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Moving microphones allow for the fast acquisition of sound-field data that
encode acoustic impulse responses in time-invariant environments.
Corresponding decoding algorithms use the knowledge of instantaneous
microphone positions for relating the dynamic samples to a positional context
and solving the involved spatio-temporal channel estimation problem subject to
the particular parameterization model. Usually, the resulting parameter estimates
are supposed to remain widely unaffected by the Doppler effect despite the
continuously moving sensor. However, this assumption raises issues from the
physical point of view. So far, mathematical investigations into the actual
meaning of the Doppler effect for such dynamic sampling procedures have
been barely provided. Therefore, in this paper, we propose a new generic
concept for the dynamic sampling model, introducing a channel
representation that is explicitly based on the instantaneous Doppler shift
according to the microphone trajectory. Within this model, it can be clearly
seen that exact trajectory tracking implies exact Doppler-shift rendering and,
thus, enables unbiased parameter recovery. Further, we investigate the impact
of non-perfect trajectory data and the resulting Doppler-shift mismatches.
Also, we derive a general analysis scheme that decomposes the microphone
signal along with the encoded parameters into particular subbands of
Doppler-shifted frequency components. Finally, for periodic excitation, we
exactly characterize the Doppler-shift influences in the sampled signal by
convolution operations in the frequency domain with trajectory-
dependent filters.
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1 Introduction

Dynamic measurement procedures are capable of acquiring entire sound-field
information by use of only one non-stop moving microphone. Due to their low effort
in hardware and calibration compared to stationary approaches, such continuous
techniques are ideally suited to gather fast estimates of acoustic impulse responses
(AIRs) within expanded listening areas. Prominent examples of AIRs are head-related
impulse responses (HRIRs), room impulse responses (RIRs), and binaural room impulse
responses (BRIRs). Adequate estimates of AIR fields are essential for various applications
related to multichannel equalization and cross-talk cancellation, sound-field analysis,
auralization, and audio reproduction, e.g., for virtual and augmented reality systems
(Benesty et al., 2008).
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An analytical method for the reconstruction of AIRs along linear
and circular microphone trajectories has been presented in (Ajdler
et al., 2007). Here, a specially designed input signal is needed, and
the speed of the microphone must be constant and is restricted to an
upper limit. Quite different from usual AIR measurements, the
excitation signal must not contain all audio frequencies, but only a
certain subset in order to avoid overlapping frequency shifts. The
omitted frequencies are essentially generated through the Doppler
effect. Beyond that method, dynamic approaches are typically based
on estimates from linear equations that model the convolution of
involved AIRs and excitation sequences, and relate them to the
samples acquired at instantaneously varying microphone positions.
In one group of suchmethods, the spatio-temporal dependencies are
simplified and impulse responses at steadily changing positions are
considered as time-varying systems whose coefficients are tracked by
adaptive filtering concepts (Haykin, 2001). This setup is well-known
from acoustic echo cancellation (Sondhi, 1967; Benesty et al., 2006),
and, combined with controlled surroundings and trajectories, it is
also suitable for the fast acquisition of HRIRs (Enzner, 2008; He
et al., 2018).

More recently, a new group of dynamic techniques have
emerged, where the continuously acquired sound-field samples
are directly embedded into a spatio-temporal context (Hahn and
Spors, 2016; Katzberg et al., 2017b, 2018, 2021; Hahn et al., 2017;
Hahn and Spors, 2017; Hahn and Spors, 2018; Urbanietz and
Enzner, 2020). Here, the measurement model is explicitly
multidimensional, with a moving microphone that collects
uniform samples in the time domain and, in general, non-
uniform samples at varying points in the spatial domain. Thus,
such techniques inherently require positional information based
either on a controlled pre-defined trajectory or a tracking of the
microphone positions (Katzberg et al., 2022). The method by
Urbanietz and Enzner (2020) uses a spatial Fourier basis for the
angular reconstruction of HRIRs from continuous-azimuth
recordings and shows more accurate performance than an
adaptive-filter-based solution. In (Hahn and Spors, 2016),
perfect-sequence excitation (Stan et al., 2002) is used for the
orthogonal expansion of impulse responses, in order to describe
the dynamic spatio-temporal sampling by notional static sampling
processes of single expansion coefficients. This method simplifies
the problem to pure interpolation in space. It has been investigated
for reconstructing RIRs (Hahn and Spors, 2017; Hahn and Spors,
2018) and BRIRs (Hahn et al., 2017) along circular trajectories. In
(Katzberg et al., 2017b), a versatile framework has been presented
that allows for RIR reconstruction at off-trajectory positions within
cubical volumes. To achieve this, the sound field is parameterized by
modeling virtual grid points in space, and dynamic samples are
understood as the result of bandlimited interpolation on that grid
using sampled sinc-function approximations. In practice, the
corresponding inverse problem is most likely ill-posed or even
underdetermined. Therefore, in (Katzberg et al., 2018; Katzberg
andMertins, 2022), a strategy has been proposed that exploits sparse
Fourier representations and applies principles of compressed
sensing (CS) (Candès et al., 2006). Recently, the dynamic
framework subject to sinc-function related parameters has been
generalized to a formulation, where arbitrary spatial basis functions
cover expanded target volumes (Katzberg et al., 2021). Based on this,
a physical perspective has been provided for representing dynamic

sound-field samples in terms of spherical solutions to the acoustic
wave equation (Katzberg et al., 2021).

For the measurement methods where a non-stop moving
microphone collects sound-field data to AIRs, the Doppler effect
will always be present in the sampled signal. The dynamic
approaches considering the spatio-temporal context rely on the
assumption that the occurring Doppler shifts are at least partly
covered by the sampling model, as long as the microphone signal at
the particular receiving times is connected to the instant positions in
space. However, for all the existing frameworks, the implication
between positional tracking and Doppler-shift rendering is not
directly apparent from the mathematical model. Therefore, in
this paper, we introduce a new interpretation of the dynamic
sampling procedure from the Doppler perspective.

First, in Section 2, we briefly outline the basic differences in the
mathematical models between stationary and dynamic sound-field
measurement strategies. Then, in Section 3, we develop an
equivalent Doppler-domain concept from which one can easily
see that exact tracking of the microphone trajectory inherently
allows for the exact tracking of the involved and unknown
Doppler shifts in the frequency domain. The proposed
representation explicitly describes the instantaneous interferences
of the Doppler effect during the dynamic observation process. This
can be used to estimate the underlying sound-field parameters
without any Doppler bias, provided that the acoustic properties
of the surroundings remain constant during the measurement
sessions. In Section 4, we analyze the case of non-perfect
positional tracking and describe the resulting Doppler-shift
mismatches in the mathematical model. We derive structured
expressions for the corresponding error terms and adapt stability
guarantees and error bounds for both least-squares and CS-based
solutions. In Section 5, the Doppler-based channel representation is
exploited to provide a spatio-temporal filtering scheme that can be
employed for decomposing the Doppler-shifted microphone signal
into particular subbands. This allows us to reconstruct low-
frequency content in cases where the wideband recovery problem
is ill-conditioned. Considering periodic excitation, Section 6 shows
how the proposed concept enables us to directly relate the Doppler
shifts in the measured signal to trajectory-dependent filters that
spread spectral sound-field characteristics across adjoining
frequency bins. Finally, in Section 7, we demonstrate the key
points of the Doppler framework on experimental data.

2 Dynamic sound-field sampling
procedures

Assuming a fixed environment with several reflecting surfaces
and constant atmospheric conditions, the propagation of the sound
signal s(t) inside the target areaΩ ⊂ R3 can be considered as a linear
time-invariant (LTI) system. This leads to the observation model

p x, t( ) � ∫∞

−∞
s t − τ( )h x, τ( )dτ, (1)

where s(t) originates at a fixed source position xS∉Ω subject to the
global time t ∈ R, p(x, t) is the observed sound-pressure field
depending on the receiver position x = [x,y,z]T ∈ Ω in Cartesian
coordinates, and h(x, τ) is the spatio-temporal AIR subject to the
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delay time τ. The AIR describes the particular LTI system, i.e., the
sound field for a Dirac impulse excitation at τ = 0.

By coupling the spatial dimensions to the time dimension, the
dynamic sound field along the trajectory ~x(t) � [~x(t), ~y(t), ~z(t)]T,
defined by the time-dependent motion function ~xt: R → ~Ω, is
observed as

~p ~x t( ), t( ) � ∫∞

−∞
s t − τ( )h ~x t( ), τ( )dτ, (2)

where h(~x(t), τ) represents the spatio-temporal AIR within the
trajectory space ~Ω ⊆ Ω. In the following subsections, we briefly
compare the general concepts of stationary and dynamic sound-field
sampling strategies.

2.1 Stationary sampling schemes

Measuring the sound-field signal (1) leads to stationary
sampling schemes, where R microphones provide temporal
samples with high acquisition rates fs at uniform points tn = n/fs
(n ∈ Z), and, in general, spatial samples at N non-uniform positions
xr (r ∈ {1, . . ., N}) inside the volume of interest Ω. Strategies for the
sampling and reconstruction in space are generally based on an
appropriate parametrization of the continuous-space and discrete-
time AIR within bounds of Ω,

h x, m( ) ≈ ∑L−1
l�0
∑C−1
c�0

γ c, l( )f c, x( )g l,m( ), (3)

where f(c, x) are sampled basis functions for the interpolation
inside Ω according to a spatialization model (e.g., sampled plane
waves), g(l, m) are basis functions for the sampled delay time
dimension m (e.g., discrete Fourier basis), and γ(c, l) are the
corresponding sound-field parameters, i.e., coefficients
describing the AIR field h(x, m). For h(xr, m) vanishing into
the noise level at m ≥ L, the parameters are encoded in spatio-
temporal samples of (1) subject to

p xr, n( ) � ∑L−1
m�0

s n −m( ) h xr, m( ) + ηr n( )

� ∑L−1
m�0

s n −m( ) ∑L−1
l�0
∑C−1
c�0

γ c, l( )f c, xr( )g l,m( ) + ηr n( ),
(4)

with ηr(n) comprising the measurement noise and parameterization
errors. Parameter decoding may be achieved by solving the inverse
problem given a controlled excitation sequence s(n) and calibrated
sampling positions xr. Adequate estimates of γ(c, l) from the
corresponding system of linear equations may be used for the
sound-field reconstruction according to (3). The reconstruction
along the delay time m is simple due to high temporal sampling
rates fs ≥ 2fcut of the microphones, effortlessly achievable for
practical cutoff frequencies fcut. Note that, of course, stationary
microphones allow for decoupling the multidimensional sampling
problem (4). So, in practice, estimates of h(xr, m) are calculated first
by solving the deconvolution problem for each microphone position
separately, and then the parameters γ(c, l) are recovered from the
remaining linear interpolation equations of the form h(xr, m) �∑L−1

l�0 ∑C−1
c�0 γ(c, l)f(c, xr)g(l, m).

2.2 Dynamic sampling schemes

For the sampling of the dynamic sound pressure (2),
measurement procedures with moving microphones can be used
that generate samples at uniform points in time and, generally, at
continuously varying and non-uniform positions in space. As
temporal sampling implies spatial sampling in such setups, only
one microphone measuring along an appropriate trajectory ~x(n) is
sufficient for gathering the entire sound-field information. At this,
the speed of the microphone is arbitrary and may vary, pausing is
not required.

