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The reconstruction of tools and artworks belonging to the origins of music
computing unveils the dynamics of distributed knowledge underlying some of
the major breakthroughs that took place during the analogue-digital transition of
the 1950s and 1960s. We document the implementation of two musical replicas,
the Computer Suite for Little Boy and For Ann (Rising). Our archaeological
ubiquitous-music methods yield fresh insights on both convergences and
contradictions implicit in the creation of cutting-edge technologies, pointing
to design qualities such as terseness and ambiguity. Through new renditions of
historically significant artefacts, enabled by the recovery of artistic first-hand
sources and of one of the early computer music environments, MUSIC V, we
explore the emergence of exploratory simulations of new musical worlds.
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1 Introduction

Ubiquitous music archaeology (a-ubimus) (Lazzarini and Keller, 2021) is an
emerging field of investigation that attempts to retrace, recover, and situate past
musical practices through the study of rescued cultural artefacts. Artefacts
encompass source code for computer programs and artworks, diagrams (e.g.,
flowcharts), hardware schematics, published and unpublished texts on the creative
procedures, and audio recordings on various media. This wide variety of sources can be
used for archaeological investigations. The enhanced understanding of the creative
processes of the past that emerges from a-ubimus endeavours may impact current
initiatives in the digital humanities.

Computer Music is an area of activities that sits at the intersection of various fields of
knowledge (Hiller and Isaacson, 1959; Moore, 1990). Its origins can be traced to the first
implementations of computational infrastructure. For instance, sound had been
generated by a computer as early as 1951 in Australia and England (Doornbusch,
2004). Computers were also used as an aid to instrumental composition and analysis
since 1956 (Pinkerton, 1956). In parallel to this, the analogue electroacoustic music
studio had been available to composers since the post-war period (Manning, 1983). The
period of study in this article, 1961–69, features multiple technological advances that
point to a complex transition between analogue-based and digitally oriented forms of
artistic practice. Despite an apparent convergence of interests between technologists and
musicians, the field has highlighted foundational contradictions that impact
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technological design and creative activities. These contradictions
and their implications for current music practices are potential
targets of a-ubimus investigations.

Technologically oriented musical practice features a distributed
form of development. This perspective is often lost by the attribution
of independent and scattered findings to a single individual.
Similarly, the musical knowledge that has driven key advances in
computing tends to be ignored because it is not as explicit and as
readily identifiable as the technical contributions. In this work, we
use the methods of ubimus archaeology to explore central questions
of technological design that emerge through the study of the early
efforts of musicians, scientists, and engineers to establish the means
to create music within the digital realm. These questions encompass
the distributed nature of technologically oriented musical
knowledge, the practice-based dynamics established surrounding
artistic knowledge and the tensions arising from genre-oriented
designs that sometimes are incompatible with artistic innovations.
Our findings are supported by an extensive empirical investigation
which features:

• A replica of an early music-programming system, MUSIC V
(Mathews et al., 1969);

• The reproduction of computer-music scores and designs
either within this environment or by means of its modern
counterpart, Csound 6 (Lazzarini et al., 2016); and

• The recovery and synthesis of two representative artworks of
the analogue-digital transition, Jean-Claude Risset’s The
Computer Suite for Little Boy (1969) (henceforth Little Boy)
and James Tenney’s For Ann (Rising) (1969).

1.1 The acoustic compiler

The first examples of computer music were realised within an
environment characterised by the lack of hardware for musically
targeted computational input or output (Hiller and Isaacson, 1957).
Input was handled by means of punched cards, which implied not
only intensive manual labour but also detailed planning to minimise
errors. To enable their sonic realisation, the earliest examples of
computer music were all transcribed by hand to traditional musical
notation. With the introduction of an audio digital-to-analogue
converter (David et al., 1959) and digital-synthesis software
(Mathews and Guttman, 1959), compositions could be rendered
directly to sound.

Following this, a key development in early computing is the
emergence of the acoustic compilers, a family of software
programming environments for digital audio synthesis. The first
of these (Mathews, 1961) was retrospectively called MUSIC III. It
shared design principles with a contemporary, general-purpose
block-diagram compiler used for circuit simulation, BLODI
(Kelly et al., 1961). The acoustic compiler assembled the software
from a program describing a set of interconnected signal processors.
When control data was supplied, the program could render a sound
waveform. MUSIC III was eventually superseded by MUSIC IV, a
complete system which included a properly defined music
programming language, the first of its kind (Lazzarini, 2013).

These early computer music systems were not portable,
having been written for specific hardware (such as the IBM

704 and 7,094 computers). Reconstructing them may be
possible through the use of simulators [as reported in
(Lazzarini and Keller, 2021)], although given the lack of
extant sources no such work has been attempted yet. From the
mid-1960s, an improvement in the performance of high-level
languages such as Fortran made it possible to implement either ly
or fully portable systems. The first notable case is MUSIC 4F
(Roberts, 1966), a Fortran-only version of MUSIC IV. A few years
later, MUSIC V (Mathews et al., 1969) was implemented using
almost exclusively Fortran. With the availability of sources for
this system, we were able to reconstruct it to support our
a-ubimus investigations.

2 MUSIC V

MUSIC V is described in detail in (Mathews et al., 1969). We
give here a brief interpretation of the program operation to set the
context for the methodology applied in this paper. The input to the
system is known as the score, containing instrument definitions and
control data. The fundamental elements of the MUSIC V score
syntax can be summarised thus:

• Statements are composed of a three-letter opcode
mnemonic followed by parameters (which may be
separated by spaces or commas). Statements are
terminated by a semicolon.

• The three-letter opcode determines the type of statement and
the number of expected parameters, which may be numeric or
symbolic.

• Execution of statements is strictly timed. In most cases, the
first parameter indicates the action time of each statement.

The following are the basic statement categories:

• Instrument definition: INS and END determine the beginning
and end of an instrument definition.

• Unit generators: a set of statements is reserved to define unit
generators, which are the building blocks of instruments.
These are connected together to define the digital signal
processing structure of each instrument.

• GEN routines: some unit generators depend on function
tables. These are defined via GEN statements invoking the
routines used to compute them; GENs 1 and 2 are given to
compute envelope and wave tables, respectively. MUSIC V
was designed in such a way to allow for new GEN routines to
be added as needed.

• Note statements: instruments can be instantiated at different
times for specific durations. NOT statements are used for this
purpose.

• Data/function setting code: code to set user program
function inputs, variables and system attributes such as
the sampling rate and number of output channels (SV1,
SV2, SV3, SIA, SI3).

• Section and termination statements: these are used to define
code start and end of code sections, which can be used to
segment a score into separate parts to be executed
sequentially.

Frontiers in Signal Processing frontiersin.org02

Lazzarini et al. 10.3389/frsip.2023.1132672

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1132672


The three fundamental statement types are the unit generators
(placed in instrument blocks), the function table definitions (GEN
statements), and the note lists. For example, a simple instrument
consisting of an oscillator (OSC) connected to the output (OUT) is
given as (Figure 1).

INS 0 1;

OSC P5 P6 B3 F1 P30;

OUT B3 B1;

END;

Unit generators do not have an action time and accept only
symbolic data as parameters, which may be of three types.

• Note variables/parameters (Pn): these refer to instance-specific
(scalar) data, with n as the index of their location in memory.
These are shared between the instrument and the NOT statements
that instantiate them. For example, P5 and P6 are the fifth and sixth
parameter in a NOT statement (with NOT itself as P1, action time
as P2, instrument as P3, and duration as P4).

