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“Microgravity” is not a science, as some presume, but a particular environment where science can
be performed. The main reason behind performing basic sciences under such microgravity, free
fall, or conditions of near weightlessness is indeed that the weight is removed from the mass. This
results in less mechanical stress within a system, less or nearly no convection, reduced pressure
differences within a system, etc.

In such an environment, one can also observe phenomena that are otherwise obscured
or blurred when studied in a gravitational field, such as thermo-capillary Bénard-Marangoni
convection or surface-tension-dominated Gibbs-Marangoni convections, capillary flows, critical
point phenomena, and many more related issues in physical sciences and engineering. Items of
study include colloids, emulsions, foams, liquid crystals, dusty plasmas, flames/combustion or
granular material, and also fundamental particle physics, e.g., Bose-Einstein condensates, or more
bulk processes, such as alloy solidification (see also Monti, 2002).

Current and past platforms for long-duration microgravity are the Russian Photon and Bion
satellites (Nikolaev and Ilyin, 1981; Ilyin, 2000), the Space Shuttle (Crippen and Young, 2011)
and Soyuz missions (Van Loon et al., 2007), and the Salyut, Skylab (NASA, 1973; Michel et al.,
1976), Mir, and ISS (Evans et al., 2009; Ruttley et al., 2017) space stations or the Chinese Shenzhou
spacecraft (e.g., Preu and Braun, 2014; Hu and Kang, 2019), the future Chinese Space Station (e.g.,
Wang et al., 2019), or its predecessor facilities, such as the TongGong Spacelab (Gu et al., 2016; Li
et al., 2018; Wang et al., 2018).

A large part of the science does not, however, require a long duration of near weightlessness and
can make use of platforms such as parabolic aircrafts (Pletser and Kumei, 2015), drop towers (Von
Kampen et al., 2006), or sounding rockets (European Space Acency, 2014), and this includes the
more recent commercial suborbital platforms such as the Blue Origin New Shepard (Blue Origin,
2017), the Virgin Galactic White Knight (Virgin Galactic, 2016), the Dream Chaser from Sierra
Nevada Company (Taylor et al., 2014), or the upcoming Space Rider from the European Space
Agency (Fedele et al., 2018). Finally, the SpaceX Dragon module and the DragonLab are and will
be used extensively for gravity and space-related sciences (Dreyer, 2009; Seedhouse, 2016). There
is therefore going to be a wealth of flight platforms that can be of use for microgravity science and
technology experiments.

Besides basics sciences where we make use of the microgravity environment, we also have the
operational sciences where we have to cope with the microgravity environment. In operational
sciences, which is often also referred to as applied sciences, one needs to develop and use systems
for both physical and life sciences fields that facilitate existence within such an environment. For
example, all fluidic and two-phase systems need to remain functional without the sedimenting force
of gravity in all kinds of fluid-filled systems in space stations but also in fuel tanks for other satellites.

Additionally, humans need to be able to work also, in the future, within a free-falling
system. However, the latter does pose serious problems with respect to human health. Numerous
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so-called “countermeasures” (or should one say “therapies”)
have been developed in order to prevent human physiology
to go into a pathological state. In cosmonauts, astronauts,
and taikonauts, we see disorders like osteo- and sarcopenia,
cardiovascular deconditioning, impaired cognitive performance,
Spaceflight Associated Neuro-ocular Syndrome (SANS), reduced
immune sensitivity, renal stones, loss of quality and duration
of sleep, lower back pain, post-flight balance and coordination
issues, and orthostatic intolerance or spinal compression with
intervertebral disk damage—just to name a few (Stepanek et al.,
2019). Some might question if the current lack of proper
microgravity therapies is compliant with ethical labor and legal
standards (Van Loon et al., 2020). This new journal would also be
available to receive manuscripts concerning the development and
test of instruments concerning the mitigation or full “recovery”
of chronic microgravity and gravity transitions. Besides, for
example, high-impact training (Sibonga et al., 2019) or Lower
Body Negative Pressure (LBNP) devices (Goswami et al., 2019)
we might explore the application of centrifuges to actually
generate in-flight artificial gravity. Short arm systems are the
most obvious ones (Kanikowska et al., 2008; Frett et al., 2014;
Rittweger et al., 2015), although such systems generate a steep
body gradient of gravity, and not all organs may be exposed to
a sufficient gravity level. One may also look into rotating the
complete spacecraft (Young et al., 2009; Paloski and Charles,
2014). In such systems, there is a more evenly distributed gravity
level, and the subjects are chronically exposed to the artificial
gravity like on Earth. However, such systems require a better
understanding on long duration rotation for both humans and
engineering (Lackner and Dizio, 2000; Joosten, 2007; Hall, 2016).
Ground-based facilities could be used to address such in-flight-
related questions at the same time as they address the use of
systems for health care (e.g., aging and obesity) and athletics-
related applications (Van Loon et al., 2012).

The impact of gravity on small, low-mass systems is still
puzzling. More than half a century ago, Pollard published a paper
indicating that, from a biophysics point of view, weightlessness
is not expected to have a significant effect at the level of a single
cell (Pollard, 1965). Possible “gravisensors” in a non-specialized
cell might be the mitochondria or the nucleolus. Later, Todd
(1989) and Albrecht-Buehler (1991) published interesting papers,
which are still quite relevant, addressing a series of forces that are
involved at a small scale cellular level and compared them to the
force of gravity at that micro scale.