By employing the identical parameterization model as in (3), the
spatio-temporal AIR sampled (non-uniformly) along the trajectory
~x(n) ∈ ~Ω reads

h ~x n( ), m( ) ≈ ∑L−1
l�0
∑C−1
c�0

γ c, l( )f c, ~x n( )( )g l, m( ). (5)

Accordingly, the particular sound-field parameters γ(c, l) are
encoded in samples of (2) subject to

~p ~x n( ), n( ) � ∑L−1
m�0

s n −m( ) h ~x n( ), m( ) + ~η n( )

� ∑L−1
m�0

s n −m( ) ∑L−1
l�0
∑C−1
c�0

γ c, l( )f c, ~x n( )( )g l, m( ) + ~η n( ),

(6)
where ~η(n) encapsulates the errors due to sampling and finite-
dimensional parameterization. Note, because ~Ω ⊆ Ω, the sampling
model (6) may use the very same parameters and basis functions as
the static model (4). However, in (6), the sampling of the spatial
component is coupled to the global time index n subject to
f(c, ~x(n)), since the involved AIR is immediately varying during the
dynamic measurement process. The controlling of s(n) and tracking of
~x(n) allow for estimates of γ(c, l) from the linear equations provided by
(6) at time points n � 0, ...,M − 1 and for the spatial reconstruction
insideΩ according to (3). For high-speedmovements, the noise level can
be increased by air-flow perturbations in practice.

In fact, it turns out that all spatio-temporal sampling procedures
with moving microphones as outlined in Section 1 are based on the
sampling model (6), generally involving non-uniformly sampled
basis functions f(c, ~x(n)) for the spatial dimensions and uniformly
sampled basis functions g(l, m) for the temporal delay. Various
dynamic strategies for recovering AIRs only differ in the specific
choice of basis functions, i.e., the parameter representation of the
target sound field inside Ω. In any case, spatial components
f(c, ~x(n)) are evaluated subject to the time-dependent
microphone trajectory ~xn: Z → RD performed in an actually D-
dimensional subspace ~Ω ⊆ Ω.

In (Urbanietz and Enzner, 2020), for example, the sound-field
parameters γ(c, l) are HRIRs themselves, spatially expanded by
circular harmonics of maximum order Q. This is equivalent to
the choices f(c, ϕ(n)) = ej(c−Q)ϕ(n) and g(l,m) = δ(m − l), where δ is the
unit impulse function and ϕ(n) ∈ ~Ω is an azimuthal trajectory,
i.e., the number of considered spatial dimensions is D = 1. By
contrast, the method by Hahn and Spors (2017) uses f(c, ϕ(n)) = φ(c,
ϕ(n)) and g(l, m) = s(l − m), with φ being Lagrange basis
polynomials and s being an L-shift cross-orthogonal excitation
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sequence that fulfills ∑L−1
m�0s(n −m)s(l −m) � δ(l − nmodL) and,

thus, simplifies (6) significantly. While these approaches confine the
AIR target area to the one-dimensional (circular) trajectory curve
itself (Ω � ~Ω), the methods in (Katzberg et al., 2017b; Katzberg
et al., 2018; Katzberg et al., 2021) scale up to D = 3 using three-
dimensional basis functions f(c, ~x(n)) that cover entire listening
volumes. This allows for modeling the dynamic sampling along
arbitrarily shaped microphone trajectories.

In this paper, we introduce a mathematical framework
exploiting a representation by g(l, m) = ej2πlm/L, in order to
investigate frequency shifts in the sampled signal due to the
Doppler effect. The following Doppler-shift descriptions cover
dynamic acquisition techniques for several AIR types that assume
constant environmental conditions, i.e., AIR variations are solely
due to positional variations of the microphone.

3 Doppler-shift model for
dynamic channels

In dynamic approaches, the sound signal sampled by the moving
microphone is always affected by the Doppler effect. This raises the
question about the impact of the involved Doppler shifts on the
estimates of the sound-field parameters. Numerical and real-word
experiments to the dynamic approaches outlined in Section 1
indicate that the positional tracking of the microphone allows for
the Doppler-shift tracking in the dynamic signal, and, in turn, for
uncorrupted parameter estimates. Thus, the key of these dynamic
techniques lies in the tracking or controlling of the receiver
trajectory, e.g., by using a robot-guided microphone, or by
performing a circular trajectory at constant speed and measuring
the round-trip time of the moving microphone. However, from the
mathematical perspective, such implicit Doppler-shift rendering by
use of positional data may not be straightforwardly comprehensible
from a general spatio-temporal signal description in line with (6). In
order to close this conceptual gap, we propose a more intrinsic
channel interpretation for the dynamic sampling model.

3.1 General model for Doppler-shifted
sound observations

For a general analytical description of interfering Doppler shifts,
we use a doubly-dispersive signal model and adopt the concept of
Doppler-variant impulse responses and transfer functions (Bello,
1963). Such Doppler-domain representations are well-known from
time-varying channels in wireless systems (Haykin and Liu, 2010;
Hlawatsch and Matz, 2011; Grami, 2016), e.g., for underwater
acoustic communications (Li and Preisig, 2007; Zeng and Xu, 2012).

For the moment, let us disregard the spatial context in (2).
Accordingly, the dynamic time signal ~p(~x(t), t)may be described by

~p t( ) � ∫∞

−∞
s t − τ( )h t, τ( )dτ, (7)

with h(t, τ) being the time-variant impulse response. The Fourier
transforms of h(t, τ) along the particular dimensions yield,
respectively, the Doppler-variant impulse response

D ], τ( ) � ∫∞

−∞
h t, τ( ) e −j]tdt, (8)

which contains the variable ] denoting the Doppler shift, the time-
variant transfer function

T t,ω( ) � ∫∞

−∞
h t, τ( ) e −jωτdτ, (9)

with angular frequency ω � 2πf, and the Doppler-variant
transfer function

U ],ω( ) � ∫∞

−∞
∫∞

−∞
h t, τ( ) e −j ]t+ωτ( )dt dτ. (10)

The time-variant impulse response in (7) may be interpreted as
the time-varying contribution from a continuum of scattering paths.
By using the inverse Fourier transform of D(], τ), the interfering
Doppler shifts in (7) are revealed as

~p t( ) � 1
2π
∫∞

−∞
∫∞

−∞
D ], τ( )s t − τ( ) e j]td] dτ. (11)

In (11), we can see that the signal arriving at the moving receiver is
composed of a weighted superposition of time-delayed and
frequency-shifted replicas of the source sequence s(t). The
weighting D(], τ) defines the contribution to ~p(t) from a
scattering path with delay τ. The channel is called doubly-
dispersive as it involves both delay and frequency spreads due to
both multipath signal propagation and time-varying behavior. By
using the inverse Fourier transform of U(],ω), (11) can also be
expressed as

~p t( ) � 1

2π( )2∫∞

−∞
∫∞

−∞
∫∞

−∞
U ],ω( )s t − τ( )e j ]t+ωτ( )d] dωdτ

� 1

2π( )2∫∞

−∞
∫∞

−∞
s t − τ( )e jωτdτ∫∞

−∞
U ],ω( )e j]td] dω

� 1
2π
∫∞

−∞
St ω( ) 1

2π
∫∞

−∞
U ],ω( )e j]td] dω,

(12)

with St(ω) � ∫∞−∞ s(t − τ)e jωτdτ representing the time-dependent
Fourier transform of the source signal s(t). For obvious reasons,
D(], τ) and U(],ω) are also referred to as delay-Doppler spreading
function and frequency-Doppler spreading function, respectively.
The Fourier relationships between the four fundamental functions h,
D, T , and U are summarized in Figure 1. Each of such
representations describes any linear time-variant system
completely (Hlawatsch and Matz, 2011).

3.2 Spatial parameterization of the time-
variant transfer function

In (12), the term (2π)−1 ∫∞−∞ U(],ω)e j]td] describes the time-
varying channel as the interference of instantaneous Doppler shifts,
where U(],ω) parameterizes the frequency-dependent Doppler
characteristics. The total effect of these characteristics could be
considered unconnected, and, in general, estimated by adaptive
filtering techniques that track the time-varying transfer function
T (t,ω) � (2π)−1 ∫∞−∞ U(],ω)e j]td]. However, in contrast to, e.g.,
underwater acoustic channels where significant dynamics in the
surrounding medium and scatterers are present, we assume a time-
invariant configuration of scattering paths inside the target volume
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Ω. Accordingly, (2π)−1 ∫∞−∞ U(],ω)e j]td] is fully defined by the
receiver trajectory within the LTI acoustic fieldH(x, ω). The acoustic
field can be described by the general model

H x,ω( ) � ∫∞

−∞
A ρ,ω( )f ρ, x( )dρ, (13)

where A(ρ, ω) is a continuum of sound-field parameters subject to
the variable ρ that constitutes a continuum of possible spatial
variations for x ∈ Ω due to multipath arrivals, and f(ρ, x) are
appropriate spatial basis functions. The reverberant field H(x, ω)
represents solutions to the Helmholtz equation for a Dirac impulse
excitation at τ = 0. In the following descriptions, H(x, ω) is
considered as the spatial transfer function from the static sound
source to the receiver position x.

Doppler shifts can be represented in terms of the (unknown)
acoustic field (13) with fixed initial and boundary conditions. By
introducing the spatial context subject to H(x, ω), we rewrite the
dynamic signal (12) as

~p ~x t( ), t( ) � 1
2π
∫∞

−∞
St ω( )H ~x t( ),ω( ) dω, (14)

where H(~x(t),ω) � (2π)−1 ∫∞−∞ U(],ω)e j]td] is the Doppler-
shifted observation of sound-field characteristics by use of the
trajectory ~x(t). Hence, we define H(~x(t),ω) as the sound field in
Doppler domain for the underlying receiver trajectory ~x(t). In this
paper, the term Doppler domain is used to describe the sound
pressure that lives along ~x(t) and, therefore, is subject to the Doppler
shifts along ~x(t). For the physical conditions regarded (e.g., constant
temperature, fixed source and scatterer positions), the dynamically
shaped sound-field observation along ~x(t) is equivalent to the time-
variant transfer function,

T t,ω( ) � H ~x t( ),ω( )
� ∫∞−∞A ρ,ω( )f ρ, ~x t( )( )dρ. (15)

As a result, T (t,ω) is brought into a direct spatio-temporal
relationship with the LTI acoustic field by use of positional
information in terms of trajectory data and by the corresponding
evaluation of particular basis functions in space. The Doppler effect
is completely modeled by f(ρ, ~x(t)), the sound-field parameters
A(ρ, ω) remain unaffected. Finally, the time-varying AIR along the
receiver trajectory is determined by the spatio-temporal connection

h ~x t( ), τ( ) � 1
2π
∫∞

−∞
∫∞

−∞
A ρ,ω( )f ρ, ~x t( )( )dρ( )e jωτdω

� ∫∞−∞a ρ, τ( )f ρ, ~x t( )( )dρ. (16)

3.3 Examples of Doppler-aware
spatialization concepts

Using plane-wave basis functions is probably the most intuitive way
to represent Doppler-based sound-field observations and to calculate
frequency shifts due to a moving receiver. In existing, physics-heavy
literature, complex acoustics in dynamic and fluctuating environments
are typically described in terms of plane-wave expressions (Morse and
Ingard, 1986; Ostashev and Wilson, 2019). Corresponding simplified
examples are given in Section 3.3.1 for special steady-state scenarios.
Then, two specific implementations of the spatio-temporal transfer
function H(~x(t),ω) are provided in Section 3.3.2; Section 3.3.3.
These examples are based on our previous works (Katzberg et al.,
2018; Katzberg et al., 2021; Katzberg and Mertins, 2022).