• Audio buffers (Bn): these refer to global memory locations
containing an audio buffer. By default these are 512-sample
vectors. B1 and B2 are reserved for output use.

• Function tables (Fn): these refer to function tables defined by
GEN statements.

In the particular case of the OSC unit generator, its first parameter is
the signal amplitude (P or B); the second, its sampling increment (P or B);
the third is the output buffer; the fourth is a function table; and the last is a
scalar to hold the oscillator phase (its state). TheOUTunit generator takes
a buffer and adds it to the output bus (B1). The GEN statement defining
function table 1 to hold a sine wave is.

GEN 0 2 1 1 1;

which creates F1 using the GEN subroutine 2 (designed to create
one period of a waveform based on its Fourier series). Function
tables are stored in 512-sample vectors by default.

Finally, a NOT statement to run instrument 1 for 5 s starting at
time 0 is given as.

NOT 0 1 5 500 5.098;

This will play a sine wave at 440 Hz (if the sampling rate is set to
44,100) and peak amplitude set to 500. Since the signal was encoded
using 12-bit signed integers, the maximum absolute amplitude is
given as 2048. To compute a sampling increment from a given
frequency in Hz, it is important to note that although function tables
are 512 samples long, waveforms computed by GEN 2 complete a
single cycle over 511 samples, one sample short of the total storage.
Therefore the sampling increment Si for a given frequency f and
sampling frequency fs is

Si � f
511
fs

(1)

despite the fact that the actual oscillator code wraps around over
512 samples. The reasons for this behaviour are not directly
discussed by Mathews et al. (1969), although they observe that
“[a]ctually only 511 numbers are independent since F(0) = F(511)”
(Mathews et al., 1969, 50). In modern systems this is almost never
the case. Waveforms are normally defined over the full length of the
table, sometimes with an extra guard point added, as for instance in
Csound (Lazzarini et al., 2016), for interpolation purposes. We
expect that the mechanism of a shorter function length in
MUSIC V may have been used for the same purpose. When
restoring source code, it is important to check such details before
any assumptions are made.

Since defining oscillator frequencies using sampling
increments is not very convenient, conversions are often
handled by user-supplied CONVT routines. MUSIC V
facilitates the addition of Fortran code so that users can design
these system components themselves. They can take, for instance,
values supplied in the NOT statements and apply specific formulas
such as the one in Eq. 1. Supplying the correct code for these
subroutines is therefore essential for the correct interpretation of
score parameters. For example, in many synthesis examples
discussed in this paper, a CONVT routine applies conversion
formulae to various Pn prior to these being supplied to the
OSC unit generators. Therefore, when studying a MUSIC V
score, to analyse the results correctly we need to take these
formulae into account.

2.1 Program structure

The MUSIC V operation is divided into three stages, or passes,
which correspond to three Fortran source files in our codebase:

1. Pass 1 (pass1.f): the first stage parses the score file, checks for
errors, and translates the input to a numeric form.
Mnemonics are translated to integers and all the symbolic
data is encoded as floating-point numbers with various
offsets. The output is a text file containing newline-
terminated lists of numbers.

2. Pass 2 (pass2.f): in this step, data is sorted in ascending execution
time order, tempo processing and CONVT subroutines are

FIGURE 1
Simple oscillator instrument flowchart.
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applied to the inputs. Output is in a similar numeric format as the
input.

3. Pass 3 (pass3.f): this is the acoustic compiler proper, which
takes the instrument, function table, and note statements and
executes them producing a digital audio waveform as output.
Code for unit generators and GEN routines resides in this
source file.

2.2 Sources and versions

The development of our MUSIC V replica was based on a
number of scattered source materials (Lazzarini et al., 2022b).

1. SAIL 1975 sources: in 2008, Bill Schottstaedt made available a
machine-readable version of MUSIC V listings from the Stanford
Artificial Intelligence Lab dating from 19/06/1975. This version
included code for most parts of the software, with a number of
modifications for the modern versions of the Fortran language.
These included the replacement of most of the arithmetic IF
statements in the code (these are deprecated but are still accepted
by compilers such as gfortran), and a major reorganisation of
pass 1 to deal with various memory models. It also included the
change in the OSC code to allow for negative frequencies, as
introduced by John Chowning (1973).

2. Risset’s Catalogue (Risset, 1969) contained the code for a number
of subroutines that were missing in the SAIL 1975 sources.

3. The MUSIC VManual (Mathews et al., 1969) provided a detailed
description of the program as well as some code fragments that
were used to complete and debug the code.

4. Complete listings of a 1968 version were found at the Fonds
Jean-Claude Risset, which were important for situating the
software as it existed at the time of the composition of
Little Boy.

5. Scores of Little Boy provided some missing subroutines and
additionally enabled the debugging of the complete system.

Through the methods of software archaeology (Hunt and
Thomas, 2002) and supported by modern versioning tools, we
were able to replicate the functionalities of the environment used
by Risset in his composition and research. Also, based on this
project’s findings, we could identify at least four distinct versions
used at Bell Labs between 1968 and 1969 and a later one used at
Stanford University:

1. Fonds Risset 1968 version, represented by the earliest extant
source code. Parts of what we expected to be the released MUSIC
V code are missing, and according to source code comments,
some components are not functional or incorrect.

2. MUSIC V Manual version. This is based on the code and
descriptions found in the Manual, the 1968 version, and the
1975 SAIL version, with modifications. It corresponds to what we
can describe as the first released version of the system.

3. Little Boy version, for which no source code is available. This a
hypothetical version constructed from the working components
of the 1968 version, the edited Manual version, code fragments
found in the Little Boy scores and the debugging procedures
applied on these scores.

4. Catalogue version. This is based mostly on the Manual version
with additions published as part of (Risset, 1969), and some
modifications.

5. SAIL version: this is the source code from the SAIL listings. For
this version, we only had access to the machine-readable version
with modifications for modern fortran.

The initial work in reconstructing the software involved an
assessment of the status of the SAIL 1975 sources and their
modifications. This revealed that while the code could run simple
scores and produce a predictable output, it could not handle a wider
variety of material without extensive changes. This is a summary of
the bug fixes and modifications that were applied to the sources to
support the reconstruction work.

• In pass1.f, modifications made by Schottstaedt prevented the
running of certain user-supplied PLF subroutines. The code
was changed to enable this and to include the PLF3 subroutine
provided by Risset (1969). A number of typos were corrected.

• In pass2.f, a major bug preventing the call of user-defined
CONVT subroutines was fixed. The CON subroutine, which
applied score-defined tempo changes, was broken and was
restored by us. This work was essential to enable Little Boy
scores to run correctly.

• In pass3.f, output was fixed to one channel (the STR stereo
output unit generator was not functional), the sampling rate
was hardcoded to 44,100 Hz. To allow to set the number of
channels and sampling from the score, modifications to pass
3 and pass 1 code were required. Various bugs in unit
generators were fixed and the interpolating oscillator code
was restored based on the 1968 sources.

In addition to these changes, the compiler has been adapted to
run within a modern operating system. The original workflow
involved the score being prepared as a deck of punched cards,
which together with the Fortran sources, were supplied to the
computer as a batch job. The computation yielded a set of
printouts (containing information about the pass, etc.) and the
data output from each pass. This was fed to the subsequent pass,
resulting in a digital audio file rendition. Within this workflow, it
was possible to make additions to the Fortran source code in the
form of user-supplied routines (e.g., PLF, CONVT, GEN). On a
modern system, we work from pre-compiled binaries to avoid
having to use the Fortran compiler for every score run. Also, it is
more convenient to have a single driving command that can execute
the three passes in sequence and produce a soundfile in a standard
format.

