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Extraction of useful information from unstructured, large and complex mass spectrometric
signals is a challenge in many application fields of mass spectrometry. Therefore, new data
analysis approaches are required to help uncover the complexity of such signals. In this
contribution, we examined the chemical composition of the 1.88 Ga Gunflint chert using
the newly developed high mass resolution laser ionization mass spectrometer (fs-LIMS-
GT). We report results on the following: 1) mass-spectrometric multi-element imaging of
the Gunflint chert sample; and 2) identification of multiple chemical entities from spatial
mass spectrometric data utilizing nonlinear dimensionality reduction and spectral similarity
networks. The analysis of 40′000 mass spectra reveals the presence of chemical
heterogeneity (seven minor compounds) and two large clusters of spectra registered
from the organic material and inorganic host mineral. Our results show the utility of fs-LIMS
imaging in combination with manifold learning methods in studying chemically diverse
samples.
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INTRODUCTION

The investigation of early/primitive examples of life has a profound effect on our understanding
of life’s origin and evolution and potentially has an impact on expanding our capacity to identify
previously unknown or unrecognized evidence of early life. Searches for evidence of early life
have intensified since the mid-1950s (Tyler and Barghoorn, 1954), when the first reports of
Precambrian Gunflint microfossils were published (Barghoorn and Tyler, 1965; Awramik and
Barghoorn, 1977). However, despite the quality and capabilities of modern analytical techniques,
which have significantly improved, debates about the metabolic speciation of some bona fide
microfossils and the biogenicity of other putative fossils from other Precambrian formations
remain highly active (Brasier et al., 2002; Schopf and Kudryavtsev, 2012; Wacey et al., 2016a;
Schopf et al., 2018; Wacey et al., 2019; Rouillard et al., 2021). The inconclusiveness of such
investigations is largely caused by poor preservation of morphological and chemical signatures
of early life (Wacey et al., 2016a). Thus, new approaches and modern analytical methods that are
sensitive and accurate have to be explored in the field of early life sciences (Wacey et al., 2013). In
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this regard, unsupervised chemometric methods can be of high
utility, uncovering the chemical heterogeneity of investigated
materials.

The populations of Gunflint microfossils (1.88 Ga) (Ontario,
Canada) (Barghoorn and Tyler, 1965; Cloud, 1965; Awramik and
Barghoorn, 1977;Wacey et al., 2012) represent one of the premier
examples of Precambrian life (Wacey et al., 2013; Alleon et al.,
2017)—or in other words—a Lagerstätte (a deposit that exhibits
extraordinary fossils with exceptional preservation). The Gunflint
Iron formation, providing high-quality chemical and
morphological preservation, affords a view into life in the
Precambrian, which was evidently already complex and
diversified (Wacey et al., 2013). However, many questions
remain regarding the Gunflint microfossils. The metabolic
associations of various microfossils and phylogenetic affinities
are mainly inferred by morphological comparison to modern
examples and carbon isotope fractionation factors (House et al.,
2000) consistent with known metabolic pathways. It is thought
that many of the Gunflint microfossils represent oxygenic
photosynthetic mat-building microbes (Barghoorn and Tyler,
1965; Awramik and Barghoorn, 1977; Lepot et al., 2017);
however, other interpretations exist (Planavsky et al., 2009).

More generally, many questions remain in the field of early life
sciences, where many potential examples of life are problematic
due to morphological convergence and loss of the original
chemical composition (Van Zuilen et al., 2002; García-Ruiz
et al., 2003; Brasier and Wacey, 2012; Cosmidis and
Templeton, 2016). Various processes can contribute to the
formation of microscopic objects that morphologically
resemble fossils but may not be of biological origin. For
example, reduced abiotic carbon can migrate along grain
boundaries, forming lenticular structures of undefined origin,
and the alteration of certain minerals can mimic microfossil
morphology (Wacey et al., 2016a). However, major and trace
elements present within bona fide microfossils can serve as a
comparative landmark; they can hold a piece of information
about which chemistry is potentially expected to be preserved,
and therefore provide an additional line of evidence about the
biogenicity of putative microfossils, even if parts of the
morphology are lost. Therefore, the Gunflint Iron formation is
of high importance and value in studying early examples of life.

Laser ablation/ionization mass spectrometry (LIMS) is a
promising surface characterization method that has recently
experienced a revival and a wave of modernization (Azov
et al., 2020; Tulej et al., 2021a). Modern laser ablation/
ionization time-of-flight mass spectrometers (LIMS) are
capable of providing element and isotope characterization of
the investigated spots in the ablation/ionization regime
(Huang et al., 2011; Riedo et al., 2013b; Tulej et al., 2021b)
and molecular characterizations in the desorption regime (Cui
et al., 2013; Moreno-García et al., 2016; Ligterink et al., 2020).
Microscale spatial resolution (Wiesendanger et al., 2018) and
nanometer depth resolution (Cui et al., 2012; Grimaudo et al.,
2020) cause instruments to be of high utility in many scientific
tasks (Liang et al., 2017). Fast mass separation and ion detection
technology (Riedo et al., 2017) make LIMS instruments
applicable to the imaging tasks of various samples (Wurz

et al., 2020)—ranging from biological tissue characterization
(Cui et al., 2013) to mineralogical and chemical investigations
of rocks—up to the identification of impurities in dielectrics and
interconnects from the semiconductor industry (Wiesendanger
et al., 2018; Grimaudo et al., 2019; Tulej et al., 2021b). The high
sensitivity of such instruments (de Koning et al., 2021a; Gruchola
et al., 2022) makes them an invaluable analytical technique in
many application areas (Neuland et al., 2016; Stevens et al., 2019;
Ligterink et al., 2020).