FIGURE 1
Linear time-variant channel impulse response. (A)Outline of considered dimensions and (B) particular frequency representations, whereF t denotes
the Fourier transform along the variable t and F−1

t is the corresponding inverse Fourier transform.
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3.3.1 Plane waves
First, let us consider the Doppler effect for the simplest scenario

with an ideal free-field environment having no reflective surfaces
and a linearly moving microphone. For a stationary source that
emits sound of the single angular frequency ω and a receiver that
moves at constant speed v0 and constant angle ψ in relation to the
direction of the wave front, the shifted frequency ~ω sensed over time
is given by the well-known mapping

~ω � ω − ζω, (17)
with the constant scaling factor ζ = v0 cos(ψ)/c0 and the sound
velocity c0. For the special cases ψ = 0, ψ = π, and ψ = ± π/2, the
receiver is moving along, opposed, and orthogonal to the wave
propagation, respectively. In (17), the sensed frequency ~ω is
composed of the originally emitted frequency ω and the shifting
term −ζω. The shifting termmodels the variation in the spatial phase
induced by the receiver motion, and its impact on the temporal
frequency of the received time signal. This can be shown by using the
spectral relationship ω � �kc0 (Pierce, 2019) for propagative sound
waves (in the far field) having angular wave number �k, and rewriting
(17) according to

~ω � ω − v0�k cos ψ( ) � ω − v · k, (18)
where v � [d~x/dt, d~y/dt, d~z/dt]T is the velocity vector of the receiver
motion and k � [kx, ky, kz]T is the wave vector comprising spatial
frequencies along the normalized propagation direction ns,
i.e., k � ω/c0 ns � �kns. The knowledge of both the linear receiver
dynamics coded in v and the direction of wave propagation coded in
k allows for the exact identification of spatio-spectral activity, and, in
turn, for the reverse mapping from the observation ~ω to the initial
temporal frequency ω.

For non-linear receiver trajectories, the Doppler effect can be
described in terms of a time-varying velocity vector v(t) (Ostashev
and Wilson, 2019). The sensed, so-called instantaneous frequency is
given by

~ω t( ) � d~φ
dt
,

where ~φ(t) is the phase function of the observed wave form.
Accordingly, the instantaneous phase of a received plane-wave
signal can be described as

~φ t( ) � ∫ ω − v t( ) · k( )dt � ωt + τb − k · ~xr t( ) + db( ), (19)

with the constants τb ∈ R and db ∈ R3 resulting from the boundary
conditions of the indefinite integral, and ~xr(t) modeling the relative
positions of the moving receiver based on its initial state
~xr(0) � [0, 0, 0]T. The instantaneous frequency subject to the
relative trajectory ~xr(t) is

~ω t( ) � ω − d~xr
dt

· k. (20)

By comparing (19) and (20) with (18), it is straightforward to see
that phase modulations in terms of relative receiver locations induce
frequency modulations according to the Doppler effect. Moreover,
by choosing appropriate constants τb and db, the observed Doppler-
shifted frequencies can be represented subject to the particular

sound-field characteristics, i.e., solutions to the acoustic wave
equation for the involved initial and boundary conditions.
Convenient constants are τb = 0 and db = x0, with x0 being the
initial position of the receiver subject to the global coordinate
system. By knowing the absolute trajectory ~x(t) � ~xr(t) + x0 of a
moving microphone in relation to the reference point x0 ∈ Ω within
the acoustic field of interest, the Doppler-shifted microphone signal
can be embedded into the spatio-temporal context of the (unknown)
LTI environment. This is the underlying idea of the dynamic
sampling model and the according sound-field estimation problem.

Based on (19), (20), dynamic free-field observations of sound
from a stationary broadband source can be easily expressed as
modulated plane waves. For a simplified scenario that regards the
global steady-state sound field Hst(x, ω) = S(ω)H(x, ω) (and allows
for dropping the delay dimension τ), a moving receiver observes the
superposing, trajectory-dependent wave forms

~p ~x t( ), t( ) � 1
2π
∫∞

−∞
Hst ~x t( ),ω( ) e jωtdω

� 1
2π
∫∞

−∞
Ast ω( ) e jk· ~xr t( )+x0( ) e jωtdω,

(21)

where ejωt is the fundamental temporal solution to the homogeneous
wave equation,Hst(~x(t),ω) describes the Doppler effect in terms of
spatial solutions to the corresponding Helmholtz equation, and
Ast(ω) ∈ C is a continuum of parameters characterizing the
steady-state sound field in respect of the involved source signal
from the particular direction coded in −k. For a receiver being
stationary, i.e., ~xr(t) � 0, the signal representation in (21) simplifies
to the well-known plane-wave solutions (Williams, 1999). For a
receiver being dynamic, the observed signal comprises the particular
plane waves whose phases are modulated by the relative motion
function ~xr(t). This yields instantaneous Doppler shifts according to
(20) in the received time signal. As apparent in (21), the frequency
shifts due to the dynamic observation process are represented by
means of modifications within the spatial basis functions only, the
weightings Ast(ω) remain unaffected. Consequently, (21) may be
interpreted as the space-varying observation of sound-field features
Ast(ω) by use of the motion function ~xr(t). The knowledge of the
absolute trajectory ~x(t) within the acoustic field allows for the
reverse mapping from the observed Doppler-shifted signal
~p(~x(t), t) to the particular plane-wave solutions of the sound field.

Let us finally consider a dynamic receiver that is moving
arbitrarily within a reverberant LTI scene. Multiple sound
scattering paths lead to multiple angles of arrival within the
source-free target volume Ω. Therefore, the dynamically observed
sound field comprises multiple interfering Doppler shifts. This can
be modeled on the basis of (21), e.g., by extending the wave vector to
the dependency on a continuum of scatterers and introducing a
corresponding integral. A more elegant description is given by

~p ~x t( ), t( ) � 1
2π
∫∞

−∞
∫

S2
φst n̂,ω( ) e j�kn̂·~x t( )dn̂( )e jωtdω, (22)

where S2 denotes the surface of the unit sphere and n̂ ∈ S2 is a unit
vector modeling any possible direction for arriving plane waves. For
the stationary case, the inner integral in (22) is referred to as the
Herglotz wave function which is a well-known solution to the
Helmholtz equation (Vasquez and Mauck, 2018; Colton and
Kress, 2019). The complex-valued function φst(n̂,ω) is the so-
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called Herglotz density/kernel and describes the steady-state sound
field for the particular source sequence. In (22), the dynamic
procedure is modeled in terms of phase modulations of the
incident plane waves. Thus, the accessibility of absolute positions
~x(t) within the reverberant field allows for extracting intact sound
data φst(n̂,ω) from Doppler-shifted observations ~p(~x(t), t).

3.3.2 Spherical harmonics
Using the Jacobi-Anger expansion (Colton and Kress, 2019), the

continuous plane-wave representation (22) can also be cast into a
series of standing waves in radial direction with a set of infinite
but countable coefficients (Fazi et al., 2012). This leads to a
spherical-harmonic representation of the received signal and is
basically equivalent to the dynamic model proposed in (Katzberg
et al., 2021).

In (Katzberg et al., 2021), the multi-frequency AIR field subject
to the delay-time variable τ is modeled as

h x◦, τ( ) � 1
2π
∫∞

−∞
H x◦,ω( ) e jωτdω,

where the position vector x◦ ∈ Ω of the receiver is given in spherical
coordinates x◦ = [r,θ,ϕ]T, with radius r ∈ [0, rmax], polar angle θ ∈ [0,
π], and azimuth angle ϕ ∈ [0, 2π). The Helmholtz-based wave field
representation by analogy with (13) is chosen according to

H x◦,ω( ) � ∑
v,q( )∈Ψ

A v, q( ),ω( ) bv �kr( )Yq
v θ, ϕ( ), (23)

with Yq
v being the spherical harmonic function of order v ∈ N0 and

mode q ∈ Z, bv denoting the v-th order spherical Bessel function of
the first kind, and Ψ constituting the set of index pairs where |q| ≤ v
(Williams, 1999). This involves the parameters A((v, q), ω) that
describe the sound field on a surface of a notional sphere around the
three-dimensional listening volume for temporal frequencies ω and
spatial tuples (v, q). The overall spatial basis functions are
f(�k, (v, q), x◦) � bv(�kr)Yq

v(θ, ϕ), allowing for the spherical-wave
extrapolation from the virtual sphere to arbitrary radii pointing
to its interior. Following our general parameterization concept (15),
the spatial embedding of the time-variant transfer function in terms
of spherical harmonics reads

T t,ω( ) � H ~x◦ t( ),ω( )
� ∑

v,q( )∈Ψ
A v, q( ),ω( ) bv �k~r t( )( )Yq

v
~θ t( ), ~ϕ t( )( ). (24)

As a result, the acoustic transfer function becomes connected with
an actual spatio-temporal meaning. It is equivalent to the
dynamically shaped spherical-wave field observed in the Doppler
domain along the receiver trajectory ~x◦(t) � [~r(t), ~θ(t), ~ϕ(t)]T for a
Dirac impulse excitation at the relative time point τ = 0. By
combining the transfer-function model (24) with the signal
model (14), the dynamic sound-pressure sequence arriving at the
moving receiver is described by

~p ~x◦ t( ), t( ) � 1
2π
∫∞

−∞
St ω( )

× ∑
v,q( )∈Ψ

A v, q( ),ω( ) bv �k~r t( )( )Yq
v
~θ t( ), ~ϕ t( )( )dω.

3.3.3 Spatial Fourier bases
The AIR-field reconstruction problem can also be interpreted as

the classical bandlimited-interpolation task, which involves sinc-
function based interpolation filters in multiple separable dimensions
subject to Cartesian coordinates. For this, actually no explicit sound
propagation model is needed. The assumption of a sound signal with
maximum frequency ωcut allows for the sampling-theory inspired
parameterization of the wave field according to

H x,ω( ) � 1

2π( )3∫R3
Hs k,ω( )R k( )e jk·xdk,

where

Hs k,ω( ) � 1
ΔxΔyΔz

∑
κ∈Z3

H kx − 2πκx
Δx

, ky − 2πκy
Δy

, kz − 2πκz
Δz

[ ]T,ω⎛⎝ ⎞⎠
is the continuous spectrum of the spatially sampled sound field,
equidistantly provided along a three-dimensional grid in space at
sampling intervals Δξ for ξ ∈ {x, y, z}, H(k,ω) � F x{H(x,ω)}, with
F x ·{ } denoting the three-dimensional Fourier transform along the
spatial variables in x, andR(k) is a separable anti-imaging filter that
constrains the periodic spectrum Hs(k,ω) to the spatial baseband
frequencies (Ajdler et al., 2006; Katzberg et al., 2018; Katzberg and
Mertins, 2022). According to the Nyquist-Shannon sampling
theorem, aliasing-free reconstruction of sound waves with
minimal wavelength λmin = c0/fcut = 2πc0/ωcut requires the
uniform grid points to have spacings Δξ ≤ πc0/ωcut.