To allow for these changes, the current project features the
three passes to be invoked as routines from a single program. The
code was written using the C language and included a component
to translate the raw digital audio data into a RIFF-Wave soundfile
format as a final step. In this form, a user only needs to supply the
score file name and an output file name, and the three passes are
run in sequence from a single command. Intermediary data is
still preserved as separate files for inspection, and the main
results can be opened with any current sound editing
applications. Furthermore, as detailed later, a mechanism to
select specific CONVT routines was introduced to facilitate
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the swapping of these without necessitating the recompilation of
Fortran sources.

3 Design in early computer music

The practice of computer music is akin to running a simulation,
in which users design computer algorithms and execute them with
control data from computational scores (Keller et al., 2022). The
result is a digital audio waveform. This set of procedures has two
primary implications: from the point of view of musical design,
computer-generated sound is the materialisation of an imagined
music-world which does not need to abide by the rules of acoustic-
instrumental thinking; from a software-design point of view
musically oriented forms of computational thinking (Otero et al.,
2020) may also foster the adoption of object-oriented programming
paradigms (OOP).

MUSIC IV embodies OOP features that later became
common in systems such as SIMULA (Lazzarini, 2013). OOP
supports abstractions (instrument-classes and unit generators)
which are instantiated to simulate sonic processes. These
processes are key features of musical ecosystems. Two
foundational texts of computer music (Tenney, 1963; 1969)
document examples of the design of computational instruments
through a musical approach to sound-synthesis techniques;
pieces such as Little Boy provide another instance of the
application of this knowledge. This conceptual and
methodological perspective has triggered a body of
qualitative changes in the practices of music creation and
sharing with profound implications for technological design.
In this section, we review a few notable examples that exemplify
these developments.

3.1 Amplitude and frequency modulation

An important design case within the 1961–1969 period is the use
of modulation as a means to synthesise various time-varying spectra.
The acoustic compiler provided an ideal environment for this,
supporting multiple unit generators connected in various ways
that could also handle control signals. With this software,
Tenney was able to determine experimentally many important
attributes of both amplitude and frequency modulation
techniques (AM, FM), noting that they added “that element of
richness” (Tenney, 1969, p.36) he required in his work. In this
regard, he also noted that the use of bandlimited noise as a
modulation source was more important than periodic signals,
particularly in AM.

Amongst his experimental findings, the ones involving audio-
range modulation seem to be particularly original. Tenney
employed a random number generator to produce outputs at
various frequencies, feeding this signal into the amplitude input
of a sinusoidal oscillator to synthesise dynamically evolving noise
bands. In this process, he was able to determine that the
bandwidth of the noise region was defined by the rate of the
random number generation, and that its centre frequency was
defined by the oscillator frequency. While this is a heterodyning
effect that was already known from radio-frequency theory, its

application in digital audio was new and highly influential for
future developments in sound synthesis.

Tenney’s pioneering work with audio-rate linear FM is also
noteworthy. Although his experiments favoured the use of noise
modulation, he was able to derive experimentally some
important ideas that a decade later became part of FM
synthesis theory (Chowning, 1973). Tenney notes that the
bandwidth of FM is dependent both on the modulation range
(or amplitude) and the noise-generation rate, whereas in the case
of AM, the modulation range only affects the amplitude of the
output sound (Tenney, 1963, 46). His conclusions agree with the
fact that the modulation amplitude determines the maximum
instantaneous frequency of the carrier signal and thus have such
an effect. Tenney’s experimentally-derived formula for noise
modulation indicates that the bandwidth is approximately
determined by the sum of the range and rate of noise
generation. As noted later by Chowning, the bandwidth of
sinusoidal FM synthesis is dependent on the ratio of the
frequency deviation to the frequency modulation called the
index of modulation.

3.1.1 Reconstruction of Tenney’s modulation
testbed

The experiments discussed by James Tenney (Tenney, 1963;
1969) are fully replicable. By following the explanations and
flowcharts, it is possible to reconstruct the proposed designs on a
modern system such as Csound. In his lab report (Tenney, 1969),
Tenney provides a complete AM/FM testbed instrument. The
following Csound code is a reconstruction of the AM/FM
instrument as designed by Tenney (Tenney, 1969, 37). This
instrument allows us to study the various forms of modulation
explored in his experiments. In particular, it is possible to vary
the noise rate (which is the frequency at which new random
variables are produced) for both AM/FM modulators, the
amount of noise AM as a fraction of total amplitude, and the
amount of FM as fraction of the mean frequency. The instrument
also includes a (sinusoidal) periodic FM source. In his
description, there is no mention of any experiments using
audio-range periodic FM, since he fixes the frequency of this
sinusoid to 7.5 Hz (Figure 2).

In the reconstruction of the original experiments (based on
MUSIC III and MUSIC IV), the oscillators were not capable of
negative sampling increments. Therefore the maximum FM
width (the sum of periodic and random modulation amounts)
cannot exceed 100% of the mean frequency, otherwise the
reconstruction will not reproduce the original outputs. This is
because the oscillators in Csound are capable of handling
negative frequencies. The handling of negative frequencies was
only introduced later in MUSIC V, following the development of
the FM synthesis theory (Chowning, 1973).

0dbfs = 1

/*function tables, 512 samples long as in the

original

gie - exponential decay to -60dB (amplitude)

give - trapezoid (frequency modulation)

giw - sawtooth waveform with 10 harmonics

*/
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ilen = 512

gie ftgen 0,0,ilen+1,5,1,ilen,0.001

give ftgen 0,0,ilen+1,7,0,ilen*0.3,1,

ilen*0.4,1,ilen*0.3,0

giw ftgen 0,0,ilen,10,1,1/2,1/3,1/4,1/5,1/6,

1/7,1/8,1/9,1/10

/ * instrument parameters

p4 - amplitude (mean)

p5 - frequency (mean)

p6 - AM amount (percent/100)

p7 - AM noise rate (Hz)

p8 - max FM amount (percent/100)

p9 - FM noise rate (Hz)

*/

instr 1

ar randi p4*p6,p7

ae oscil ar+p4,1/p3,gie

ave oscil p8*p5,1/p3,give

avi oscil ave,7.5

avr randi ave,p9

asig oscil ae,avr+avi+p5,giw

out asig

endin

FIGURE 2
Tenney’s testbed instrument flowchart.

FIGURE 3
FM instrument flowchart.

Frontiers in Signal Processing frontiersin.org06

Lazzarini et al. 10.3389/frsip.2023.1132672

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1132672


3.1.2 Early FM synthesis
As part of our study of Risset’s Little Boy scores, we have also

discovered a MUSIC V score fragment that features linear
audio-rate periodic FM, as later employed by Chowning in
works such as Stria (Zattra, 2007). To our knowledge, this is
the earliest extant synthesis source-code demonstrating this
technique. The same fragment also combines FM and
feedback amplitude modulation (FBAM, which is discussed in
the next section) to produce a complex time-varying spectrum.
This design is not only quite unique, to the best of our
knowledge it was neither discussed by Risset nor was it
further explored in the literature. While, as we noted earlier,
FM synthesis had already been introduced by Tenney, this
example employs the kind of sinusoidal modulation which
formed the core of John Chowning’s FM theory. The
approach here is that of a sped-up vibrato, and while the
modulation amounts are small (the index of modulation
never exceeds 1.6), we have a clear example of the emergence
of a characteristic FM synthesis spectrum.