However, the fast signal acquisition times in fs-LIMS
measurements (Riedo et al., 2017) can result in large and
complex data that can be hard to deal with and interpret due
to large dimensionality and nonlinearity. In recent years, a
number of methods have been developed that consider
complex data of any form (such as images, chemical spectra,
or audio signals) as high-dimensional vectors and visualize their
structural organization through neighborhood graphs (Van der
Maaten and Hinton, 2008; McInnes et al., 2018; Sainburg et al.,
2020). Such methods, in contrast to the widely adopted matrix
factorization techniques (i.e., principal components analysis
(PCA) (Pearson, 1901; Jolliffe and Cadima, 2016), and singular
value decompsition (SVD) (Stewart, 1993), allow for better
separation of high-dimensional vectors (McInnes et al., 2018;
Becht et al., 2019).

In this contribution, using the assumption that similar
compounds will yield similar fs-LIMS ionization profiles, we
have assessed the chemical heterogeneity of the Gunflint chert
sample using the UMAP (uniform manifold approximation and
projection) method (McInnes et al., 2018). The mentioned
UMAP embeddings were segregated into compounds using the
clustering algorithm based on hierarchical density estimates
(Campello et al., 2013; McInnes et al., 2017). Furthermore,
fine spectral embeddings were reduced using the Mapper
algorithm (Singh et al., 2007), allowing the visualization of
complex chemical signals as highly compact graphs. And
finally, we assessed the effectiveness of relational data analysis
concerning large fs-LIMS spectral observations and outlined
challenges and potential pitfalls concerning the required data
transformations and hyperparameter heuristics.

The results of this study indicate that organic material from
the Gunflint chert has a distinct chemical composition that can be
successfully identified using the LIMS-GT instrument. The low
dimensional representations of the full spectral database (40′000
mass spectra) deliver a clear separation between the main classes
(organic material/inorganic spectra). Moreover, the fine structure
of spectral similarity provides an insight into the composition and
diversity of the investigated organic material.

Sample and Methods
In this contribution, we have used a newly developed high-
resolution fs-LIMS instrument (Wiesendanger et al., 2019; de
Koning et al., 2021a; Gruchola et al., 2022) to chemically
characterize the Gunflint chert sample (Barghoorn and Tyler,
1965; Alleon et al., 2017). The detailed description of instrument
figures of merit and performance estimations on NIST standard
materials has been recently reported. Therefore, we refer the
interested reader to the technical article from our group
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(Wiesendanger et al., 2019). A 30-μm-thick thin-section of the
Gunflint chert (1.88 Ga—Ontario, Canada) (Wacey et al., 2016b;
Wiesendanger et al., 2018) containing populations of bona fide
microfossils preserved in a quartz matrix was used in this study
(Barghoorn and Tyler, 1965; Cloud, 1965; Wacey et al., 2012;
Alleon et al., 2017). Prior to fs-LIMS characterization, optical
microscopy was performed to specify the area of interest for
detailed chemical investigations. Figure 1 shows a transmitted
light microscope picture of the area (0.5 mm by 1 mm) chosen for
the 3D mass spectrometric imaging. Dark patches represent
agglomerations of organic material. Within the area chosen for
the mass-spectrometric investigation, we defined a grid (100 by
200 spots) with a 5-μm gap between ablation craters. An fs-Ti:
Sapphire laser (775 nm, 180 fs, CPA Series, Clark-MXR Inc.,
Dexter, MI, United States) was used to ablate and ionize the
material from the Gunflint chert. The fs-laser was coupled to the
mass spectrometer—a time-of-flight instrument with high mass
resolution (m/Δm = 10,000) (Wiesendanger et al., 2019; de
Koning et al., 2021a). Within each of the probed locations, a
sequence of five single-laser shot mass spectra was collected
forming a 3D grid that consists of 100,000 mass spectra. Every
single-laser shot mass spectrum collected from the Gunflint chert
sample was digitized using a high-speed ADC card (U5303A,
Acqiris SA, Geneva, Switzerland) at 3.2 GS/s and resulted in the
collection of 320000 data points per spectrum. The data collection
and imaging process have been optimized by directly saving the
digitized mass spectra using a binary data format using an in-
house developed software package. In order to increase the signal-
to-noise ratio (SNR) of individual mass spectra from given pixels,
two datasets were created from the original volumetric binary
dataset—1) Two consecutive mass spectra were averaged for a
given pixel [first and second spectra were averaged as the first
layer and third and fourth spectra were averaged as the second
layer—forming two imaging layers (20,000 spots * two layers)],
discarding the last single-laser shot spectra. 2) An average of five
single-laser shot mass spectra have been calculated, forming a

single-layer image (fully averaged) of the investigated area
(20,000 spots p 1 layer).

A spectral preprocessing routine was applied to every mass
spectrum, which includes baseline correction, denoising, and
averaging (Meyer et al., 2017; Lukmanov R. et al., 2021;
Lukmanov R. A. et al., 2021). A single mass unit
decomposition has been performed on the preprocessed mass
spectra using Simpson integration of the mass peaks (Riedo et al.,
2013a; Meyer et al., 2017). Overall, 260 single mass unit
intensities (1–260 m/q) have been retrieved from the averaged
mass spectra, and six additional mass pairs have been integrated
to resolve some isobaric interferences, namely—24Mg/C2 (24 m/
q), 52Cr/C4H4 (52 m/q), and 13C/CH (13 m/q). After this step,
mass spectra have been assigned with location indexes, forming a
reduced volumetric grid of 266 mass intensities per 40,000 pixels
and, for an averaged image, 266 mass intensities per 20,000 pixels.
The SNR within the preprocessed mass spectra was identified to
be ~103, which is limited by the noise floor and the dynamic range
of the acquisition card. Furthermore, the dataset has been log-
transformed and divided into subsets for imaging and low-
dimensional analysis. The data reserved for the low-
dimensional analysis (3D and 2D images) was z-score
normalized and reduced with principal component analysis
(PCA) down to the first 100 principal components.