Following the pure sampling-theory perspective, the transfer-
function representation in the sense of (15) can be written as

T t,ω( ) � H ~x t( ),ω( ) � ∫
Γc
A k,ω( ) e jk·~x t( )dk, (25)

with Γc = {k : |k| ≤ ωcut/c0} denoting the set of spatial target
frequencies in the baseband, A(k,ω) � Hs(k,ω)/(2π)3
constituting the sound-field parameters, and e jk·~x(t) being the
spatial basis functions evaluated in terms of the receiver
trajectory ~x(t). In (25), the underlying interpolation kernel is
assumed ideal with flat magnitude response and linear phase
response for frequencies k ∈ Γc, which, in practice, is achievable
by use of higher-order Lagrange polynomials (Välimäki and Laakso,
2000; Katzberg et al., 2018). By applying the transfer-function
parameterization (25) to the signal model (14), the dynamically
acquired sequence is revealed as

~p ~x t( ), t( ) � 1
2π
∫∞

−∞
St ω( )∫

Γc
A k,ω( ) e jk·~x t( )dk dω. (26)

Note that this uniform-grid approach, with expressions adopted
from classical sampling and reconstruction ideas, is, in fact, closely
connected with plane-wave representations such as the ones from
Section 3.3.1.

For the physical conditions considered, the dispersion relation
(Ostashev and Wilson, 2019; Pierce, 2019) obeys the spectral
relationship k2x + k2y + k2z � ω2/c20 and, thus, the spectrum of the
original sound-field signal H(k,ω) ideally lives on the three-
dimensional surface of a hypercone along the temporal frequency
axis ω. Active frequencies in Hs(k,ω) are structured accordingly.
Especially at lower temporal frequencies, the conical shape is
assumed to be dominated by a sparse set of frequency combinations.
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In that regard, the representation (26) has been proven in (Katzberg
et al., 2018; Katzberg and Mertins, 2022) to be an excellent basis for CS-
based recovery approaches. Also, the grid-based parameterization
provides the full scalability to recover particularly on planes (D = 2)
and along lines (D = 1) by simply lowering the dimension of the uniform
grid modeled in space. This inherently diminishes the spectral structure
according to k2x + k2y ≤ω2/c20 (planar case) and k2x ≤ω2/c20 (linear case)
due to the released spatial variables in the three-dimensional
propagation medium.

3.4 General system of linear equations for
broadband parameters

After having provided particular parameterization examples in
Section 3.3, let us continue with describing the measurement
equations for the more general signal formulation from Section 3.2.

The measurement along the trajectory ~x(t) by use of a moving
microphone provides the sampled version of (14),

~p ~x n( ), n( ) � 1
L
∑L−1
l�0

Sn l( )H ~x n( ), l( ) + ~η n( ), (27)

where ~η(n) is the noise term, l defines the discrete frequency
variable, H(~x(n), l) denotes the sampled Doppler domain, and

Sn l( ) � ∑L−1
m�0

s n −m( ) e j2πlm/L (28)

is the short-time Fourier transform of the sampled source sequence
s(n). By modeling a discrete sound-field approximation of (13) for
sampled frequencies ωl = 2πfsl/L, the sampled Doppler domain reads

H ~x n( ), l( ) ≈ ∑Cl−1

c�0
A c, l( )f c, ~x n( )( ), (29)

and the Doppler-shifted microphone signal is

~p ~x n( ), n( ) � 1
L
∑L−1
l�0

Sn l( ) ∑Cl−1

c�0
A c, l( )f c, ~x n( )( ) + ~η n( ), (30)

with A(c, l) being a finite number of P � ∑L−1
l�0 Cl unknown

parameters approximating the LTI environment. In practice, a
higher temporal frequency leads to more detailed variations in
space and, thus, to a larger number Cl of spatial parameters
required for an accurate sound-field representation.

Let us highlight the direct link to the abstract formulation (6)
that has been initially introduced for outlining existing dynamic
sampling models. Substituting (28) into the Doppler-based
measurement equation given by (27) yields

~p ~x n( ), n( ) � 1
L
∑L−1
l�0
∑L−1
m�0

s n −m( ) e j2πlm/LH ~x n( ), l( ) + ~η n( )

� ∑L−1
m�0

s n −m( ) 1
L
∑L−1
l�0

H ~x n( ), l( ) e j2πlm/L + ~η n( )

� ∑L−1
m�0

s n −m( )h ~x n( ), m( ) + ~η n( ).

(31)

This emphasizes the relationship to the spatio-temporal AIR along
the measurement trajectory in terms of the Fourier transform

H(~x(n), l) � ∑L−1
m�0h(~x(n), m)e −j2πlm/L. The corresponding model

for AIR spatialization in the sense of (5) reads

h ~x n( ), m( ) ≈ ∑C−1
c�0

a c,m( )f c, ~x n( )( )

≈
1
L
∑L−1
l�0
∑Cl−1

c�0
A c, l( )f c, ~x n( )( ) e j2πlm/L.

This yields both a delay-based representation by a(c, m) (equivalent
to using g(l,m) = δ(m − l) in (5)) and an associated frequency-based
parameterization in terms of A(c, l) � ∑L−1

m�0a(c, m)e −j2πlm/L

(equivalent to using g(l, m) = ej2πlm/L in (5)). According to that,
any time-domain model from the existing techniques outlined in
Section 1 can be simply cast into a respective Fourier formulation
that explicitly reproduces the interfering Doppler shifts in the
dynamically acquired signal.

In summary, it can be stated that the Doppler effect in the
dynamically acquired signal ~p(~x(n), n) can be represented by time-
dependent modulations of spatial basis functions. For LTI
conditions, the actual sound-field parameters remain unchanged
despite the continuous movement during the measurement process.
This includes that the physical impact of the measurement
microphone on the sound field is considered negligible, which is
a usual assumption for small-capsule condenser microphones.
Consequently, by controlling the excitation s(n) and tracking the
trajectory ~x(n), the particular sound-field features can be estimated
from a number of M > P dynamic samples ~p(~x(n), n) by applying
least-squares techniques. Following (30) and using vector-matrix
notations, a structured description of the measurement equations is
given by

~p � 1
L
∑L−1
l�0

SlF lal + ~η,

where ~p ∈ RM comprises the microphone signal ~p(~x(n), n),
Sl ∈ CM×M are diagonal matrices that render the temporal
evolution of discrete frequencies in s(n),

Sl � diag S0 l( ), S1 l( ), . . . , SM−1 l( ){ },

the matrices Fl ∈ CM×Cl carry the sampled spatial basis functions
with the c-th column defined as

F l[ ]c �
f c, ~x 0( )( )

..

.

f c, ~x M − 1( )( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

the vectors al ∈ CCl contain the underlying sound-field parameters
for each sampled frequency ωl,

al � A 0, l( ), A 1, l( ), . . . , A Cl − 1, l( )[ ]T,
and ~η ∈ RM is the noise vector modeling additive errors due to
sampling, limited parameterization, and measurement noise.
Accordingly, the M × P sampling matrix

~Λ � 1
L

S0F0,S1F1, . . . ,SL−1FL−1[ ] (32)

and the vector concatenation a � [aT0 , aT1 , . . . , aTL−1]T ∈ CP of P
parameters build up the system of linear equations
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~p � ~Λa + ~η. (33)
Note that the spectrum of the real-valued sound field is conjugate
symmetric which can be exploited for reducing the effective number
of parameters and saving computational cost. In practice, of course,
there will be the usual sampling artifacts due to the measurement
within finite observation windows in time and space. Also, the
microphone dynamics demand a little amount of oversampling
(which is usual either way), since the Doppler effect affects the
highest frequencies that fall beyond the cutoff frequency of the anti-
aliasing prefilter in case the microphone moves toward the source.

4 Non-ideal microphone tracking

Given perfect positional tracking of the moving microphone, the
relative motion function ~xr(t) as defined in Section 3.3.1 can be
perfectly determined and, thus, currently observed shifted
frequencies subject to (20) can be perfectly described in terms of
phase modulations in the spatial basis functions. The involved and
unknown Doppler shifts caused by multipath arrivals are inherently
tracked within the dynamic sampling model due to the connection
with the LTI acoustic field. Each sample of the moving microphone
is linked with a particular spatio-temporal solution to the wave
equation, which in turn allows for the reverse mapping of the
Doppler effect. In this section, we show how the according
sound-field estimates behave for non-ideal trajectory data.

4.1 Perturbation model

For non-perfect microphone tracking, the positional errors lead
to inconsistencies between the real-world Doppler effect and the
frequency shifts performed within the signal model. Mathematically,
this erroneous mapping of Doppler shifts can be expressed by a
perturbation on the sampling matrix according to ~Λpert � ~Λ + E*,
where the deviating matrix E* results from inaccurate evaluations of
the spatial basis functions. This produces the perturbed model

~p � ~Λ + E*( )a + ~η � ~Λa + ~η + ε, (34)

with the multiplicative noise term ε � E*a, i.e., the error is correlated
with the targeted sound-field signal. Using the block-structure
representation (32) of the sampling matrix, its perturbation can
be described as

~Λpert � 1
L

S0 F0 + F*0( ), . . . ,SL−1 FL−1 + F*L−1( )[ ],
with deviations given by

F* l[ ]c � f c, ~xtrack 0( )( ) − f c, ~x 0( )( )
..
.

f c, ~xtrack M − 1( )( ) − f c, ~x M − 1( )( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where ~xtrack(n) � ~x(n) + x*(n) denotes the estimated trajectory that
includes positional mismatches x* (n) due to inaccuracies of the
applied microphone tracking system. This yields the
perturbation matrix

E* � 1
L

S0F
*
0,S1F

*
1, . . . ,SL−1F

*
L−1[ ] (35)

and specifies the multiplicative noise as

ε � 1
L
∑L−1
l�0

SlF
*
lal.

4.2 Sensitivity considerations for Doppler-
shift mismatches

The structured perturbation matrix (35) allows us to provide
stability conditions and error bounds for sound-field estimates that
are based on noisy trajectory data, i.e., Doppler-shift mismatches.
For this, existing perturbation theory can be adapted, which is
demonstrated in the following for both the least-squares and
CS cases.

First, let us consider the effects of positional perturbations in ~Λ
on its pseudoinverse ~Λ

+
. In general, the differences in the

pseudoinverse caused by E* can be bounded (Wedin, 1973;
Stewart, 1977) according to

‖~Λ+
pert − ~Λ

+‖F ≤
�
2

√ ‖E*‖F max ‖~Λ+‖22, ‖~Λ+
pert‖22{ }, (36)

where ‖ ·‖F denotes the Frobenius norm, and, following (35),

‖E*‖F � 1
L

��������������������������������������∑M−1

n�0
∑L−1
l�0
∑Cl

c�1
|Sn l( ) f c, ~xtrack n( )( ) − f c, ~x n( )( )( )|2√√

. (37)

The bound (36) does not necessarily remain finite as E* tends to zero.
For trajectory data with slight errors approaching zero, but yielding a
deviation E* that changes the rank of the unperturbed sampling
matrix, rank(~Λpert) ≠ rank(~Λ), the error norm ‖~Λ+

pert − ~Λ
+‖F may

become very large. However, stating the condition
rank(~Λpert) � rank(~Λ), the bound (36) can be strengthened to

‖~Λ+
pert − ~Λ

+‖F ≤ ‖E*‖F ‖~Λ+‖2 ‖~Λ+
pert‖2,

which guarantees that ~Λ
+
pert is close to ~Λ

+
if E* is small (Wedin, 1973).