Therefore, although there have been numerous experiments in
space and on the ground showing the effect of gravity, or the lack
thereof, on cells, the actual sensingmechanism in non-specialized
cells has yet to be described. In an in-vitro model monolayer
single cell with a diameter of 10µm, the gravitational energy of
an apparent weight of 0.5 pN at an average distance of the radius
(5µm) above the lowest point of the cell is ∼500 kT, where k is
Boltzmann’s constant, and T is absolute temperature (Vorselen
et al., 2014). These are small forces and energies compared to
other intra- and extra-cellular forces.

Numerous studies have been performed to explore the effect
of weight or near weightlessness on cells. These studies have
been, partially pushed by contemporary techniques, focused

on the genetic effects (Karouia et al., 2017), although this
is moving more and more toward proteomics/metabolomics
and the actual physiology, while it is possible that adapted
phenotypes or sometimes pathological changes can be noted.
All these findings are in the area of mechano-transduction and
mechano-adaptation (see Figure 1), while the holy grail and
grand challenge in this field would be to identify a gravisensor
(if such a thing exists). Most—if not all—the effects reported
from altered gravity research in cell biology should start, at
some point, with a mechanical, conformational, or frequency
change within the system. It is this gravi- or mechano-sensor
that should be identified. More advanced in-flight research
opportunities and technologies are required for this, which is
similar to what is used in the field of biomechanics, especially
in molecular (Bao et al., 2010), cellular (Van Loon, 2007a),
and tissue biomechanics (Trepat et al., 2007; Mohagheghian
et al., 2018), but also on an organ and organism level.
Instruments like femtosecond lasers (Ardeshirpour et al., 2018),
microscopes with advanced imaging modalities like FLIM or
FRET (see also De Vos et al., 2014; Corydon et al., 2016),
atomic force microscopes (Van Loon et al., 2009; Zhou et al.,
2018), optical tweezers (Bianchi et al., 2020),or micro-aspiration
techniques (Janmaleki et al., 2016; González-Bermúdez et al.,
2019) could have a prominent role in the quest for a gravity
mechanosensory, especially in non-specialized cells (see Figure 1
left side). Systems like the FLUMIAS (Corydon et al., 2016;
Thiel et al., 2019), the Light Microscopy Module (LMM), or the
JAXA microscope (Ishioka et al., 2004) adapted plate readers
or equivalents, which could also be quite illustrative concerning
molecular conformational changes or interactions, e.g., with
plate readers (as achieved by Kohn, 2013) or the NanoRacks
plate reader, micro-NMR systems (Lee et al., 2015), or specific
in vivo probes that reflect biophysical properties in molecules
depending on their extra-molecular environment (e.g., Nakanishi
et al., 2001; Woodcock et al., 2019). Manuscripts covering
the technological developments of in-flight micro-or partial
gravity platforms as well as on-ground versions to be used in
hypergravity or simulated microgravity systems would fit very
well in this journal.

Although commercial flight opportunities are increasing,
there is still a great need for affordable and daily research
possibilities. Technologies purposed for on-ground simulation
of microgravity or partial gravity have been and are being
developed and used in numerous labs. Manuscripts regarding
current novel initiatives based on either 2D clinostats, (e.g.,
Gordon and Shen-Miller, 1966; Briegleb, 1968; Shi et al., 2012;
Eiermann et al., 2013), or 3D Random Positioning Machines,
(e.g., Hoson et al., 1997; Ichigi and Asashima, 2001; Van Loon,
2007b; Borst and Van Loon, 2008; Wuest et al., 2014; Hasenstein
and Van Loon, 2015) and related algorithms, and associated
artifacts, (e.g., Leguy et al., 2011, 2017; Wuest et al., 2017),
are welcome.

Although this journal is called Microgravity, we also very
much encourage papers regarding hypergravity or partial or
reduced gravity (between µ and one), research and technology,
and instrumentation. Low gravity is becoming more and more
relevant in the various Space Explorations programs for missions
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FIGURE 1 | Terminology and sequence of events in cell biomechanics/gravitational biology. In mechanobiology, we study the effects of mechanical forces within

and/or applied to a cell or parts of it—this can be termed as “mechanomics.” Extending this to the overall physical environment and processes around and within a

cell, such as like magnetic fields, temperature, etc., we might even use the term “physicomics” (see also Van Loon, 2009).

to the Moon, see, e.g., Artemis and related Gateway programs
(Duggan andMoseman, 2018; Chavers et al., 2020), and missions
to Mars (International Space Exploration Coordination Group,
2018).

Hypergravity created by centrifuges or by strong magnetic
fields can be very illustrative of gravity and how it has an impact
on the systems of study. One could use the hypergravity data
to build a model and use it to extrapolate values below one g
based on the gravity continuum principle, see (e.g., Firstbrook
et al., 2017). One could also make use of centrifuges to simulated
microgravity or lower gravity by means of the Reduced Gravity
Paradigm (Van Loon, 2016).

Finally, the title of this new journal is “Microgravity,” though
this is not physically correct, as mentioned earlier. Free fall or
near weightlessness is more accurate, but we keep on using the
term since the science community as well as the general public
are more familiar with it. The value “0 g” (zero gravity) should be
avoided, however, since no such environment exists in our solar
system or beyond (Beysens and Van Loon, 2015).
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