Furthermore, to improve the image quality and readability, a
volumetric dataset was interpolated from the original size (100
pixels by 200 pixelsp2 layers) up to 250 pixels by 500 pixelsp5
layers using inverse distance interpolation (Lu and Wong, 2008).
Low-intensity zones of the imaged isotopes have been made
translucent to improve the visibility of spatial heterogeneity.
The inverse distance interpolation has been performed using
the log-transformed data; thus, the color changes present in the
pictures are logarithmic (base 10). Overall, using the data
preprocessing routine, we have calculated volumetric maps of
isotopes of interest. Each volumetric map is represented by
625000 voxels, which provides enough resolution to see the

FIGURE 1 | Transmitted light microscope image of the area (0.5 mm by 1 mm) chosen for the imaging. Dark patches represent the agglomeration of organic
material. The scale bar indicates the size of features present in the sample (bar—100 μm). Two main components could be seen from the figure, filling milky host mineral
(quartz) and organic material (dark lumps throughout the sample).
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small discrepancies within the analyzed area. The volumetric
maps characterize the uppermost layer (nm-scale) of the Gunflint
sample (note that the Z-scale in element distribution maps was
exaggerated). It has to be mentioned, however, that due to the
sharp difference in the absorption properties of the investigated
microfossils and host material (quartz), differences can be
observed in the amount of the ablated material.

The dataset prepared for the low-dimensional analysis
(normalized and PCA reduced to the first 100 components)
was further analyzed using the uniform manifold
approximation and projection (UMAP) method. The UMAP
provides dimensionality reduction and groups similar spectra
together in such a way that distances between observations in the
low dimensions should approximate the original distance in the
high dimensions. Here, we outline some of the sub-steps of the
method; for a full and thorough description, we refer to the
original UMAP manuscript (McInnes et al., 2018).

As in many other manifold learning methods, the UMAP
algorithm tries to preserve small distances, thus recovering the
local connectivity of data and its intrinsic dimensionality. In the
first stage of the algorithm, similarity graph construction is
performed using the approximate nearest neighbor (NN)
descent (Dong et al., 2011), implemented within the UMAP
(using the small minimal distance of 0.1, 5 nearest neighbors
and cosine distance as a metric). Although the recall rate of
nearest neighbors is reported to be high, it is not exact. The
approximate NN search makes the algorithm fast, but it also
includes the possibility of small mistakes in the determination of
nearest neighbors. Even though exact solutions exist, for example,
the graphics processing unit (GPU)–accelerated UMAP
implementation provides such an option (Nolet et al., 2020),
and approximate NN-search within the original UMAP-learn
python implementation (McInnes et al., 2018) provides enough
accuracy for the typical fs-LIMS tasks. Furthermore, in the second
stage, the algorithm weighs the nearest neighbors and forms the
weighted NN-graph using smoothing kernels that adapt to the
local neighborhood. In the third and last stage, UMAP performs
graph optimization by running a stochastic gradient descent for a
determined number of epochs, decreasing the loss between low-
dimensional and high-dimensional distances. The end stage
(stochastic gradient descent) essentially represents the force-
directed type optimization of the weighted neighborhood
graph. The starting positions of the nodes are defined by
Laplacian eigenmaps (spectral embedding) (Belkin and Niyogi,
2003). The usage of spectral embedding as an initialization step
provides a good means for improved preservation of the global
structure of the investigated manifold (Kobak and Linderman,
2019). The final step of the UMAP algorithm performs the
embedding of the graph into a new coordinate system, which
better reflects the similarity of n-dimensional vectors.
Furthermore, to define the classes from the low-dimensional
embeddings, a density-based hierarchical data clustering
method (HDBSCAN) (Campello et al., 2013; McInnes et al.,
2017) was used which provides a clustering hierarchy and derives
clusters of spectra that share a significant degree of similarity.
And last, for the derivation of reduced topological representations
(in the form of a network) of the UMAP embedding, a Mapper

algorithm (Singh et al., 2007; Van Veen et al., 2019) was used,
which covers the original data with overlapping filter functions
that are used to form the network and capture local connectivity
of the data.

RESULTS

The mass spectrometric investigation of the Gunflint chert sample
using the high mass resolution fs-LIMS instrument yielded a large
amount of data—266 volumetric mass intensity maps. Since most of
the known Gunflint organic material is in a high preservation state
(Alleon et al., 2016; Alleon et al., 2017), we have used 12C as an
indicator of the organic material. Figure 2A shows the distribution
of the 12C signal acquired from the Gunflint chert sample. The map
reveals a high degree of co-occurrence between 12C intensities and
the distribution of dark organic material identified using optical
microscopy (Figure 1). The middle panel in Figure 2 shows the
distribution of 31P intensities, which also reveals a relatively high
degree of co-occurrence with 12C and with the distribution of
organic matter (from the optical picture of the Gunflint chert,
Figure 1 and lower panel in Figure 2). However, 31P is mostly
present only within the areas of high 12C concentrations, which
indicates that for the most part, 31P remained below the limit of
detection.

The co-occurrence of these two elements (12C and 31P)
indicates that the measured elements are originating from the
same source material (Cloud, 1965; Awramik and Barghoorn,
1977; Wacey et al., 2013; Lepot et al., 2017; Wiesendanger et al.,
2018). However, there is a large part of the sample where we have
observed a noisy distribution of both elements, and therefore, it is
hard to definitively conclude where exactly the areas with organic
carbon are located. Moreover, the host mineral (quartz) and the
organic matter seem to be fused from the visual analysis of the
intensity maps (note the cloudy areas where intensities fuse out).
Similarly, the histogram of carbon intensities (see
Supplementary Information) could be characterized as a
skewed distribution, where the spectral 12C intensities
transition from the noise level to the intensities with 12C
saturation. A similar distribution could be observed for the 31P
and other elements, where we do not observe any clear distinction
between two separate entities—host (quartz) and organic
material. Thus, identification of organic spectra solely on the
basis of the presence of specific elements is possible for the high-
intensity end members of the distributions, but localization of the
exact boundary between the two classes is very challenging.

