data.

In the future, other perceptually relevant metrics could be

evaluated in addition to localisation. For instance, a relevant one

is externalisation, defined as the degree to which a virtual sound is

perceived to come from outside of the head, which could be

evaluated with appropriate auditory models (Baumgartner and

Majdak, 2021), or through carrying out behavioural experiments.

The latter could also be used to validate the results of the localisation

model, and allow comparisons with results from other studies,

aiming to ultimately validate the proposed GAN-based approach.
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