Now, we consider the solution of the linear least-squares
problem to (34),

âLS � argmin
a

~p − ~Λ + E*( )a!!!!! !!!!!2 � ~Λ
+
pert

~p.

Let us assume a compatible linear system with vanishing model
error, ~p − ~η − ~Λa � 0, and ~Λ and ~Λpert both having full column rank
with M ≥ P. For a relative error rate ϵ fulfilling

‖E*‖2
‖~Λ‖2

≤ ϵ, ‖~η‖2
‖~p − ~η‖2 ≤ ϵ, ϵ< 1

κ ~Λ( ), (38)

with κ(~Λ) � ‖~Λ‖2‖~Λ+‖2 being the condition number, the error of
the least-squares estimate is bounded (Wedin, 1973; Higham,
2002) by

‖a − âLS‖2
‖a‖2 ≤

2ϵκ ~Λ( )
1 − ϵκ ~Λ( ). (39)

Frontiers in Signal Processing frontiersin.org09

Katzberg et al. 10.3389/frsip.2024.1304069

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1304069


According to the conditions (38) attached to ϵ, the performance
guarantee (39) requires an accuracy of the microphone tracking that
satisfies σmax(E*)< σmin(~Λ), where σmax and σmin denote the
maximum and minimum singular values, respectively. Here, the
formula (37) provides a handy upper bound for the singular values
of the perturbation matrix given particular trajectory offsets, since
σmax(E*) � ‖E*‖2 with P−1/2‖E*‖F ≤ ‖E*‖2 ≤ ‖E*‖F (Björck, 1996; Golub
and Van Loan, 2013).

Regarding CS-based strategies, Doppler-shift mismatches can be
seamlessly incorporated into the perturbation model from (Herman
and Strohmer, 2010). For simplicity, let us assume a strictly K-sparse
parameter vector a having the support size ‖a‖0 = |{i : ai ≠ 0}| ≤ K≪ P.
Also, let us assume a samplingmatrix ~Λ ∈ CM×P withM<P and full row
rank, and consider the solution of the basis pursuit problem to (34),

âBP � argmin
a

a‖ ‖1 s.t. ~p − ~Λ + E*( )a!!!!! !!!!!2 ≤ ϵK′ ,

where the total perturbation obeys

‖E*a‖2 + ~η
!!!! !!!!2 ≤ ϵK′ .

The worst-case relative perturbations are quantified by

‖E*‖ K( )
2

‖~Λ‖ K( )
2

≤ ϵ K( )
Λ ,

‖~η‖2
‖~p − ~η‖2 ≤ ϵp, (40)

where ‖ · ‖(K)2 denotes the maximum spectral norm over the
collection of all K-column submatrices. For a sampling matrix
with restricted isometry constant δ2K(~Λ) fulfilling

0≤ δ2K ~Λ( )< �
2

√
1 + ϵ 2K( )

Λ( )−2 − 1≤
�
2

√ − 1, (41)

or, vice versa, for Doppler-shift errors in E* satisfying

ϵ 2K( )
Λ <

�
24

√
δ2K ~Λ( ) + 1( )−1

2 − 1≤
�
24

√ − 1, (42)
we can set the absolute noise parameter

ϵK′ � ϵ K( )
Λ κ K( )

Λ + ϵp( )‖~p − ~η‖2
with

κ K( )
Λ �

���������
1 + δK ~Λ( )√���������
1 − δK ~Λ( )√ ,

and guarantee the stability of the basis pursuit solution according to

‖âBP − a‖2 ≤ μ ϵK′ , (43)
where the well-behaved factor μ ≥ 0 is defined by δ2K(~Λ) and ϵ(2K)Λ

(Herman and Strohmer, 2010). Consequently, the stability of the
solution scales linearly with the worst-case mismatch measured by
ϵ(K)Λ . Note that (43) must be considered as the worst-case error
bound for sound-field estimates based on non-ideal microphone
tracking in the theoretically worst possible scenario. In practice, CS
solutions are known to perform much better. The conditions (40),
(41), (42) imply

‖E*‖ 2K( )
2 <

�
24

√ −
���������
1 + δ2K ~Λ( )√

and, similar to the least-squares case, they ensure for any k ≤ 2K that
σ(k)max(E*)< σ(k)min(~Λ), where σ(k)max and σ(k)min, respectively, denote the
largest and smallest non-zero singular values over all k-column

submatrices, and, thus, that the maximum rank of the
corresponding submatrices does not change with the
perturbation, rank(k)(~Λpert) � rank(k)(~Λ).

5 Subband analysis in Doppler domain

For extensive target regions and wide-ranging bandwidths, the
linear system (33) with the parameter set in a might become too
large for practical applications due to limitations in computational
power and memory. For example, by considering a spherical volume
with radius rmax, the number of parameters required for the
spatialization at ωl is Cl � O(ω2

l r
2
max) (Katzberg et al., 2021). The

broadband problem formulated in (33) grows accordingly. Here, all
frequencies are coupled owing to the wideband excitation with
s(n) and its convolutive relationships in Doppler-shifted
microphone samples ~p(~x(n), n). For the case in which the
problem is ill-conditioned due to insufficient sampling, solving
the inverse problem may lead to poor solutions over the entire
bandwidth. In this section, we establish a frequency-decoupling
filtering scheme that is compatible with Doppler-shifting
sampling procedures. In contrast to the short-time Fourier
analysis that will be presented in Section 6, this scheme is
universally applicable for arbitrary excitation signals. It may
be used for subband recovery strategies that allow for parallel
computing and faster reconstruction, especially at low
frequencies.

5.1 Spatio-temporal filtering in
Doppler domain

Isolating distinct subbands of temporal frequencies by applying
conventional bandpass filtering to the microphone signal is not
feasible. The measured position is varying over time since the
microphone is supposed to move. It is easy to see that applying a
digital bandpass filter g[ℓ](n) along the temporal dimension of
~p(~x(n), n) inherently involves a spatial filtering since ~x(n)
depends on n, i.e., g[ℓ](n) p ~p(~x(n), n) ≠ g[ℓ](n) pp(x, n). Due to
the frequency shifts caused by mixing up temporal and spatial
frequencies, i.e., the Doppler effect, the bandpass filtered signal in
the Doppler domain may not be directly linked to an accordingly
bandpass filtered sound field.

Nevertheless, let us consider linear-phase FIR filters g[ℓ](n) of
length G defining the complete signal decomposition of the
broadband measurement ~p(~x(n), n) into L subband signals
subject to

VG ~p ~x n( ), n( ){ } �∑L
ℓ�1

g ℓ[ ] n( ) p ~p ~x n( ), n( ) �∑L
ℓ�1

~p ℓ[ ] ~x n( ), n( ), (44)

with operator VG{·} modeling the delay of (G − 1)/2 samples
introduced by the FIR filters, and filtered signals ~p[ℓ](~x(n), n)
covering Doppler-shifted frequencies ~ω[ℓ] of distinct subbands
with cutoff frequencies according to ω[ℓ−1]

cut < ~ω[ℓ] ≤ω[ℓ]
cut. Of

course, it is unfeasible to link a subband of spatio-temporal
frequencies on the trajectory with the corresponding subband of
temporal frequencies inside Ω. However, we can interrelate the
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Doppler interfered subbands of both the measured sound field on
the trajectory and the AIR on the trajectory, since both signals are
dynamically shaped by the same motion function, and, therefore,
involve shared Doppler artifacts. Thus, using (31), we may formulate
the delay-compensated subband model

V−1
G g ℓ[ ] n( ) p ~p ~x n( ), n( ){ } � V−1

G ~p ℓ[ ] ~x n( ), n( ){ }
� s n( ) p h ℓ[ ] ~x, n( )|~x�~x n( ).

(45)

Our model (45) implies that the time-domain convolution between
the measured signal ~p(~x(n), n) and the filter g[ℓ](n) is actually
equivalent to a spatio-temporal filtering as the microphone is
permanently moving. Since the accordingly varying AIR
h(~x(n), m) lives on the same trajectory, it is equally affected by
this multidimensional filtering operation, leading to the
corresponding Doppler-shifted subband version h[ℓ] and the
unfiltered excitation sequence on the right-hand side of (45).
These intuitive relationships can be shown mathematically.
Without loss of generality, let us ignore the filter delay, consider
infinite convolution sums, and rewrite (45) as

~p ℓ[ ] ~x n( ), n( ) � ∑∞
~u�−∞

g ℓ[ ] n − ~u( ) ~p ~x ~u( ), ~u( )

� ∑∞
~u�−∞

∑∞
m�−∞

g ℓ[ ] n − ~u( ) s ~u −m( ) h ~x ~u( ), m( ).

Using the substitutions ~v � ~u −m, ~k � ~u − ~v, and ~z � n − ~k −
~v reveals

~p ℓ[ ] ~x n( ), n( ) � ∑∞
~v�−∞

s ~v( ) ∑∞
~k�−∞

g ℓ[ ] n − ~k − ~v( ) h ~x ~k + ~v( ), ~k( )
� ∑∞

~v�−∞
s ~v( ) ∑∞

~z�−∞
g ℓ[ ] ~z( ) h ~x n − ~z( ), n − ~z − ~v( ).

Defining ~m � n − ~v and introducing the limits yields

~p ℓ[ ] ~x n( ), n( ) � ∑L−1
~m�0

s n − ~m( )∑G−1
~z�0

g ℓ[ ] ~z( ) h ~x n − ~z( ), ~m − ~z( ),

where the sum over ~z defines the spatio-temporal filtering by g[ℓ](~z)
and composes the subband AIR along the trajectory.

5.2 Subband decomposition in
Doppler domain

Similar to the broadband case in Section 3.4, the frequency-
based spatialization model (29) can be applied to the bandpass
filtered signal (45), which allows for representing the isolated
Doppler-shifted frequencies ~ω[ℓ] by their non-shifted
counterparts ω in combination with modulated spatial
basis functions,

V−1
G ~p ℓ[ ] ~x n( ), n( ){ } � 1

L
∑
l∈Bℓ

Sn l( )H ℓ[ ] ~x n( ), l( ) + ~η ℓ[ ] n( ), (46)

with

H ℓ[ ] ~x n( ), l( ) ≈ ∑Cl−1

c�0
A ℓ[ ] c, l( )f c, ~x n( )( )

representing the subband AIR in the sampled Doppler domain and
~η[ℓ](n) being the subband error term. Note that the subband
coefficients A[ℓ](c, l) depend on l which is still the discrete
variable of the non-shifted frequency. Here, again, the trajectory
~x(n)must be known, in order to allow for the reverse mapping of the
involved Doppler shifts by use of modulated basis functions
f(c, ~x(n)). Due to the bandpass filtering, we know a priori that
A[ℓ](c, l) = 0 for several stopband frequencies, thus, the sum over l is
reduced in (46) to the sum over sampled subband frequencies of
the set

Bℓ � l: ω ℓ−1[ ]
cut − αℓ <ωl ≤ω ℓ[ ]

cut + β
ℓ

{ }, (47)
where the band interleaving margins αℓ and βℓ are chosen according
to themaximum expected Doppler shift, which can be approximated
by knowing the microphone trajectory and using (17). The Doppler
margins ensure that there is no measured signal component in
~p[ℓ](~x(n), n) that translates to original frequencies l ∉ Bℓ . In
practice, sufficient ranges of αℓ and βℓ will be necessary also due
to non-ideal bandpass filters g[ℓ](n).