Figure 3 shows three panels with different isotope distribution
maps. The upper panel shows the distribution of 32S isotope
intensities. One can note the presence of multiple bright spots on
the map that indicate the presence of features chemically distinct
from the host entities. In the upper part of the chemical map, we
have identified an32S-saturated area, which likely represents a
pyritic (FeS2) inclusion (see further in the text and SI), intermixed
with organic material (a relatively bright spot in the 12C map as
well, Figure 2). However, this position could also represent a
small pod of pyritized microfossils, such as previously reported in
(Wacey et al., 2013), but it could also be other S-containing
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minerals trapped within the organic material. In addition to the
feature described above, we have observed another bright area
saturated in 32S, which is located in the lower-left part of the
sample. One can compare the location of this spot with the map of
107Ag, shown in the middle panel (Figure 3). The exact spatial
localization of 32S and 107Ag indicates that it could be a sulfide
inclusion, such as acanthite (Ag2S), which again, seems to be

sampled with organic remains. However, spatial co-localization
of Ag and S within this bright area can also be some other more
complex mineral or metallic aggregates sampled with other
entities. The third bright area that could be observed from the
32S map is located on the lower right side of the map. In addition
to the bright spots in the sample, one can observe a fine-grained
noise distribution throughout the sample.

FIGURE 2 | Volumetric isotope distributionmaps from the Gunflint chert. (A)—distribution of 12C (red color indicates higher concentrations; see the scale bar on the
left). (B)—distribution of 31P (red color indicates higher concentration). To compare maps with the optical image, see Figure 1. It is to be noted that the distribution of
organic material and maps of 12C and 31P correlate relatively well with each other.

FIGURE 3 | Volumetric isotope distribution maps of 32S, 107Ag, and 139La from the Gunflint chert. (A) Distribution of the 32S indicates the presence of localized
S-enriched spots. Smaller intensities of 32S co-occur with 12C (Figure 2). (B) Distribution of 107Ag. (C) Distribution of 139La in the Gunflint chert. The red color indicates
higher intensities; the translucent blue indicates lower intensities of the investigated peaks.
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The middle panel of Figure 3 shows the distribution of 107Ag
intensities. In contrast to the inclusions of S, silver mineralization
appears to be relatively rare and localized only in one spot. The
jittery fine signal in the background represents the noise. The
third map shown in Figure 3 presents the distribution of 139La
intensities. The brightest spots in the lower right part of the
volumetric map indicate the localization of spots enriched in
139La.

The analysis of the full volumetric dataset to search for
potentially missing “inclusions” (chemically distinct entities in
the bulk of the sample) will result in a high workload (260 maps
for comparison) and likely be counterproductive since one would
need to correlate many specific elements to the given bright spots
spatially. In addition, it is clear from the optical investigation of
the thin section that there are two main compounds in the sample
(organic material and the milky host). However, from the
presented chemical maps of 12C and 31P, it is not clear where
to define the borderline within the intensity profiles, which will
outline the cutoff value for different compounds. In addition, any
hand-picked cutoff value will be artificial as no clear intensity
borderline between compounds can be seen on the chemical
maps (Figure 2).

To solve this issue, the spectral dataset can be compared in
terms of distances and analyzed using the k-NN (k-neighborhood
graph) framework, assuming that similar minerals and
compounds will yield small pairwise distances and, therefore,
high similarity of ionization profiles. Thus, in order to find similar
spectra and infer compound diversity, we performed an analysis
of the fs-LIMS imaging data using the cosine distance and UMAP
manifold learning method.

Figure 4A shows 40′000 (2 layers) fs-LIMS mass spectra
(every data point is a composite mass spectrum) sampled
from the original 260-dimensional space and reduced down to
three dimensions using UMAP. The structure of the embedding

outlines the chemical heterogeneity of the investigated area. The
colors assigned to the data points show the distribution of the 12C
intensities on the low-dimensional manifold. The structure of the
node coordinates in the similarity network indicates the presence
of three large groups: 1) the group of spectra at the bottom of the
embedding that was interpreted to be from matrix mineralogy
(quartz mineral). 2) The extended body of spectra in the upper
part of the embedding was interpreted as spectra from organic
material (OM). 3) A smaller group of spectra with a more
complicated structure. These spectra were registered from
various entities with more complex chemistry, such as spectra
with enhanced S, Ag, and La (denoted as spectra with enhanced
metallicity—see further in the text). The distribution of the 12C
intensities in the OM cluster indicates that OM has variance in its
structure—some are highly enriched in 12C and some are
relatively depleted. The cluster of inclusions outlined in the
figure reveals a high degree of 12C saturation (compared to
quartz) and a relatively high proximity to the OM cluster,
which indicates that spectra registered from these locations are
a mixture between OM and some additional chemistry (see
further in the text).

The panel on the right, Figure 4B, reveals the same embedding
as in the left panel but colored using the 24Mg intensities. In
contrast to the 12C intensities, 24Mg represents a trace element
that is consistently present in the OM cluster. The spectra
identified from the cluster with enhanced metallicity also show
a relatively high degree of 24Mg ion yield, indicating that it could
be a major component in some of these compounds. The so-
called “transition line,” Figure 4B, indicates a detached
progression of spectral similarity between the host and OM. It
is interesting to note that the structure of the OM group changes
from relatively low 12C intensities up to the point of 12C
saturation and subsequent hydrocarbon chain formation, as
denoted in Figure 4B.