The following MUSIC V score containing code extracted
from one of Risset’s original scores (w20_003_2, p.42, dated
7 August 68, file name 1968_08_07_42debug.txt), shows the
FM/FBAM code (for which a flowchart is shown in Figure 3).
A single instrument is used, which includes a switch enabling
FBAM in the second note of the score. The instrument contains
four oscillators: the first two produce the amplitude and
frequency envelopes for the modulation; the third is the
modulator; and the fourth is the carrier. The FM amount
(maximum instantaneous frequency deviation) and frequency
increase over time and the audio-rate FM spectrum emerge
towards the end of each note as the modulation rate rises to
the audio range (reaching nearly 70 Hz). As indicated by the
comments, the second note has the P10 parameter set to one,
enabling feedback (this is used as a multiplier to the feedback
signal). An analysis of the code and its output reveals a certain
amount of aliasing (at 10 KHz sampling rate), which may be
reduced with the use of higher sampling rates.

COMMENT: RISSET FM EXAMPLE EXTRACTED FROM LB

MATERIALS;

SIA 0 4 10000;

COMMENT:VIBRATO VARIABLE POUR SONS DE CAMERA;

INS 0 2;

OSC P8 P7 B3 F3 P30;

OSC P9 P7 B4 F4 P29;

OSC B3 B4 B3 F2 P28;

AD2 P6 B3 B3;

MLT P10 B10 B5;

AD2 P5 B5 B6;

OSC B6 B3 B10 F2 P27;

OUT B10 B1;

END;

GEN 0 2 2 1 1;

GEN 0 1 3 .05 1 .05 10 .999 256 .999 512;

GEN 0 1 4 .1 1 .1 280 .999 512;

COMMENT:SANS FEEDBACK;

NOT 0 2 6 1000 554 0 20 70 0;

COMMENT:FEEDBACK;

NOT 7 2 6 500 554 0 20 70 1;

TER 14;

COMMENT:CONVT3

3.2 Feedback amplitude modulation

Feedback amplitude modulation [as described in detail by
Kleimola et al. (2011)] is another design case that emerged in
early experiments with MUSIC V. In its simplest form, feeding
back part of the signal from a sine wave oscillator to its
amplitude input results in a significantly enriched spectrum
with a brass-like quality (Layzer, 1973). These sounds could
potentially be obtained through additive synthesis, however this
demanded more computational resources. One of the reasons
Risset extensively examined its sonic possibilities in his
preparations for Little Boy was to achieve computationally
efficient complex time-varying spectra. His use of FBAM hit
a specific MUSIC V limitation: a fixed 512-sample feedback
period was imposed by the design of the first version. Layzer
(1973) notes that a later addition to the software was
implemented by Richard Moore, making it possible for the
period to be varied from 1 to 512 samples. However, no
trace of this implementation was found in any of the sources
we collected for our replica. To explore how this unit generator
could have been used, we reconstructed this functionality in
MUSIC V according to Layzer’s report.

3.2.1 Risset’s FBAM instruments
Risset’s use of FBAM is characterised by the use of the

instrument output buffer as the modulation input
(i.e., replacing the noise source in Tenney’s example). This
inserts a delay of 512 samples, the default size of audio buffers in
MUSIC V, in the feedback path. Furthermore, since the
software does not implement instance-unique memory for
the signal buffers, instruments using feedback are not fully
re-entrant, as instances do not have access to a fully separate
dataspace. A side effect of this in Risset’s scores is that it is not
possible to have simultaneously running instances of the same
feedback AM instrument. The solution to this is to have several
copies of the same instrument, one for each instance. Moreover,
if instruments are to be executed serially, feedback buffer
memory needs to be re-initialised through the use of
dedicated memory-clearing instruments.

The example below is a fragment taken form one of the
earliest FBAM examples by Risset (filename 1968_08_07_
14debug.txt). The score has six instruments containing the
same design, a single oscillator whose amplitude is
modulated by its output, enabling up to six simultaneous
sounds to be synthesised. Instruments 7 to 12 are used to
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clear the buffer memory for subsequent instances. These are run
immediately before the end of the code section. Figure 4 shows
the flowchart for instrument 1; instruments 2–6 are similar in
design.

INS 0 1;

AD2 B7 P5 B3;

OSC B3 P6 B7 F1 P30;

STR B7 V1 B1;

END;

INS 0 2;

AD2 B8 P5 B3;

OSC B3 P6 B8 F1 P30;

STR B8 V1 B1;

END;

INS 0 3;

AD2 B9 P5 B3;

OSC B3 P6 B9 F1 P30;

STR B9 V1 B1;

END;

INS 0 4;

AD2 B10 P5 B3;

OSC B3 P6 B10 F1 P30;

STR V1 B10 B1;

END;

INS 0 5;

AD2 B11 P5 B3;

OSC B3 P6 B11 F1 P30;

STR V1 B11 B1;

END;

INS 0 6;

AD2 B12 P5 B3;

OSC B3 P6 B12 F1 P30;

STR V1 B12 B1;

END;

INS 0 7;

MLT B7 V1 B7;

END;

INS 0 8;

MLT B8 V1 B8;

END;

INS 0 9;

MLT B9 V1 B9;

END;

INS 0 10;

MLT B10 V1 B10;

END;

INS 0 11;

MLT B11 V1 B11;

END;

INS 0 12;

MLT B12 V1 B12;

END;

GEN 0 2 1 1 1;

STA 0 4 10000;

SV2 0 2 30;

SV2 0 30 0 120 12.5 120;

SV3 0 1 0;

NOT 1 1 6 200 103.8;

NOT 2 4 5 240 233;

NOT 2.75 2 4.25 350 174.6;

NOT 3 5 4 350 329.6;

NOT 3.5 3 3.5 300 440;

NOT 4.5 6 2.5 300 554.3;

NOT 8 12 .2;

NOT 8 11 .2;

NOT 8 10 .2;

NOT 8 9 .2;

NOT 8 8 .2;

NOT 8 7 .2;

SEC 9;

3.2.2 Reconstruction of the FBAM unit generator
According to Layzer’s description, Moore’s FBAM oscillator

included an internal feedback path for amplitude modulation. Thus,
the limitation of a fixed feedback interval is overcome. By accessing
the output buffer, it is possible to work with delays of 1–512 samples.
The following reconstruction is based on the existing code for OSC
(including Chowning’s negative frequency modification), with the

FIGURE 4
FBAM instrument flowchart.
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addition of two extra parameters: a feedback gain G and delay D
(in samples). The Fortran code for this unit generator is shown
below.