5.3 System of linear equations for subband
parameters

In comparison with (33), we can now shrink the broadband
parameter vector a ∈ CP to the subband vector aℓ ∈ CPℓ with
parameters A[ℓ](c, l) for frequencies l ∈ Bℓ , and shrink the broadband
sampling matrix ~Λ ∈ CM×P to the corresponding subset of columns
~Λℓ ∈ CM×Pℓ for shaping the system of linear equations

~p
ℓ
� ~Λℓaℓ + ~η

ℓ

that describes the subband case (46) with the reduced number of
parameters Pℓ � ∑l∈Bℓ

Cl <P. Generally, the decomposition of the
original large problem (33) into L subproblems with small Doppler
margins αℓ and βℓ enables us to recover the sound field at low
frequencies using just a few samples acquired after a short sampling
time. Also, with regard to the sensitivity considerations in Section
4.2, the sampled Doppler mismatch induced by errors in the
microphone tracking may become less critical due to the
frequency decoupling. For trajectories which lead to ill-
conditioned or underdetermined broadband problems, the
subband method allows for an adaptation of the bandwidth to
be recovered.

Caused by the interfering Doppler shifts and the non-ideal
bandpass filters, the full information on a single discrete
frequency l might be spread over neighbouring subbands (cf.
Section 7.1; Figure 3). According to the complete signal
decomposition (44), the entire frequency information is
composed of

A c, l( ) � ∑
ℓ∈I l

A ℓ[ ] c, l( ), (48)

with I l � {ℓ: l ∈ Bℓ}. In practice, the Doppler induced frequency
shifts amongst subbands have small range. For example, using a
microphone moving at maximum speed of 12 km/h, Doppler shifts
may be roughly localized according to ω − 0.01ω≤ ~ω≤ω + 0.01ω.
Finally, note that this Doppler-domain subband procedure can be
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regarded as the generalized Fourier equivalent to the specific
multigrid recovery scheme described in (Katzberg et al., 2017a; b).

5.4 III-conditioning and subband
improvements

Beside the ability of the subband approach to divide a large-scale
broadband problem intomany small-size subtasks that can be solved
in parallel, some further numerical benefits are obtained for finding
suitable and robust solutions to the inverse problem. This is
highlighted in the following considerations.

5.4.1 Number of unknown parameters
For larger bandwidths and larger target regions, arbitrary

microphone trajectories lead to a linear system (33) that will be ill-
posed or even underdetermined with high probability unless an
excessive number of spatially dense samples are acquired. This is
essentially due to the exploding number of spatially dense sound-
field parameters required to represent the dynamically coupled samples
by broadband wave fields in spacious areas. For example, the uniform-
grid model from Section 3.3.3 comprises at least (Δξ = πc0/ωcut)

CΩcub
V,ωl( ) � ωl

��
VD

√
πc0( )−1 + 1⌈ ⌉D

parameters to be estimated for recovering field information at
temporal frequency ωl inside a D-dimensional cubical region
Ωcub of size V. For the spherical-harmonics model from Section
3.3.2, the number of parameters needed to adequately reconstruct
sound waves at ωl inside a spherical volume Ωsph of size V is at least
(v ≤ �ωlrmax/c0�)

CΩsph
V,ωl( ) � ωl

��������
3V 4π( )−13
√

c−10 + 1⌈ ⌉2.
The overall linear system (33) models the typical broadband
measurement case where the moving microphone acquires
sound-field samples at the rate fs for a spectrally flat excitation
signal emitted by a controlled loudspeaker source. Thus, choosing
the uniform-grid model for example, the spatio-temporal recovery
of AIRs with duration (L − 1)fs involves PΩcub �∑L−1

l�0 CΩcub(V, 2πfsl/L) unknown sound-field parameters (cf. Eqs
(29), (30)). For practical applications, this results in a huge
sampling matrix ~Λ that makes it difficult or even impossible to
solve (33) with conventional methods. Analogously, the spherical-
harmonic representation involves PΩsph � ∑L−1

l�0 CΩsph(V, 2πfsl/L)
unknowns. Here, there is also an additional influence that tends
to produce ill-posed recovery tasks. In the spherical-wave
extrapolation formula (23), the spherical Bessel functions for
the radial part cross zero at several frequency-radius
combinations �kr. Due to that, they are typically known to yield
ill-conditioned inverse problems unless taking particular care of
radial sampling positions or introducing special regularization
filters (Rafaely, 2005; Moreau et al., 2006; Rafaely, 2015).

In the light of the previous considerations, a decomposition of
the overall linear system (33) is desirable. There are two strategies to
divide the large-scale problem into smaller problems: the spectral
decomposition of the global bandwidth [ω0, ωL−1] and the spatial
decomposition of the measurement region Ω into multiple subareas

with smaller extent. The feasibility of spatial decomposition will be
highly dependent on both the microphone trajectory and the
spatialization model, and, thus, is not further considered in this
paper. However, the proposed subband filtering scheme provides a
useful and general tool for the spectral signal and parameter
decoupling in the presence of Doppler shifts. It can be used to
solve smaller subproblems where only subsets of frequency
parameters according to (47) are active.

5.4.2 Singular values
The subband approach solves the inverse problem by use of L

sampling matrices ~Λℓ ∈ CM×Pℓ that are each constructed by a
reduced set of columns from the fullband matrix ~Λ ∈ CM×P with
Pℓ < P. Let us introduce Iℓ=P � {0, 1, . . . , P − 1} as the strict subset
of correspondingly selected column indices. The respective bounds
of non-zero singular values are defined as

σmax
~Λ( ) � max V( ), σmin

~Λ( ) � min V( ),
σmax

~Λℓ( ) � max Vℓ( ), σmin
~Λℓ( ) � min Vℓ( ), (49)

with the sets

V � ‖~Λa‖2: ‖a‖2 � 1{ },
Vℓ � ‖~Λa‖2: ‖a‖2 � 1 ∧ ai � 0 ∧ i ∈ P\Iℓ{ }, (50)

and ai denoting the i-th element in a. Since Vℓ ⊆ V, it follows

σmax
~Λℓ( )≤ σmax

~Λ( ), σmin
~Λℓ( )≥ σmin

~Λ( ).
Hence, the condition number of the subband sampling
matrix satisfies

κ ~Λℓ( ) � σmax
~Λℓ( )

σmin
~Λℓ( ) ≤ σmax

~Λ( )
σmin

~Λ( ) � κ ~Λ( ).
Compared to the broadband case, the subband formulation typically
yields a shrunken range between singular values, most likely for Pℓ≪
P. This improves the matrix condition and, therefore, the robustness
of the estimates and the theoretical error bounds in the sense of (39).

For a broadband sampling matrix ~Λ with singular values
b1 ≥/ ≥ bmin(M,P) ≥ 0 that are heavily imbalanced, the impact of
general measurement errors in terms of p̃ = ptrue˜ + e on the LS
estimate can be illustrated by the expression

âLS �∑R
i�1

uH
i
~ptrue
bi

vi + uH
i e
bi

vi( ), (51)

where R � rank(~Λ) and ui, vi are the left- and right-singular vectors,
respectively, characterizing the linear mapping ~Λa from the signal
space over CP to the measurement space over CM according to
~Λ � ∑R

i�1biuivHi . When constructing the LS solution by the reverse
mapping (51), relatively small singular values amplify the
additive perturbation terms in (51), so that they may
dominate other major signal components referring to large
singular values. As a remedy, the subband formulation may
result in more compact and, thus, more favorable singular
values. Based on the interlacing properties derived by
Thompson (1972), exact relations amongst the singular values
of the fullband matrix and the subband matrices can be provided.
With d1 ≥/≥dmin(M,Pℓ)≥ 0 being the singular values of the
particular submatrix ~Λℓ , it holds that
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di ≤ bi, for 1≤ i≤min M,Pℓ( ),
di ≥ bi+J, for i≤min Pℓ ,M − J( ), (52)

where J = P − Pℓ is the number of dropped columns due to the
subband formulation. Especially for low-frequency subbands that
require only a small number of spatial parameters, Pℓ ≪ P and J in
(52) becomes very large, so that the subband solution by analogy
with (51) is most likely more robust.

For M < P, the broadband measurement matrix ~Λ ∈ CM×P by
necessity has linearly dependent columns and, thus, involves
underdetermined variables. However, also for decent acquisition
times where M is a low multiple of P (such as the twofold or
fourfold of P), we observed in our previous works that the resulting
problem tends to be underdetermined due to numerical rank
deficiency, even for suitable trajectory curves covering the entire
target volume (Katzberg et al., 2021). Having a tall matrix (M > P)
of rank R < P, the deletion of one column results in a submatrix
that is either of rank Rℓ = R or Rℓ = R − 1, depending on whether or
not the deleted column was a linear combination of some other
columns. Low-frequency subband matrices are obtained by
deleting a mass of columns in ~Λ. Therefore, compared to R/P,
they yield an improved ratio Rℓ/Pℓ with very high probability. With
just a few samples acquired after a short measurement time, they
may even have full column rank. Apart from that, in cases of
underdetermined problems, the subband approach may improve
robustness guarantees for CS-based solutions by lowering the
restricted isometry constants. Closely connected with the
expressions from Section 4.2, the restricted isometry constant
δK(~Λ) for K-sparsity can be represented as

δK ~Λ( ) � max 1 − σ K( )
min

~Λ( )( )2, σ K( )
max

~Λ( )( )2 − 1( ),
which states that each submatrix constructed by no more than K
columns has its singular values in the interval [(1 − δK(~Λ))1/2, (1 +
δK(~Λ))1/2] (Bah and Tanner, 2010; Herman and Strohmer, 2010).
By comparing to this broadband case and using similar definitions as
in (49), (50), it can be shown that all sampling matrices produced by
our subband approach have constants δK(~Λℓ)≤ δK(~Λ). Here, again,
we expect noticeable improvements for lower subbands with Pℓ ≪ P
(cf. Section 7.2; Figure 7).

6 Frequency analysis in Doppler domain

Having amovingmicrophone, the decoupling of single temporal
frequencies by applying conventional Fourier analysis to the
measured signal is not possible. Due to the receiver motion
within the multipath environment, spectral characteristics are
actually spread over multiple frequency components (frequency
dispersion). The range of this spectral broadening is measured by
the so-called Doppler spread, which, in our case, increases for higher
velocities of the microphone. For the subband design in Section 5,
the extent of frequency spreading is taken into consideration by the
frequency set (47), where αℓ and βℓ are simple worst-case bounds for
the Doppler spread according to the maximum expected
microphone speed. In this section, we derive trajectory-
dependent filters that exactly characterize the frequency
dispersion in the sampled microphone signal. The knowledge of

the receiver trajectory allows for calculating these filters and
describing frequency components in the dynamically observed
signal by frequency-spread versions of the particular sound-field
parameters.