FIGURE 4 | Low-dimensional proximity of the fs-LIMS spectra. The individual data points represent a single mass spectrum. Full volumetric (40,000 mass spectra,
2 layers) data have been considered for the analysis. Note the presence of three large clusters. (A) Proximity of fs-LIMS spectra colored according to the 12C intensities.
Clusters associated with the microfossils and inclusions reveal a high level of 12C saturation. (B) Proximity of fs-LIMS spectra colored according to the 24Mg intensities.
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Figure 5 shows the distribution of 32S (Figure 5A) and 31P
(Figure 5B) intensities within the same UMAP embedding. The
elevated concentrations of S and P coincide with the locations of a
high C signal (although much weaker than 12C). Relatively low
intensities of these elements indicate that P and S are present as
trace elements. For example, the cluster of spectra with enhanced
metallicity identified in Figure 4A reveals high S concentrations
and likely represents the positioning of sulfides in the embedding.
Thus, the elongated cluster of OM reveals multi-element
enrichment of C, P, S, and Mg and also shows a high degree
of spectral similarity (calculated on the basis of the full mass
range) using the cosine metric.

Despite a few number of spectra in between main groups (see
transition line in Figure 4B), it is possible to say that main
clusters are easily separable. However, the smaller cluster of the
spectra with enhanced metallicity shows a higher degree of
complexity in the similarity structure—this complexity hints
toward the presence of multiple compounds of varying
chemistry (Figure 3). In order to segregate a single complex
embedding into meaningful clusters with a high degree of
similarity, we used a density-based, hierarchical clustering
method (HDBSCAN) (Campello et al., 2013; McInnes et al.,
2017). The method provides a clustering hierarchy, from which a
simplified tree of significant clusters can be derived. Figure 6A
shows the result of the clustering of all 40′000 mass spectra
registered from the Gunflint sample (2 layers). One can note that
we have identified four clusters in the first iteration of the
algorithm. These clusters correspond to the large body of
spectra registered from the OM (dark blue data points), from
the matrix (quartz—purple points), from the spectra with
enhanced metallicity (light blue points) (further, metallic
cluster), and the REE spots (brown data points). The apparent
similarities in the spectra that are transitioning from the OM to

the metallic cluster indicate volumetrically mixed sampling with
our laser (OM and portions of the metallic material). In order to
improve the quality of the embedding for the cluster with
enhanced metallicity, the mass spectra were separated from
the main group and an additional UMAP embedding with a
higher number of epochs (optimization iterations) using cosine
distance and a small number of nearest neighbors (5-NN) was
performed. The result of the embedding with interpretation is
shown in Figure 6B. Since some of the clusters appeared to be
fused into each other, but with distinguishable density profiles,
kernel density estimates (KDE) for all identified clusters were
calculated. Adding the previously described REE spots with
quartz and OM, we have identified nine groups of spectra that
are present in the investigated part of the Gunflint sample
(0.5 mm by 1 mm), which reveal distinct similarity measures.

The shape of the spectral embedding provides means for
unsupervised classification of compounds; however, the
understanding of the chemical discrepancies has to be
ascertained with the original spectra. For the accurate
characterization of identified classes, the spectra of every given
class were averaged into single-composite mass spectra. Figure 7
reveals the averaged composite mass spectra from all identified
clusters. All spectra shown in the figure are normalized to the
maximal peak intensity—from 0 to 100 (a.u.). With the aim of
delivering more details, spectral intensity profiles have been
truncated down to the range of 0 to 50 (a.u.). In most cases,
the most intense line was 23Na, followed by 39K (due to the low
ionization energies of these elements) and 28Si as the main
constituents of the quartz matrix.

The first three clusters from the upper panel (Figure 7) reveal
the chemical compositions where S co-occurs with some metallic
species. The first cluster contains a significant amount of Cu and a
noticeable peak of S (the upper left panel). The 32S concentration

FIGURE 5 | Low-dimensional proximity of fs-LIMS spectra revealed by UMAP. (A) Proximity of fs-LIMS spectra colored according to the 32S intensities. Cluster
associated with the OM reveals higher concentrations of 32S. (B) Proximity of fs-LIMS spectra colored according to the 31P intensities. The cluster associated with the
organic material reveals a relatively high level of 31P saturation.
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is rather low; however, we have to consider the fact that the mass
spectrum presented in the figure is an average of ~100 pixels (200
laser shots), which provides a means for the drift of original ratios.
In addition to the peaks of S and Cu, one can observe the presence
of a relatively intense 12C peak and a significantly lower amount
of Si and high K and Na. The presence of intense C and O and the
proximity of spectra to the OM cluster within the main
embedding (Figures 4–6) provide a piece of evidence that the
spectra are registered from the mixture of OM, quartz matrix, and
some Cu- and S-containing compounds. The next spectrum
shown in the middle part of the upper panel is a composite

spectrum from cluster number two. One may see that the
spectrum contains significant peaks of Ag, followed by smaller
peaks of Fe and S; High peaks of Si and C are likely registered
from the quartz and OM [lines are well above 20 (a.u.)]. On the
right side of the upper panel is shown the composite spectrum
registered from cluster #3. Relatively high peaks of S and Fe with
virtually no other significant metallic elements indicate that the
spectra could be registered from for example, pyrite. However,
other S- and Fe-containing minerals are possible. Again, the
spectrum contains significant peaks of C and Si, potentially
registered from the OM and quartz.

FIGURE 6 | Clustering results of the UMAP scores. (A) Clustering of the dominant components. Data points are colored according to the assigned cluster. The
individual data points represent a single mass spectrum. (B) Additional sub-clustering spectra are present in the group “Spectra with enhanced metallicity” as marked in
Figure 6A. The clustering results reveal six groups of chemically distinct compounds.

FIGURE 7 | Spectral classes are identified from the UMAP embeddings. The spectra are averaged and normalized to the maximum peak intensity [0–100 (a.u.)]. To
enhance the visibility of the small peaks, the intensity profiles are truncated to 50 (a.u.).
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The second row of spectra in Figure 8 shows the classes that
could be characterized as spectra from the organic material with
significant metallic content (see further in the discussion), but
without significant S content. The first element in the second row
is the spectrum registered from cluster #4—the largest group of all
among the identified compounds. It is interesting to note that the
spectrum shows relatively high concentrations of Fe and Cr.
Moreover, the spectrum presents the same elements present in
the OM (carbon) and quartz (Si). Another group identified from
the embedding, shown in the middle part of the second row, is
cluster #5. The averaged composite spectrum reveals a high
concentration of Ti as the main metallic constituent, followed by
Fe. The last spectrum shown on the right side of the middle panel
reveals the composition of cluster #6—which can be characterized by
a high concentration of Al, followed by significantly reduced Fe and
typical elements present in all groups—C, Si, Na, and K.