C FBAM OSCILLATOR

C FBM A,F,O,Fn,S,G,D

C G - feedback amount (0 - 1)

C D - delay in samples (P), 1 - 512

114 IDL = IFIX(FLOAT(I(L7))*SFI)

IF(IDL.gt.1) GOTO 1181

IDL = 1

GOTO 1182

1181 IF(IDL.lt.NSAM) GOTO 1182

IDL = NSAM

1182 SUM=FLOAT(I(L5))*SFI

IF(M1.gt.0) go to 1183

AMP=FLOAT(I(L1))*SFI

1183 IF(M2.gt.0) go to 1184

FREQ=FLOAT(I(L2))*SFI

1184 IF(M6.gt.0) go to 1185

G=FLOAT(I(L6))*SFI

1185 DO 1196 J3=1,NSAM

IPOS = MOD(J3 - 1 - IDL + NSAM, NSAM)

FDB = FLOAT(I(L3+IPOS))*SFI

J4=INT(SUM)+L4

F=FLOAT(I(J4))

IF(M2.gt.0) go to 1186

SUM=SUM+FREQ

GO TO 1190

1186 J4=L2+J3-1

SUM=SUM+FLOAT(I(J4))*SFI

1190 IF(SUM.GE.XNFUN)GO TO 1187

IF(SUM.LT.0.0)GO TO 1189

1188 J5=L3+J3-1

IF(M6.gt.0) go to 1192

GO TO 1193

1192 G=FLOAT(I(L6+J3-1))*SFI

1193 IF(M1.gt.0) go to 1194

GO TO 1195

1187 SUM=SUM-XNFUN

GO TO 1188

1189 SUM=SUM+XNFUN

GO TO 1188

1194 J6=L1+J3-1

AMP = FLOAT(I(J6))*SFI

c out = (a + g*out[n-d])*f[ndx]

1195 I(J5)=IFIX((AMP+FDB*G)*F*SFXX)

1196 CONTINUE

I(L5)=IFIX(SUM*SFID)

RETURN

This oscillator can be used as a replacement to Risset’s
external buffer feedback, with D set to 512 samples. Note
that since the re-entrancy issue noted before is a system-
design condition, there is no means for a unit generator to
have access to a separate per-instance dataspace. While this UG
allows the feedback period to be adjusted, it still cannot be used
in parallel runs of the same instrument.

An example of the use of this unit generator is featured in the
following MUSIC V score, with two sounds produced with the same
parameters and with different delays (512 and 1 samples). The use of
a 1-sample delay produces the expected spectrum as given by Layzer.
The 512-sample feedback approximates this outcome but it does not
match it. The output is louder due to the summing effects (Kleimola
et al., 2011).

COM: FBAM UG EXAMPLE;

INS 0 1 ;

OSC P7 P9 B4 F3 P31 ;

OSC P5 P9 B3 F2 P32 ;

FAM B3 P6 B2 F1 P30 B4 P8;

OUT B2 B1 ;

END ;

GEN 0 1 3 1 0 .9 100 .1 411 0 511 ;

GEN 0 1 2 .999 0 .999 50 .999 411 0 511 ;

GEN 0 2 1 512 1 1 ;

NOT 1 1 5 250 5.0984 0.9 512 0.0023;

NOT 6 1 5 250 5.0984 0.9 1 0.0023;

TER 12.00 ;

FIGURE 5
Fanfare instrument flowchart.
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4 Case studies

We conducted two case studies involving the reconstruction
of software and the implementation of sonic examples. The first
study applied our replica of the MUSIC V compiler to render the
original Little Boy MUSIC V scores (Risset, 1968; Lazzarini et al.,
2022a) as well as the FBAM examples discussed earlier. The
second study features the use of a modern music-programming
environment, Csound 6, to reconstruct a composition from
scratch following the design instructions given by James
Tenney. These two approaches exemplify a-ubimus techniques
potentially applicable to both the creative processes and products
of a large number of digital artworks produced during the 1960s
and 1970s.

Our target is to reconstruct the sonic materials through
the use of original software. In situations where developing a
replica is not practical or methodologically appropriate, we
resort to currently available software or hardware
environments, for instance, Csound (Lazzarini et al., 2016),
as we have done earlier in the study of modulation synthesis
experiments. When reconstructing computer-music products
of the 1961–1969 period, the choice of Csound is not arbitrary:
this language sits at the end of a development line directly
connected to the first acoustic compiler (MUSIC III).
Additionally, its backward compatibility fosters the
preservation of musical assets. This characteristic sets it
apart from other computational tools and points to a close
relationship between sustainability and community-based
development.

4.1 Little Boy

The process of testing the sources of Little Boy was essential to
fine-tune the functionality of MUSIC V. Thus, the a-ubimus
reconstruction of the musical material was an integral
component of the implementation of the replica. Resynthesizing
the forty six preserved score printouts of Little Boy involved a
process of debugging both MUSIC V and Risset’s code. These
procedures included a detailed critical analysis of the musical
data and syntax, encompassing parameters such as pitch,
duration, dynamics, timbre, and also organising and annotating
the extra-musical information featured in the commented code,
while searching for original synthesis methods and relevant sonic
examples.

Following the synthesis of each score, the following step was
to compare the rendered audio with the expected aural results,
taking into consideration Risset’s annotations scattered in
several Fonds documents as well as checking the autograph
recording of the piece (Risset, 1988). Despite all these
precautions, in many cases the original scores did not
produce satisfactory results. Two typical situations arose
stemming from (a) execution errors or (b) design errors. In
the first case, no audio output was obtained and an error
message was reported. This type of failure may be due to a
missing parameter or command in the score, the existence of
mismatched parameters, or bugs in the Fortran source code.
Conversely, when a design error arises, MUSIC V may produce

audio that does not match the composer’s planned results. In
this case, it may be that: (a) the values in the score were
incorrect or (b) the instrument construction was flawed.

While the above two categories are likely Risset’s errors,
another group of issues is related to problems in the MUSIC V
source code. These may arise from simple transcription
mistakes, missing subroutines, or may be due to mismatches
between code versions. Some of these problems become evident
when the audio output is faulty despite the accuracy of Risset’s
code. We observed this issue during the analysis of the function
table generators (GENs), an essential part of the synthesis
architecture.

As noted earlier, the process of debugging the original Little
Boy material revealed the existence of various versions of
MUSIC V. The fact that the system was developed at the
same time as the piece was being composed meant that some
software components were adopted on a score-to-score basis.
We had to develop means to track these changes so that the
scores were aligned with their corresponding compiler versions.
After the public release of the first official version of the system
in 1969, MUSIC V became available to other computer-music
facilities beyond Bell Labs, and further modifications were
made to the software (such as the support of negative
sampling increments).

4.1.1 The reconstruction process
We started by assuming the preserved Little Boy scores were

running correctly at Bell Labs, meaning they were free of
execution errors. From this standpoint, the objective became
making them compatible with our replica without involving
major modifications. The guideline principle is to intervene as
little as possible, while modifying the source code to match the
score. However there are cases where it is not possible to make

FIGURE 6
For Ann instrument flowchart.
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this assumption because it is necessary to have a broad
understanding of the composer’s intentions, the software,
and the results expected. As an example, we outline the
handling of an original score including the execution, design
and source-code errors. In this discussion, we use the score
dated 5 August 68, p.36, as the source. The first run of the code
yields an error.

Where is Harvey, pass1 failed. Instrument

definition incomplete.

Debugging identified this as a missing oscillator (OSC) in the
instrument. We added an OSC statement as used in a similar
score (dated from 7 August 1968, p.14). While this allowed the
code to run correctly in pass 1, it resulted in a segmentation
fault.

end of pass2. segmentation fault: 11.

The analysis of the score pointed to a function 1 (F1) used by
that OSC that was missing. Adding GEN 0 2 1 1 1 allowed a
successful run and an audio file was created. However, the
resulting sound did not correspond to what was expected.
Further inspection showed that the Fortran code for the
CONVT routine was incorrect: two lines of the code were
missing. Once a fix was applied, a waveform with the
expected characteristics was produced, but with an inverted
stereo image. This result pointed to a bug in the Fortran code
for pass 3, where the output buffer had an extra offset of one
sample. This issue was solved yielding the expected spatial
placement.