6.1 Spatio-spectral spreading due to
dynamic observations

As demonstrated in Section 3, the dynamic signal model (2) can
be seamlessly embedded into the concept of Doppler-variant
impulse responses and transfer functions, which is often used in
wireless-communications literature. Let us adapt the notation in (2)
accordingly, i.e.,

~p~x t( ) � ∫∞

−∞
s t − τ( )h~x t, τ( )dτ, (53)

where the subscript indicates the temporal context to the trajectory.
In (53), the signal multiplication subject to t translates to the
convolutive frequency representation

~p~x t( ) � ∫∞−∞F −1
t

1
2π
∫∞

−∞
S ω( )e −jωτD~x ] − ω, τ( )dω{ }dτ

� 1
2π

F −1
t ∫∞

−∞
S ω( )∫∞

−∞
D~x ] − ω, τ( )e −jωτdτ dω{ }

� 1
2π

F −1
t ∫∞

−∞
S ω( )U ~x ] − ω,ω( )dω{ },

(54)

where F−1
t ·{ } denotes the inverse Fourier transform from

frequency variable ] to time t, F −1
t S(ω)e −jωτ{ } � s(t − τ),

D~x(], τ) is the trajectory-shaped Doppler-variant impulse
response in the sense of (8), and U ~x(],ω) is the corresponding
transfer function in the sense of (10). By taking the
Fourier transform of both sides of (54), the shifted frequencies
observed by a moving receiver can be expressed as the spectral
convolution

~P~x ]( ) � 1
2π
∫∞

−∞
S ω( )U ~x ] − ω,ω( )dω. (55)

In comparison to (14), where the sound-pressure observation is
given in the time domain, (55) displays the Fourier correspondence
of the dynamic signal subject to the global time variable t. This
reveals the convolutional coupling of the frequency variables ω and ]
due to the receiver movement.

6.2 Spatial parameterization of the Doppler-
variant transfer function

Similar to (15), the trajectory-shaped spreading function in (55)
can be represented subject to the particular spatialization model of
the time-invariant sound-field characteristics, i.e.,

U ~x ],ω( ) � ∫∞−∞H ~x t( ),ω( )e −j]tdt
� ∫∞−∞A ρ,ω( )F~x ρ, ]( )dρ, (56)

with the trajectory-dependent filters
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F~x ρ, ]( ) � ∫∞

−∞
f ρ, ~x t( )( )e −j]tdt

constructed by the Fourier transform of the particularly evaluated basis
functions. In Figure 2, we summarize the parameter-based relationships
between the four fundamental system functions that describe the
dynamic channel as introduced in Section 3.1 with direct
connections to the receiver trajectory. Note that the parameterized
domains in Figure 2 are equivalent to the four domains in Figure 1.
Substituting (56) into (55) yields the representation

~P~x ]( ) � 1
2π
∫∞

−∞
∫∞

−∞
S ω( )A ρ,ω( )F~x ρ, ] − ω( )dωdρ (57)

that describes the dynamically observed frequencies in terms of the
sound-field parameters A(ρ, ω) and their trajectory-dependent
smearing due to F~x(ρ, ] − ω). The observation ~P~x(]) reveals a
spatio-temporal spectrum that results from the combined effects
of both the temporal (delay) behavior of the acoustic environment
and the spatial filtering subject to the continuous movement of
the receiver.

6.3 Sampled frequency spreading for
periodic excitation

For obtaining a sampled analogy to (57), let us consider the
periodic excitation

s n( ) � ~s nmod L( ) (58)
by use of a deterministic sequence ~s(n) of length L. In fact, this is the
actual setting of various dynamic procedures that rely on the
properties of so-called perfect sequences (Hahn and Spors, 2016;
Katzberg et al., 2017b).

Based on (31), we define the short-time segment

~p~x n( ) w( ) � ~p ~x n + w( ), n + w( )
� ∑L−1

m�0
s n + w −m( ) h ~x n + w( ), m( ) (59)

of length L obtained from rectangular windowing of the microphone
signal for window indices w ∈ {0, . . ., L − 1}. Using (58), (59), the
convolution theorem leads to

~p~x n( ) w( ) � 1

L2 ∑L−1
m�0
∑L−1
u�0
∑L−1
l�0

~Sn l( )e −j2πlm/LD~x n( ) u − l, m( )e j2πuw/L

� 1

L2 ∑L−1
u�0
∑L−1
l�0

~Sn l( )U~x n( ) u − l, l( )e j2πuw/L,

(60)
with the discrete Fourier transform of the sequence ~s(n) circularly
shifted according to the excitation phase nmod L,

~Sn l( ) � ∑L−1
w�0

~s w − nmod L( )e −j2πlw/L,

the (spatially) windowed Doppler-variant impulse response

D~x n( ) u,m( ) � ∑L−1
w�0

h ~x n + w( ), m( )e −j2πuw/L

shaped by the particular trajectory segment, and the corresponding
transfer function

U~x n( ) u, l( ) � ∑L−1
m�0

D~x n( ) l, m( )e −j2πlm/L

modeling the frequency spread in the sampled signal due to the
moving microphone. Taking the discrete Fourier transform of both
sides of (60) yields

~P~x n( ) u( ) � 1
L
∑L−1
l�0

~Sn l( )U~x n( ) u − l, l( ), (61)

which clearly describes the resulting frequency shifts in the
short-time Fourier representation ~P~x(n)(u). The function
~P~x(n)(u) displays the spatio-temporal spectrum measured
under the positional variations along the particular
trajectory segment.

FIGURE 2
Representation of the four domains in Figure 1 subject to shaped parameters. The effective time-variance of the dynamic receiver channel is fully
attributed to trajectory-shaped (filtered) versions of fixed sound-field parameters a(ρ, τ) and A(ρ, ω), respectively.
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6.4 Frequency-spreading filters due to
moving microphones

The discrete spatialization model (29) allows for the sampled
Doppler-variant representation

U~x n( ) u, l( ) � ∑L−1
w�0

H ~x n + w( ), l( )e −j2πuw/L

≈ ∑Cl−1

c�0
A c, l( )F~x n( ) c, u( )

(62)

subject to the finite set of sound-field parameters A(c, l) and the
trajectory-dependent FIR filters

F~x n( ) c, u( ) � ∑L−1
w�0

f c, ~x n + w( )( )e −j2πuw/L (63)

for the specific choice of spatial basis functions. Substituting
(62) into (61) finally reveals the short-time Fourier
representation

~P~x n( ) u( ) � 1
L
∑L−1
l�0
∑Cl−1

c�0
~Sn l( )A c, l( )F~x n( ) c, u − l( ) +N~x n( ) u( ) (64)

of the dynamic sampling model (30) in terms of the frequency-
spreading filters F~x(n)(c, u), where N~x(n)(u) encapsulates the
frequency-dependent errors due to sampling and
parameterization. At this, the particular Doppler spread is
defined as the range of frequency bins over which F~x(n)(c, u) is
essentially non-zero. Note, for a non-moving microphone at
constant position, i.e., ~x(n) � xr, the Doppler effect and the
resulting frequency spreads vanish, which leads to inherent
simplifications of (63), (64) according to

F~x n( ) c, u( ) � Lf c, xr( )δ u( )
and

~P~x n( ) u( ) � ∑Cl−1

c�0
~Sn u( )A c, u( )f c, xr( ) +N~x n( ) u( ), (65)

respectively, with (65) being actually dissolved into a short-time
Fourier representation of the stationary sampling concept (4) for L-
periodic excitation.

Similar to the subband procedure proposed in Section 5, the
short-time Fourier analysis (64) could be used to set up a
recovery strategy that decomposes the dynamic broadband
problem (33) into multiple subproblems of narrow frequency
ranges. In fact, this is straightforward for sufficiently
slow trajectories which allow for approximations
F~x(n)(c, u) ≈ Lf(c, ~x(n))δ(u), i.e., the effect of spatio-spectral
smearing is negligible within a time window of size L.
However, having a microphone with arbitrary velocity profile,
the modeling of decoupled sampling matrices from (64) with
exact frequency-spreading filters F~x(n)(c, u) and also the merging
of obtained frequency estimates are not straightforward and
clearly raise the complexity compared to the simple and
universal subband procedure from Section 5, which requires
only rough approximations of Doppler margins αℓ and βℓ.

7 Experiments and results

In this section, we demonstrate the key points of the introduced
Doppler framework on the basis of experimental data and
specifically chosen examples of parameterization models.

7.1 Doppler-spread visualizations

Let us first consider unrealistic toy examples with extreme
receiver velocities for clear visualizations of both the Doppler
shifts between dynamic subbands H[ℓ](~x(n), l) as elaborated in
Section 5 and the Doppler-spreading FIR filters F~x(n)(c, u)
derived in Section 6. Using the image source method (Allen
and Berkley, 1979), the sound field inside a room of size
5.80 m × 4.15 m × 2.55 m and reverberation time T60 =
0.25 s was simulated. Instead of applying a nearest-neighbour
interpolator as originally proposed by Allen and Berkley (1979),
we took a Hanning-windowed ideal low-pass filter of length
4 ms to calculate the bandlimited and sampled RIR
contributions from the particular image sources (Peterson,
1986). For the excitation sequence, we generated an L-
periodic MLS signal (Rife and Vanderkooy, 1989) of about
20 s duration and filtered it in order to obtain a passband of
effective audio frequencies between 400 Hz and 1600 Hz. We
simulated corresponding (noiseless) audio recordings from an
omnidirectional microphone sampling at fs = 4000 Hz and
continuously moving along Lissajous trajectories (Katzberg
et al., 2017b). Lissajous curves for measurement are
commonly used in magnetic particle imaging (Knopp et al.,
2009). In (Katzberg et al., 2018), they have been experimentally
shown to be a good choice also for sound-field sampling. The
Lissajous trajectories considered here are typically slower and
denser close to the volume boundaries, while the center regions
are crossed fast and sampled more coarsely.

Four experiments were carried out with different trajectory
mean velocities of 5 km/h, 50 km/h, 100 km/h, and 200 km/h.
The spherical-harmonic parameterization from Section 3.3.2
was selected for the dynamic reconstruction. Accordingly, the
spatially embedded transfer function sampled along ~x◦(n) is
represented as

H ~x◦ n( ), l( ) ≈ ∑
v,q( )∈Ψl

A v, q( ), l( )bv �klrn( )Yq
v θn,ϕn( ),

with �kl � ωl/c0 being the sampled angular wave number and Ψl

constituting the set of index pairs where v≤ �klrmax and |q| ≤ v
(Rafaely, 2015). The radius of the target region was set to rmax =
0.1 m. The trajectory-dependent sampling of spatial basis functions
reads f(l, (v, q), ~x◦(n)) � bv(�klrn)Yq

v(θn, ϕn). Using the analysis
scheme from Section 5, we modeled L � 5 subband parameter
vectors aℓ (ℓ ∈ {1, . . . ,L}) with fullband margins,
i.e., Bℓ � {0, . . . , L − 1} and ~Λℓ � ~Λ, and recovered them by solving
the according overdetermined subproblems ~p

ℓ
� ~Λaℓ in the least-

squares sense. For the chosen cutoffs ω[ℓ]
cut � ℓ 800π, Hamming-

windowed ideal band-pass filters of order 1000 were applied to the
microphone signal. The frequency responses of these filters add up to
unit magnitude with only minor variations in the order of 10–4.
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The absolute values of the recovered subband parametersA[ℓ]((v, q), l)
arranged in aℓ are depicted in Figure 3 in reference to the four numerical
experiments with various microphone velocities. The parameters are
successively concatenated first along the spatial (v, q)-dimensions and
then along l with increasing frequency. Dotted lines indicate the vector
indices where the defined cutoffs are reached. In Figure 3, the Doppler
effect can be clearly observed in terms of subband-overlapping
broadening of frequency-based parameters, especially with regard to
higher frequencies and faster measurement trajectories. In case of
5 km/h, the subband of Doppler interfered frequencies in ~p