The last row in Figure 7, the left panel, outlines the composition
of spots with the REE—spectra with a relatively high concentration
of 139La, which was previously measured in connection with OM
using the LIMS space–prototype instrument (Lukmanov R. A. et al.,
2021). Among the main constituents of these inclusions, peaks of C,
Al, and Si can be noted. The penultimate spectrum present in our
interpretationmodel represents the composite spectrum fromquartz
mineral (spectrum from the large group host, Figures 4–6), or in
other words, the silicate matrix of the Gunflint chert. The main
element observed within the quartz mineral is Si, which is followed
by K and Na, C, Ca, and minor levels of Si oxides. The spectrum
represents an average of 100 pixels randomly sampled from the host
(quartz) cluster. This was carried out to compare the spectrum with
the equal number of spectra from the OM. This brings us to the last
big cluster of OM—the spectrum presented in the last row and the
right panel. As one may notice, the spectrum on the linear scale
reveals a very similar chemical composition to the spectra presented
before, with one notable difference—C is among the most abundant
elements within this group (together with Na, Si, and K). In contrast,

the latter (Si, K, and Na) are signatures of the host mineralogy that is
co-ablated with the organic matter. As one can note, the clusters of
spectra identified using the spectral embeddings and followed by
density-based clustering identified meaningful subgroups of data
with differing ionization profiles and chemical compositions.
Overall, Figure 7 offers a visual assessment of the spectral
dissimilarity and provides insight and intuition into the
mechanics of spectral proximity. The interpretation of the UMAP
embeddings, in short, follows the outlined logic. As soon as the laser
hits the spot with the diluted organic remains, the output spectrum,
even with low volumetric sampling, will form complex multipeak
spectra, which in turn will yield a low similarity rank in comparison
with the host spectra.

Spatial Interpretation of the Volumetric
Maps.
In previous sections, the description of low-dimensional
embeddings of the imaging dataset (two layers) was provided
and a description of the identified clusters. It was shown that by
using the cosine spectral distance, it was possible to advance to the
identification of various compounds and entities present in the
complex mass spectrometric data. In contrast to the “classical”
data analysis, where one has to compare distributions of the
various ion yields and try to solve the classification problem using
probabilistic approaches (i.e., using logistic regression), relational
data analysis provides a means to find more details and structure
within complex datasets. For example, the popular ordination
method, PCA, does not provide any clear boundaries between
different classes for the given dataset, contrary to the UMAP
embedding results. However, the grouping of spectra into clusters
still lacks the spatial aspect. In order to understand how various
clusters are spatially localized, the cluster map shown in Figure 8
can be utilized. The figure illustrates the distribution of the first
three clusters. Laser ablation positions that are identified to be

FIGURE 8 | Interpretation of volumetric imaging results using cluster assignments calculated from low-dimensional embeddings. Yellow circles denote spectra
registered by the OM. Gray circles denote spectra registered from the host mineral. Red circles denote locations of spectra registered from spectra with REE. It is to be
noted that nodes are translucent and changes in the cluster assignment reflect the volumetric inhomogeneity of the sample.
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from the OM are colored with yellow nodes. The spectra clustered
as inclusions with REE are colored orange. The gray nodes are
sampled from the quartz matrix. To compare the distribution of
the OM on the interpretation map and the optical image, see
Figure 1. As one may note, the spatial localization of the OM
largely follows the same structure captured in the optical image.
The data points with dimmed colors represent the spatial
difference in the class assignment. The localization of the REE
spots largely follows the initial interpretation made on the basis of
the chemical maps (Figure 3).

Figure 9 reveals the spatial localization of the six remaining
clusters. The interpretation map presented in this figure shows
only the second layer due to the fact that data from the surface
contain very few metallic spectra and, therefore, will only clutter
the figure. The white nodes are visualized as spectra from the
cluster #1 with high Cu and S. The blue nodes localized in the
lower left part of the sample are registered from cluster #2 (Ag
rich spots). The red nodes, mainly localized in the upper part of
the picture, represent the spectra registered from cluster #3 (Fe-
and S-rich). The yellow nodes dispersed throughout the picture
represent the spatial localization of the Fe-rich spectra (cluster
#4). The green nodes represent cluster #5 with high Ti, and the
purple nodes represent the spectra from the last cluster (#6), with
high Al content. It is to be noted that all previously described
bright spots (Figure 3) are present in the final interpretation map.
Another noteworthy fact is that the spectra located on the upper
layer, in most cases, belong to the group of OM. In general, the
spatial distribution of the clusters reflects the fact that Fe-rich
clusters are the most dominant among other metals.