C 99 J=IDSK+1

C VL: this was IDSK+1 it was offsetting the stream

C by 1

C and inverting the stereo image

99 J=IDSK

M1=IP(10)

M2=0

ISC=IP(12)

The next intervention in the score was due to a missing SIA
statement. In Risset’s scores, this resource is used to set the sampling
rate. If it is missing, the default value of 44.1 KHz is employed, as
defined in the source code for pass 3. We realised that such a
sampling rate was never used at Bell Labs (as their digital-to-audio
converter could not handle it). Analysis of the 1968 sources
indicated that the default value was originally 10 KHz, and we
suspect the modification to 44.1 KHz was done later in the SAIL
sources (or by Schottstaedt in his transcription of them). We fixed
this first by adding a SIA statement, setting the correct sampling rate,
and added a comment to the score noting this. Later in the process,
we restored the default sampling rate to 10 KHz and thus, the score
is rendered as originally designed regardless of the presence of a SIA
line in the score.

Finally, an outstanding error which had been already
identified by the composer was found in one of the NOT

statements. Risset’s handwritten annotation indicates that a
value needs to be modified. The following is the fully
debugged score file, which resulted from these corrections
(RVN marks our added comments),

COMMENT: header pencil JCR 08/05/68 ;

COMMENT: header pencil JCR T1678 M2994 ;

COMMENT:FANFARE POUR LE TRIOMPHE;

COMMENT:100 PER CENT FEEDBACK;

COMMENT: RVN OSC is missing in all INS ;

COMMENT: RVN added this to each

instrument OSC B3 P6 B7 F1 P29 STR B7 V1 B1 END;

INS 0 1;

SET P10;

ENV P5 F2 B3 P7 P8 P9 P30;

AD2 B3 B7 B3;

COMMENT: RVN in each INS definition the 3 lowest

lines are added - OSC STR and END;

OSC B3 P6 B7 F1 P29;

STR B7 V1 B1;

END;

INS 0 2;

SET P10;

ENV P5 F2 B3 P7 P8 P9 P30;

AD2 B3 B8 B3;

OSC B3 P6 B8 F1 P29;

STR B8 V1 B1;

END;

INS 0 3;

SET P10;

ENV P5 F2 B3 P7 P8 P9 P30;

AD2 B3 B9 B3;

OSC B3 P6 B9 F1 P29;

STR B9 V1 B1;

END;

INS 0 4;

SET P10;

ENV P5 F2 B3 P7 P8 P9 P30;

AD2 B3 B10 B3;

OSC B3 P6 B10 F1 P29;

STR V1 B10 B1;

END;

INS 0 5;

SET P10;

ENV P5 F2 B3 P7 P8 P9 P30;

AD2 B3 B11 B3;

OSC B3 P6 B11 F1 P29;

STR V1 B11 B1;

END;

INS 0 6;

SET P10;

ENV P5 F2 B3 P7 P8 P9 P30;
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AD2 B3 B12 B3;

OSC B3 P6 B12 F1 P29;

STR V1 B12 B1;

END;

SIA 0 4 10000;

COMMENT: RVN added SIA above otherwise it would

use 44100Hz ;

SV3 0 1 0;

COMMENT: RVN added GEN 2 for function F1 in the

line below;

GEN 0 2 1 1 1 ;

GEN 0 1 2 0 1 .8 85 .8 105 .999 128 .8 256 .33 285 .12

333 0 384 0 512;

GEN 0 1 3 0 1 .75 128 .6 140 .999 256 .3 280 .13 325 0

384 0 512;

COMMENT: RVN two line above are too long causing

an error if not split into two lines (probably

due to 72-char limit);

NOT 1.0 1 .9 300 329.6 .06 1 .15 0;

NOT 1.5 4 .9 250 523.2 .06 1 .15 0;

NOT 2.0 1 .9 300 440.0 .06 1 .15 0;

NOT 2.5 4 .9 250 622.2 .06 1 .15 0;

NOT 3.0 1 .9 300 329.6 .06 1 .15 0;

NOT 3.5 4 .4 250 554.3 .04 1 .1 0;

NOT 4.0 4 .9 250 523.2 .06 1 .15 0;

NOT 4.5 1 .9 300 440.2 .06 1 .15 0;

NOT 5.0 4 .9 250 622.2 .06 1 .15 0;

NOT 5.51 1 .9 300 349.2 .06 1 .15 0;

NOT 6.0 4 .9 240 830.0 .06 1 .15 0;

NOT 6.5 1 .9 280 523.2 .06 1 .15 0;

NOT 7.0 4 .5 230 740 .04 1 .1 0;

NOT 7.5 4 .99 215 923.3 .05 1 .1 0;

COMMENT: l.a. pencil JCR 923.3 corrected to

932.3;

COMMENT: RVN we left it as in the printout;

NOT 8 1 .49 200 440 .03 1 .1 0;

NOT 8.5 1 4.25 400 103.8 .06 3 .18 3;

NOT 9.25 4 3.50 400 146.8 .04 2 .17 3;

NOT 9.5 2 3.25 400 164.8 .05 2 .16 3;

NOT 10.0 5 2.75 400 196.0 .04 2 .15 3;

NOT 10.5 3 2.25 400 233.1 .04 1 .14 3;

NOT 11.0 6 .75 400 277.2 .04 1 .13 3;

TER 14;

COMMENT: CONVT 4;

COMMENT: margin pencil JCR .0086 399 samples out

of range ;

COMMON IP(10),P(100),G(1000)

IF(P(1).NE.1.)GOTO100

COMMENT: RVN CONVT is missing the beginning I

added two lines above;

F=511./G(4)

FE=F/4.

P(6)=F*P(6)

P(8)=P(4)-P(7)-P(9)

IF(P(8))2,3,4

2 P(7)=(P(7)*P(4))/(P(7)+P(9))

P(9)=(P(9)*P(4))/(P(9)+P(7))

3 P(8)=128.

GOTO5

4 P(8)=FE/P(8)

5 P(7)=FE/P(7)

P(9)=FE/P(9)

100 RETURN

END

AT flowchart for instrument 1 is given in Figure 5. This is an
FBAM instrument, similar to the one discussed earlier (see
Figure 4), but with the addition of a trapezoidal amplitude
envelope. The parameters P7, P8, and P9 determine, attack,
steady state, and decay times, respectively. The shape of each of
these segments is given by the first, second, and third quarters of
F1, and the maximum amplitude is given by P5. Instruments 1-
6 are similarly designed.

4.1.2 Reconstruction of CONVT routines
The CONVT routines presented an important challenge

during the reconstruction process. As noted earlier, the MUSIC
V architecture allows the users to include their own CONVT
code in Fortran. Typically these are used to set the sampling
increment for a given frequency, or to set the envelope duration
which is dependent on the length of the function table and the
sampling rate. While the function table length is hard-coded in
MUSIC V to 512 samples, the sampling rate may be defined by
the user in each individual score (as discussed in the previous
section). Score-specific sampling rate conversions can be
applied individually and present a powerful tool for a
composer. They allow for the control of tempo, AM/FM
depth and modulation ratio, among other parameters.