ℓ
from the

interval [(ℓ − 1) 400Hz, ℓ 400Hz] map to original frequencies in aℓ of
nearly the same range when solving the modeled inverse problem. Here,
the number of essential subband parametersmay be vastly reduced in line
with (47) using very tight Doppler margins. By contrast, considering the
extremely high velocities, Doppler shifts induce a significant spreading of
frequency information across multiple subbands and, thus, require large-
scale margins. The parameter vector a5, which refers to the highest
frequency band, is basically inactive for low-speed trajectories.
However, for velocities higher than 5 km/h, there are more and
more signal contributions shifted to the higher frequencies of
the subband sequence in ~p5 (1600 Hz − 2000 Hz) and the
corresponding subband parameter vector a5 becomes
increasingly essential for the sound-field recovery. On the
left-hand side of Figure 3, the magnitudes of the broadband

result afull according to (33) without the subband
decomposition are presented. They can be compared with the
magnitudes of the cumulated subband vectors ∑5

ℓ�1aℓ .
Regardless of the trajectory speed, the recovered subband
vectors effectively satisfy ∑5

ℓ�1aℓ � afull in each experiment, as
expected according to (48). For each speed scenario, the
deviation ‖afull −∑5

ℓ�1aℓ‖22/‖afull‖22 is only about −35 dB.
By using the Doppler analysis scheme from Section 6, Figure 4

depicts several examples of the underlying frequency-spreading
filters F~x◦(n)(l, (v, q), u) � ∑L−1

w�0f(l, (v, q), ~xo(n + w))e −j2πuw/L.
Here, the filter magnitudes |F1(l, (v, q), u)| and |F2(l, (v, q), u)|
refer to particular trajectory segments in the 5 km/h and 50 km/h
experiments, respectively, and the specific discrete frequencies l1, l2,
l3, and l4 correspond to about 500 Hz, 1000 Hz, 1500 Hz, and
2000 Hz. In conformity with the entire model, the trajectory-
dependent FIR filters show increased Doppler broadening for
higher velocities and larger frequencies.

7.2 Doppler misalignment due to noisy
trajectory data

Inaccuracies in the positional tracking of the microphone
result in Doppler-shift discrepancies as introduced in Section 4.

FIGURE 3
Magnitudes of spherical-harmonic parameters in vector |afull| recovered from the broadband formulation in comparison to themagnitudes in |aℓ|, ℓ ∈
{1 . . ., 5}, recovered from the subband decomposition scheme for several trajectory velocities. Higher velocities induce a visible spreading of frequency
information over different subbands.
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The subband decoupling scheme from Section 5 may increase
the robustness against noisy trajectory data, especially
regarding low-frequency parameter estimates as highlighted
in Section 5.4. For demonstrating such sensitivity
relationships, we carried out numerical experiments in
twenty simulated room scenarios, randomly chosen
according the uniform distribution of box-shaped
dimensions [2 m; 10 m]3 and reverberation times T60 ∈
[0.2 s; 0.35 s]. In each environment, both the source position and
the location of the considered measurement plane were randomly
selected. Impulse responses were limited to length L = 4095.
Recordings of an omnidirectional microphone were simulated at fs =
12 kHz along planar Lissajous trajectories ~x2D(n) involving mean
velocities of about 1 km/h. For the playback signal we used sixty
repetitions of an L-periodic MLS. In several experiments,
measurements were corrupted by additive white Gaussian noise with
a signal-to-noise ratio (SNR) of 10 dB, 20 dB, and 30 dB, respectively.
The underlying trajectory data were tested for the ideal case
~x2Dtrack(n) � ~x2D(n) and also for tracking errors according to
~x2Dtrack(n) � ~x2D(n) + x*2D(n), with positional noise x*2D(n)
independently drawn from the zero-mean normal distribution with
standard deviation σξ for each of the effective dimensions ξ ∈ {x, y}. The
mismatch level was set to σξ = 3 mm and σξ = 6 mm, respectively.

The grid approach from Section 3.3.3 was combined with
aspects from theoretical acoustics and used for CS-based sound-
field recovery (Katzberg et al., 2018; Katzberg and Mertins, 2022).
Regarding the experiments with two-dimensional trajectories on
planar target regions, the discretized sound-field model on a finite
Gx × Gy grid reads

H ~x2D n( ), l( ) ≈ ∑
κx,κy( )∈Γl

Hs κx, κy[ ]T, l( ) e j2π ~gx n( )κx/Gxe j2π ~gy n( )κy/Gy ,

where ~gx(n) � (~x(n) − μx)/Δx and ~gy(n) � (~y(n) − μy)/Δy are the
grid-related trajectory coordinates subject to the selected grid origin
μξ and spacing Δξ for ξ ∈ {x, y}, κξ denotes the integer-valued
frequency indices that translate to sampled spatial frequencies
according to kκξ � 2πΔ−1

ξ κξ/Gξ , and Γl represents the set of
discrete frequency pairs (κx, κy) that approximate the conical
structure around the sampled temporal frequency ωl = 2πfsl/L
(Katzberg et al., 2018; Katzberg and Mertins, 2022). Complying
with the proposed Doppler framework, the trajectory-dependent
sampling of associated basis functions in space reads
f((κx, κy), ~x2D(n)) � e j2π~gx(n)κx/Gxe j2π ~gy(n)κy/Gy . The following
recovery results were obtained with a grid design of Gx = Gy =
25 and Δx = Δy = 0.019 m.

FIGURE 4
Lower- and higher-frequency examples (rows) of trajectory-dependent filters causing the Doppler spreading for two different trajectory velocities
(columns). The range of the Doppler spread is defined by the effective filter length. It increases for higher frequencies and higher velocities.
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As error measure for the overall sound-field reconstruction
involving G grid AIRs, the mean normalized system
misalignment MNSM � 1/G∑G

g�1‖hg − ĥg‖22/‖hg‖22 is used, with
hg ∈ RL containing the true AIR and ĥg ∈ RL being the
recovered AIR at grid index g. The results for the broadband

model according to Section 3 and for the subband
decomposition scheme according to Section 5 are
comparatively depicted in Figure 5 subject to the different
levels of trajectory noise. The outcomes over all experimental
room scenarios are presented by use of boxplots. For the
subband strategy, Hamming-windowed ideal band-pass filters
of order 5000 were applied, summing up to unit magnitude
response with slight errors of order 10–5. We chose L � 6,
ω[ℓ]
cut � ℓ 2000π, and Doppler margins αℓ, βℓ that cover about

twenty discrete frequency bins each. This decomposes the
primary problem subject to ~Λ ∈ CM×P into six decoupled
subproblems subject to ~Λℓ ∈ CM×Pℓ referring to successive
1 kHz frequency ranges. The corresponding numbers P and
Pℓ of spatio-temporal parameters are listed in Table 1.
Besides, there are the respective values of the perturbation
measure ‖E*‖F from Section 4 for rating the induced Doppler-
shift mismatches due to the tested positional noise.

While the recovery performances are essentially equal for
noiseless trajectory data, the subband scheme improves the
robustness against the trajectory discrepancies compared to
the standard broadband approach. For σξ = 6 mm, its
performance gain is about 1 dB on average (Figure 5). For
visualizing the effects of positional inaccuracies, the
magnitudes of two particular frequency-spreading filters
F1((κx, κy), u) are presented in Figure 6 given a true
trajectory segment and its noisy version: for filters such as

FIGURE 5
Errors of AIR parameters obtained from the broadband (first row) and subband formulations (second row) for variousmicrophone SNRs and different
levels of tracking inaccuracies (columns).

TABLE 1 Comparison of parameter numbers for the broadband and
subband strategies, and evaluation of matrix perturbations due to
positional deviations of σξ = 3 mm and σξ = 6 mm, respectively.

‖E*‖F
# parameters σξ = 3mm σξ = 6mm

broadband:

~Λ ∈ CM×P 6.4 · 105 2.90 5.63

subband:

~Λ1 ∈ CM×P1 2.2 · 104 0.21 0.43

~Λ2 ∈ CM×P2 4.8 · 104 0.44 0.84

~Λ3 ∈ CM×P3 8.3 · 104 0.75 1.49

~Λ4 ∈ CM×P4 1.3 · 105 1.16 2.26

~Λ5 ∈ CM×P5 1.8 · 105 1.61 3.12

~Λ6 ∈ CM×P6 2.3 · 105 2.09 4.02

Frontiers in Signal Processing frontiersin.org18

Katzberg et al. 10.3389/frsip.2024.1304069

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1304069


F1((10, 10), u) pointing to rather higher spatial frequencies (and,
thus, also to higher temporal frequencies), the resulting Doppler
mismatches are typically more considerable. To analyze
frequency-based recovery performances, we apply the
mean energy spectral density of the error
FRQ − ERR(f) � 1/G∑G

g�1|Hg(f) − Ĥg(f)|2, where Hg(f) and
Ĥg(f) are the Fourier transforms of the true and estimated
grid AIRs, respectively. The frequency errors of the broadband
and subband procedures for σξ = 6 mm are presented in Figure 7.

In line with the considerations made in Section 5.4, the benefit
of the subband strategy is especially apparent in the lower
halfband up to 3 kHz, where the inverse problem is modeled
by the smaller-sized sampling matrices ~Λ1, ~Λ2, and ~Λ3

(cf. Table 1).

8 Conclusion

In this work, we formulated a Doppler-based framework that
reveals the frequency-spreading effects in dynamic sound-field
sampling procedures. It has been shown that the exact positional
tracking of a moving microphone allows for the exact rendering
of underlying Doppler shifts in the acquired signal. As it turned
out, the involved frequency shifts are directly connected with the
sampling of spatial basis functions subject to the microphone
trajectory. For the practically relevant case of tracking
inaccuracies, we described the resulting impact on the inverse
problem in terms of mismatches between true and inaccurately
modeled Doppler shifts. Such mismatches lead to a multiplicative
perturbation model, for which we provided sensitivity
considerations regarding least-squares and CS-based estimates.
Also, a subband analysis scheme has been derived, which enables
us to split the presented Doppler model for broadband
measurements into a number of smaller subproblems that
consider particular frequency bands. This allows for
parallelizing the computational effort and for obtaining faster
reconstructions with improved robustness against the trajectory
errors, especially regarding lower frequencies. Further, we
provided a reasonable concept for the (short-time) Fourier
analysis of the dynamic measurement signal. Due to the
continuously moving microphone, this yields an actually
spatio-temporal Fourier description, dimensionally coupled by
the performed trajectory. In this representation, the included
Doppler spreads can be explicitly characterized by a series of
trajectory-dependent FIR filters.

FIGURE 6
Outline of mismatched and true Doppler-spreading filters F1((κx,
κy), u) for discrete-frequency pairs of (A) (κx, κy) = (−4, − 6) and (B) (κx,
κy) = (10, 10). The underlying true trajectory segment is depicted in (C),
where the arrow indicates the direction of microphone motion.
Note that there is an intuitive filter interpretation due to the applied
uniform-grid model (cf. Section 3.3.3). For example, F1((10,10), u) can
be considered to render the trajectory-dependent Doppler effect for a
virtual plane wave arriving from direction [−1, − 1], i.e., it basically shifts
the sound-field parameters to lower frequencies as can be seen
from (B).

FIGURE 7
Frequency-dependent errors of recovered sound-field
parameters. The subband approach allows for improved
reconstructions especially at low frequencies.
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