Averaging Dynamics and Secondary
Features Derived from the Topology of the
Spectral Proximity Networks.
In addition to the three-dimensional UMAP embedding of the
image, we have applied the Mapper algorithm (Singh et al., 2007)

to capture the internal topology of the network using the Python
Kepler Mapper implementation (Van Veen et al., 2019). Here, we
will provide only a short description of the algorithm; for a full
account of the inner workings of the algorithm, we refer the
reader to the original publication (Singh et al., 2007) and an
introductory article on topological data analysis (Carlsson, 2009).
In general, the construction of the Mapper networks often trails
the following logic: the first step typically includes a calculation of
a low-dimensional representation of the original n-dimensional
observations (by using neighborhood graphs or ordination
methods). Furthermore, reduced observations are often
combined with other metrics that capture outliers, density,
and irregularities in the data (KDE, etc.). The objective
variables (can be PCA or UMAP scores) are binned into a
user-defined number of overlapping filter functions. The
distribution of the data points within localized bins is further
clustered using the clustering algorithm [specific choice is task-
dependent (Pedregosa et al., 2011)]. The nodes that share the
same observations are connected with an edge, and the output
network is typically visualized using force-directed layouts.
Furthermore, the output network is colored according to the
target variable, which provides the interpretation and hot-spot
analysis. The transformation of the original UMAP scores to the
network provides several additional benefits that can be useful in
further downstream machine learning tasks. Depending on the
chosen resolution, the Mapper networks are able to better capture
the global topology and provide some degree of tolerance to the
noise and flexibility to combine various metrics. Another
beneficial side of the Mapper networks is the fact that it is
possible to visualize an arbitrary number of dimensions within
a single complex network. Most useful applications are typically
two to three dimensional; however, it is possible to visualize 4 to
5-dimensional datasets by using the four and five-hypercubes as
filter functions. Such networks can provide an additional level of
detail or coarseness as needed. The challenge of using the high-
dimensional filter functions is that they grow with power and

FIGURE 9 | Interpretation map of the bottom layer. Circles denote laser ablation spots; color denotes class assignment.
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typically form large graphs, which are not always convenient to
work with. However, the main advantage of the Mapper networks
is that they can significantly reduce the number of data points
while preserving the main structural details.

The fs-LIMS is a point-to-point chemical characterization
method that provides the capability to perform depth profiles
and volumetric estimates of any solid material. However, the
ablation rate of investigated materials depending on the applied
laser wavelength might vary, so the characterization of very small
inclusions (micro-to nanograins) can be affected by the number
of applied laser shots. For example, if a majority of the
investigated material is ablated with the first laser shot, further
averaging of additional laser shots is counterproductive because
the target material is already removed from the sample. Using the
assumption that some features (and the mineralization related to
them) might be of nm size in depth, we decided to recalculate the
new embeddings for the averaged dataset (one layer data) and
compare how the structure of the proximity networks will change.
Figure 10 shows the spectral proximity network computed on the
UMAP scores (using an increased number of epochs, 5 NN, and a
cosine distance) on the 2-layer dataset (40,000 mass spectra, 260
single unit masses). The first three UMAP dimensions have been
used as filter functions divided into 40 windows with 30 percent
overlap and further clustered using the density-based clustering
algorithm (DBSCAN) within the overlapping voxels (Ester et al.,
1996). The output undirected graph was further visualized in the
open-source graph visualization platform Gephi (Bastian et al.,
2009) using the ForceAtlas2 layout algorithm (Jacomy et al.,
2014), and edges are colored according to the degree of the nodes
(blue—higher degree, yellow and red—smaller degree, see the
scale bar with the shape of the degree distribution). The network
in Figure 10 reveals the structure of the cosine spectral
proximities and indicates the complexity of that metric present
in the dataset. The structure of the network shows disjoint
clusters that consist of three main components: the host
cluster shows a uniform radial structure, indicating that

spectra from this cluster have less internal variability in
intensity profiles. In contrast, the spectra from the cluster of
OM indicate the gradual change of the spectral proximity and,
thus, form amore complex shape, which reflects the change in the
volumetric ablation and ionization. And last, the cluster from
spectra with enhanced metallicity shows a complex internal
topology, which indicates the complexity of the chemical
compositions of these spectra.

As mentioned in the Methods section, in addition to the
original volumetric dataset, an averaged mass spectrometric
image was calculated, which contains the five single-laser shots
per pixel, averaged for every given pixel forming a dataset that
consists of 20′000mass spectra (single layer). Figure 11 shows the
spectral proximity network calculated from a single-layer (fully
averaged) mass spectrometric image but visualized using the
Yifan Hu graph layout algorithm (Hu, 2005) and calculated
using the same hyperparameters. The change of the layout
algorithm was motivated by the artifactual visualization of
microfossil clusters using the ForceAtlas2. The network
(Figure 11) shows the distribution of node degrees on the
same network (see the scale bar with the shape of the degree
distribution). As shown in Figure 11, the global structure of the
similarity graphs remained very similar—the two biggest
components are easily separable. However, one can see that
the transition line between the host and OM (Figures 10, 11)
appeared in the proximity structure after averaging more spectra
(five single-laser shot spectra), and the fine structure of metallic
spectra was reduced to a single spike, which now shows the
linkage to the transition line, and thus to the OM. An
interpretation of this observation could be made in the
following way: the pairwise spectral distances with an
increased averaging are getting smaller due to the volumetric
domination of the quartz matrix or OM (depending on the pixel
location); thus, the spectra from different classes are becoming
more fused into each other. It was also mentioned that the
secondary metrics calculated from the spectral similarity

FIGURE 10 | Spectral proximity network of the partially averaged mass spectrometric image (40′000 mass spectra 260 single unit masses). The networks are
colored according to the node degree (the degree of a node is the number of edges connected to the node).
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networks might be of use in the downstream machine learning
tasks. For example, Figure 10 shows three distinct clusters with
an identifiable degree of centrality that can be further used as a
selective and descriptive feature together with their UMAP scores.
The topological structure of the graph itself also provides very
important information, that is, the eigenvalue spectrum of the
normalized just graph Laplacian describes the network’s structure
on a global level (de Lange et al., 2014) just by using one metric,
without referring to individual nodes or connections. For
example, the characteristic “neck” of the transition structure
from the host (quartz matrix) toward the microfossils has
been observed in our previous work on the Gunflint
microfossils using the space-type mass-spectrometer
(Lukmanov R. et al., 2021). Overall, the current dataset
generated with the LMS-GT instrument can be easily
segregated into clusters of Precambrian OM vs. the host. Thus,
our approach can be of high utility, for example, in dealing with
highly chemically diverse samples.