For example, in Risset’s FANFARE POUR LE TRIOMPHE
score, a specific CONVT routine is given, in which the P array
holds the NOT parameters, the IP array contains system
constants, and the G array takes any user-defined
configurations, such as the sampling rate [G(4)]. This
CONVT takes P(6) (oscillator frequency, given originally in
Hz in the score), translates it into a sampling increment value,
and replacing P(6) in the converted score. It also takes the
values of P(7)–P(9) and converts them into segment durations
for the envelope generator, using P(4) (total duration) and the
sampling rate. Since the envelope generator uses quarter-table
lengths for each segment, the CONVT routine scales their
durations accordingly.

In the case of the Little Boy sources, many different CONVT
functions were given together with the MUSIC V score, which
are essential for the correct interpretation of the code. Faced
with the task of swapping CONVT routines for every score, for
practical reasons, we opted to add a means of choosing pre-
compiled CONVT functions directly from the score. With this
approach, any new CONVT that we encountered could be
added and kept in the Fortran sources, provided that we
associated these with a unique number. Once a CONVT is
added to pass2 it can be called by placing a command inside a
comment after the last line of the code:
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COMMENT: CONVT < convt number>;}

This enables the running of scores with different CONVTs
without having to modify pass 2 at each run. If no CONVT is
specified at the end of the score, CONVT 0, a general subroutine
from the Catalogue, is called. This mechanism is implemented
thus.

1. Since a COMMENT is ignored in pass 1, there is no need to
modify the score parser.

2. Fortran code for each pass is called as functions from a
C-language frontend. This code takes care of parsing the
comment statement identifying the CONVT routine
number.

3. When the pass 2 function is called, this is passed as an
argument, and stored in a global (COMMON) variable,
IROUT.

4. The CONVT routine in pass 2 is supplied as an entry point to the
various subroutines,

The pass 2 code for the Little Boy-version replica contains
twenty different CONVT subroutines, which Risset used for his
forty-six Little Boy scores.

4.1.3 Reconstruction of GEN routines
The GEN routines generate the 512-sample tables used by

the unit generators. Since their usage is inconsistent in the
observed code, GEN issues were one of the most common
sources of errors. In SAIL and Manual versions, GEN
1 indexes the stored samples from 0 to 511. GEN 1 from the
Catalogue, Fonds Risset 1968, and Little Boy code expect indices
to be defined in the [1,512] range. When used to define the
amplitude envelope, these differences may result in incorrect
outputs. Restoring the GEN 1 code to match the 1968 sources
was therefore essential to render the source audio waveforms
from Little Boy.

Further issues with GEN routines are due to changes in different
versions of the source code. SAIL (as well as the MUSIC VManual) code
contained only GEN 1 and GEN 2. To run the Little Boy scores, we added
GEN 3 to GEN 8. Their source code is published in Catalogue
(GEN5 excluded) (25). At Bell Labs, GEN 5 was used only to invoke a
system-dependent routine to skipfiles on themagnetic tape, so no code for
this was included in theCatalogue. However, we discovered that Little Boy
scores use GEN 5 to compute function tables (as usual), which
corresponded to the GEN 7 code given in Risset 1969. Depending on
the role ofGEN5 in the instrument definition, running these scores would
cause either a segmentation fault or result in no audio or an audio file with
faulty sound.Here is the code forGEN7, renamed toGEN5as it is used in
Little Boy scores.

Since GEN 5 is used as an exponential function generator, file-
skipping in Little Boy is done using GEN 3 or GEN 4. However, both are
also used to design tables, so they cannot be applied to skip files. This
limitation probably led to designing a dedicated GEN for skipping files in
later versions. Since we could not solve these ambiguities by changing the
Fortran source code, our approachwas tomodify the score and comment
out the lines in question. Here is an example from 1968_11_01_
160debug.txt:

COMMENT:TO SKIP FILES 1 AND 2;

COMMENT: GEN 0 4 2;

COMMENT: RVN l.a. commented out - no need for

skipping files ;

4.2 For Ann (Rising)

For Ann (Rising) is a Tenney composition from 1969. Its first
complete version employed a computer-synthesised sine wave glissando
edited and mixed using analogue tape-based studio methods (Tenney,
1984). This was superseded by a software reconstruction created by
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Tom Erbe (Erbe, 2018) using Csound. An analysis of the source code of
this reconstruction identified a fencepost bug, which results in an extra
set of glissandi that produce an unintended doubling of some of the sine
waves. We developed a new replica using the latest version of Csound,
which corrects this issue and also provides the means to obtain new
versions derived from the original concept. Both of these goals are
achieved by a terse representation of Tenney’s design.

This piece consists of 240 sine wave glissandos over several
octaves, each starting at the subsonic frequency threshold and rising
towards the human-hearing limit. The amplitude of each glissando
is shaped by a trapezoidal envelope. While this pattern resembles the
tones synthesised by Tenney and Risset to support Shepard’s
research on the circularity of pitch perception (Shepard, 1964),
the motivation and approach here follow distinct lines. The
compositional intention is not to explore the fusion of the sine
tones into a continuous glissando with no discernible start or end.
On the contrary, Tenney creates a perceptual space where the
listener’s focus can alternate between the individual trajectories of
each glissando and the fused spectrum (Wannamaker, 2022).

This experiential ambiguity is achieved because the glissandi are not
spaced by octaves. The original tape version and the original
reconstruction adopted a minor-sixth interval (22

3), based on a 12-
tone equal-tempered scale (12TET). Tenney also considered the use of
other intervals, noting that an interesting possibility would involve
stretching the interval slightly to match the golden ratio, i.e., applying
a (1 + �

5
√ )/2 interval (Polansky, 1983, p.174). Our reconstruction

supports such parametric changes in the synthesis, featuring the
possibility of glissandi spaced by the golden ratio, among other
intervals. Aside from a slightly longer delay between each successive
iteration, the scheme remains the same.

4.2.1 Tom Erbe’s Csound reconstruction
The following codewas used byTomErbe in his reconstruction of the

piece, which appeared in the CD release James Tenney: Selected Works
1961–1969 (New World Records 805,702, 1993). According to Polansky
(1983), the code was written from a description given by the composer,
who also suggested the slight modification of extending the glissandos for
one extra octave (to 14,080 Hz). This version was prepared by Matt
Ingalls, who transferred Erbe’s code to a CSD file format (as used in later
versions of Csound), as a first step to prepare a 15-channel performance of
the piece (premiered at the San Francisco Tape Festival, 26 January 2007).
The code listing below removes themiddle section of the score for brevity,
but we retain Ingall’s comment at the end. This indicates the fencepost
error and duly comments out the offending lines.

<CsoundSynthesizer>
<CsInstruments>
sr=44100

kr=441

ksmps=100

instr 1

kf expon 40,33.6,10240

ka linseg 0,8.4,2000,16.8,2000,8.4,0

a1 oscil ka,kf,1

out a1

endin

</CsInstruments>
<CsScore>
f1 0 16384 10 1

i1 0 42

i1 +

i1

i1

i1

i1

i1

i1

i1

i1 2.8 42

i1 +

i1

i1

i1

i1

i1

i1

i1

i1

(...)

i1 39.2 42

i1 +

i1

i1

i1

i1

i1

i1

i1

i1

e – matt: i stopped it here as the next notes will

overlap the 1st ones.

i’m not sure if this is Tenney’s or Erbe’s doing,

but i assume this is not the intent.

i wonder if it can be heard on the Artifact CD or

not?

i1 42.0 42

i1 +

i1

i1

i1

i1

i1

i1

i1

i1

</CsScore>
</CsoundSynthesizer>
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4.2.2 Csound 6 reconstruction
Our new reconstruction uses the latest version of Csound.

This code distils Tenney’s design to a minimum set of code
statements, as permitted by the language. By means of a
recursive approach, it is possible to arrive at three distinct
statements.

1. The synthesis of the sine wave glissando, using an oscillator
controlled by amplitude and frequency time functions.

2. The scheduling of the successive glissando instances.
3. A single statement to prime the recursive mechanism.

In addition to these statements, the Csound syntax requires that we
wrap each instance of the glissando in an instrument block. The
complete code can therefore be given as five lines. In order to
facilitate the adjustment of the spacing between glissandos, macro
replacement is employed (using Csound’s language preprocessor).
The example below sets this frequency interval to the golden ratio,
which is, amongst other things, the limit of the sequence of ratios of
consecutive terms in the Fibonacci series (1:1, 2:1, 3:2, 5:3, 8:5, . . .).
According to Tenney, this choice would make the difference tones
among pairs of glissandi to be already contained in the lower tones, thus
producing a smoother, or more perfect, version of the piece (Polansky,
1983). We should also note that this spacing avoids the appearance of
octaves, which is not the case when using the 12TET sixth: this interval
divides two octaves into three equal parts, thus every fourth glissando
produces an octave doubling (this in fact could help the perception of the
pitch circularity).

A flowchart for the Csound instrument is given in Figure 6.

#define INT #log2((1+sqrt(5))/2)#

instr 1

out(oscili(linen:a(2000,p3/4,p3,p3/4),

expon:a (27.5,p3,14080)))

schedule(1,4.2*$INT, times:i() <4.2*$INT*240

? 37.8 : 0)

endin

schedule(1,0,37.8)

We should note that this code can be run via a frontend or an
integrated development environment, wrapped in a CSD file, or sent
as a string via a UDP/IP message to a Csound server. It will run the
piece as designed by Tenney, with 240 glissandos. It is also possible
to produce a realtime performance which, by removing the duration
check, may be infinite.

times:i() < 4.2*$INT*240 ? 37.8 : 0

A feature of this reconstruction is the compactness of its
computational design. While the original reconstruction used
many lines of code to achieve a comparable sonic result, by
adopting modern programming techniques, we arrived at a
terse representation of the composition. Such an approach is
less prone to errors, since these become more readily
identifiable. While in this case a terse representation is
preferable as it encapsulates the underlying compositional
thinking precisely, this is not guaranteed to be universally
true. In some situations, it may have the opposite effect: how

expansive or how economical the computational resources
should be to support legibility, consistency, and sharing is
still an open research question.

5 Discussion

The archaeological ubimus procedures and the results
outlined in this paper point to a set of issues that were not
addressed by the early computer-music practitioners. As
highlighted by the drastic changes in the technological
landscape of the last three decades, these issues have
remained dormant despite their relevance [see (Keller et al.,
2014; Lazzarini et al., 2020b) for a detailed discussion of
emerging challenges]. Having discussed several caveats in the
previous sections, we should stress the novelty and specificity of
the knowledge yielded by Tenney and Risset’s musical
experiments carried out between 1961 and 1969. The
explorations prompted by For Ann (Rising) hint at music
creation as a driver for what is nowadays known as practice-
based or practice-led research (Candy, 2019). As suggested by
Gaver and other referents of interaction design (Gaver et al.,
2003), although not fitting comfortably within the context of
utilitarian-design goals, ambiguity is an increasingly important
aspect of human-computer interaction. This quality was
consciously pursued by Tenney, pioneering complementary
aesthetic and empirical insights on the subtle relationships
between time and timbre within artistic practice
(Wannamaker, 2021), cognitive science and interaction
design (Löwgren, 2009).

Risset’s Little Boy project encompasses the development of new
digital synthesis techniques, the various attempts to emulate acoustic-
instrumental sources and a careful dialogue with extra-musical artistic
elements, including theatrical performances and contextual pointers. This
places such early computational approaches to music-making at least on
an equal footing with the analogue-studio electroacoustic work of the
previous decade. However, neither Little Boy nor For Ann (Rising) could
have been fully achieved within the standard analogue studio. On the
same vein and through the archeological ubimus prism, a subtle and long
lasting impact of both practitioners can be inferred. In particular,
Tenney’s contributions have been overlooked by the mainstream
computer-music discourse [cf Polansky (1983); Wannamaker (2021;
2022) for notable exceptions].

Defined as an ecology encompassing socio-technical
stakeholders that form part of cognitively and socially situated
niches (Keller et al., 2014), ubiquitous music has fostered
investigations on the properties that emerge from interactions
during musical activities. These properties are rarely available
through the analysis of musical products. Consequently, ubimus
methods tend to target the deployment of computational prototypes.
This is also the strategy adopted in archaeological ubimus. By
designing and deploying replicas of technological relics, we gain
insights on the circulation of knowledge enabled by ly reconstructed
ecosystems. The two cases presented are examples of its potential
contributions and point to several new avenues for future research.

As highlights of this project, we have documented the
following items: a working replica of one of the earliest music-
programming languages, MUSIC V; the recovery, adaptation and
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deployment of the original MUSIC V scores of Little Boy, located
in the Fonds Risset; the implementation of a refined version of
FBAM synthesis in MUSIC V; a high-quality, error-free rendition
of For Ann (Rising) by means of a distilled prototype of Tenney’s
computational proposal; and the implementation and
documentation of a new For Ann (Rising) version based on
Tenney’s concept of golden-ratio spectral spacing.

The procedures adopted throughout this project indicate the
need to recalibrate the roles of the stakeholders in the design of
information technology. The evidence gathered points to an
ongoing process of circulation of knowledge which materialises
in creative procedures, musical products and code. The
specifically musical demands that impact information-
technology ecosystems become explicit in For Ann (Rising)
and Little Boy. Tenney’s approach highlights the roles of
ambiguity and terseness in the design of technological
constructs. These relational properties have emerged as
relevant aspects of recent endeavours in computational design
for creative aims. The usage of simulations, as exemplified in
Little Boy, is gaining momentum as a strategy to deal with highly
complex cognitive demands.

6 Conclusion

In this article, we have applied the methods of a-ubimus to
explore some key aspects of early computer music, 1961–69. In
this period, we have observed some seminal developments,
such as the first exploration of digital audio processing
techniques like FM and FBAM. Our approach was twofold:
where our investigations yielded recoverable original source
code we attempted to realise these directly (via our MUSIC V
replica); complementary, when this was not possible we relied
on the recreations of original textual descriptions,
annotations, and graphical illustrations coded using modern
software. This process, as detailed in the paper, allowed us not
only to evaluate the impact of these developments in music,
but also to ask new questions about the relationship between
the practitioners and the technologies they adopted and
fostered.

Imagined sonic worlds that are actionable, shareable and
meaningful for human interactions may potentially emerge
from current ubimus investigations. Explorations of the
affordances of these simulated environments complement the
long-standing usage of music-making as a symbolic playground
for social interactions. Whether this potential will be employed to
advance an agenda of solidarity, respect for diversity and
preservation of cultural and environmental assets depends on
the ethical scaffold of the artistic approaches. Ubimus
endeavours have actively pursued a socially responsible,
planet-friendly and very cautious attitude toward the
incorporation of information technology in everyday life. We
hope that the ubimus-archaeological techniques and results

presented in this report will help to advance these
community-oriented perspectives.
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