DISCUSSION

The OM, which constitutes a significant part of the sample, was
detected by measuring the abundant signal of 12C, with smaller
concentrations of 31P. An additional spectral embedding using
the cosine distance measure revealed that the OM forms a distinct
group of mass spectra. The structural composition of the OM
indicates that it is relatively homogenous throughout the
investigated area of the sample (Figures 10, 11). Using the
matrix factorization (PCA) and further low-dimensional

embeddings (UMAP), it was shown that metallic inclusions
reveal a certain level of proximity to the OM. The most
abundant group among inclusions identified as Fe-rich spectra
– cluster #4 (Figures 7, 9) likely represents some Fe-oxides. The
presence of Greenalite, nano-minerals has recently been
identified within specific morphospecies (Lepot et al., 2017) in
the Gunflint OM. Furthermore, the ionization of small portions
of the OM, together with Fe-oxides and the surrounding silicate
matrix, can explain a certain proximity to the main OM cluster.
The abundant Fe, Si, and O signals observed in the spectrum
(Figure 7—middle left panel) are supportive of that conclusion.
Interestingly, high Fe concentrations within this group were also
accompanied by relatively high Cr peaks, which can indicate a
relatively widespread presence of Cr-oxides as well. However, our
observations show that the metallicity in the investigated Gunflint
area is broader and reveals Cu, Ti, Al, and Ag mineralization. Some
of these compounds are likely to be sulfides such as pyrite, covellite,
and acanthine, although exact mineralogical identifications will
require additional multimethod correlative studies. The presence
of REE was mainly manifested with La, whereas other REE elements
remained below the detection limit. The REEs can be present in
sedimentary phosphates entrapped in the bulk of the sample.
However, again, the identification of the exact mineralogical form
of these compounds needs further study.

Here, we also have to report the caveats related to this work.
The spectral profile of the quartz mineral shown in Figure 7
indicates that the total ion yield is a lot smaller in comparison to
the spectra registered by other groups (note the brushier
baseline in the spectrum). This observation could be
explained by the usage of the fs-IR 775-nm laser. The clean

FIGURE 11 | Spectral proximity network of the fully averaged mass spectrometric image (20′000 mass spectra 260 single unit masses). The network is colored
according to the degree of nodes in the network. The blue colors indicate nodes with a higher degree. It is to be noted that the fine transition structure gets thicker with the
higher average number of laser shots. The metallic clusters also lost their fine structure, which reflects the importance of good volumetric sampling.
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quartz material is nearly transparent for the given wavelength,
and therefore more energy is required to be deposited on the
surface of the sample (Lukmanov et al., 2022). In contrast to
quartz, organic material is more absorptive of the given
wavelength and can yield a higher SNR even with smaller
applied energies. Unequal laser fluences required for the
balanced ionization of both materials can be solved by using
nonlinear beta barium borate crystals that can multiply the
output frequencies of the laser, going deeper into the UV range.
Another potential pitfall concerns the surface quality of the
sample. The orthogonal to the sample laser focusing
implemented in our current setup provides a fixed position
of the laser focus; thus, changes in the topography of the sample
can induce changes in the subsequent ionization. Such changes
can affect the output image quality by forming an ion yield that
is not related to the chemistry of the investigated sample.
Another phenomenon that can affect the image quality and
the quality of embeddings is the ablation depth and
quantification of the layers. In cases where deep craters are
required, fs-LIMS can yield declining ion intensities due to the
change in the depth of ablation as material will not be placed in
the focal plane of the laser. Thus, spectral similarity networks
can segregate layers instead of compounds. Preliminary
calibration studies are necessary to avoid such artifacts.
Further studies could also be improved by the usage of beam
blanking technology, which was shown to improve the detection
limits of various elements (Gruchola et al., 2022).

The spectral decomposition used in this work covers only
single unit masses, except for Mg and Cr lines. Thus, additional
scripts are required for future campaigns to extract finer spectral
information, resolving the majority of the isobaric interferences.
In addition, algorithmic baseline subtraction and denoising on
large spectral libraries can sometimes yield artifacts that can be
manifested in further downstream analysis. The calculation of
spectral embeddings, as was mentioned before, was carried out by
using the cosine metric. However, a great variety of other metrics
are available, and their impact on the aspects of spectral similarity
needs to be assessed. Moreover, the number of neighbors (N) in
the construction of the neighborhood graph has a profound effect
on the structure of the embedding. By choosing a large N, one can
approximate more of the global structure or, alternatively,
emphasize more of the local neighborhood by reducing N. In
general, choosing the right N requires some trial and error;
however, the reader has to keep in mind that provided
embeddings are parameter-dependent. In addition, the
proximity of nodes in the output embedding can have no
physical meaning if there is no edge between them (e.g., if
distances are not defined, see SI for connectivity graphs).
Thus, the analytical assessment of the graph connectivity is
helpful in the interpretation step of the UMAP embeddings or
any other graph-based manifold learning method. A similar
situation affects the construction of the Mapper networks,
where a variety of hyperparameters are present, for example,
the number of filter function windows, percentage of overlap, and
hyperparameters of the clustering algorithms.

CONCLUSION

Large and unstructured chemical information (mass spectra)
often poses critical constraints on the quality of information
that can be retrieved from a given experiment. In this
contribution, we demonstrated that it is possible to convolve
complex mass spectrometric signals into compact networks using
sequential data and dimensionality reduction techniques. Such
networks can reveal new and informative properties of mass
spectrometric measurements, outlining the diversity of
compounds and their homogeneity. The low-dimensional
UMAP embeddings calculated from the fs-LIMS imaging data
yielded nine distinct clusters and a strong separation between the
organic matter and inorganic host spectra recorded from the
1.88 Ga Gunflint chert. The average dynamics of the imaging data
provide an additional perspective on the preservation of the
structural information. In conclusion, fs-laser ionization mass
spectrometry combined with manifold learning techniques
provides a powerful analytical framework and is capable of
accelerating knowledge extraction from complex, chemically
diverse samples.
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