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Neural networks (NNs) are now being extensively utilized in various artificial intelligence
platforms specifically in the area of image classification and real-time object tracking. We
propose a novel design to address the problem of real-time unmanned aerial vehicle (UAV)
monitoring and detection using a Zynq UltraScale FPGA-based convolutional neural
network (CNN). The biggest challenge while implementing real-time algorithms on
FPGAs is the limited DSP hardware resources available on FPGA platforms. Our
proposed design overcomes the challenge of autonomous real-time UAV detection
and tracking using a Xilinx’s Zynq UltraScale XCZU9EG system on a chip (SoC)
platform. Our proposed design explores and provides a solution for overcoming the
challenge of limited floating-point resources while maintaining real-time performance. The
solution consists of two modules: UAV tracking module and neural network–based UAV
detectionmodule. The trackingmodule uses our novel background-differencing algorithm,
while the UAV detection is based on a modified CNN algorithm, designed to give the
maximum field-programmable gate array (FPGA) performance. These two modules are
designed to complement each other and enabled simultaneously to provide an enhanced
real-time UAV detection for any given video input. The proposed system has been tested
on real-life flying UAVs, achieving an accuracy of 82%, running at the full frame rate of the
input camera for both tracking and neural network (NN) detection, achieving similar
performance than an equivalent deep learning processor unit (DPU) with UltraScale
FPGA-based HD video and tracking implementation but with lower resource utilization
as shown by our results.
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1 INTRODUCTION

There is an increasing interest in leisure and commercial use of UAV leading to a rise in market
demand. However, there has also been an increasing rise in incidents involving UAV usage for
undesirable and potentially harmful purposes. For example, airports have reported numerous cases
of UAVs disturbing airline flight operations, leading to near collisions (Huttunen, 2019). Apart from
airports, operation of unauthorized UAVs is an even bigger challenge around critical buildings (such
as prisons, nuclear installations, and power stations) and government/military infrastructure.
Manual detection and tracking of UAVs to provide 24 × 7 coverage is neither practical nor
feasible. Therefore, it is an urgent need to develop automated systems that can detect and track UAV
activity around key buildings and locations.

It is easy for the human brain to detect and identify objects such as UAVs; however, computer
systems cannot achieve the same task without running complex algorithms, which needs be able to
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self-learn and adapt themselves in order to identify and track
objects such as UAVs in real time. For a computer system, UAV
monitoring is a difficult task because the image processing must
cope with diverse and complex backgrounds in the real-world
environment, plus there are numerous UAV types in the
market. There are four primary techniques for locating
UAVs: 1) radar 2) transmitted RF 3) acoustic sensing, and 4)
visual sensing. Radars can be used to detect the location of an
object in the sky but are not able to classify whether it is a UAV
or not (for example a bird). The second technique looks for
transmitted RF signals from the UAV, and using a directional
antenna, it could compute the angle and direction of flight, but
not its type. The acoustic sensing is similar to radar, but it uses
interconnected microphone elements for receiving sound wave
echoes. Finally, the visual sensing approach processes images or
videos to estimate the position and identity a target object. In
this work, we use the visual approach by leveraging the recent
breakthrough in the computer vision field of neural networks
(Saqib et al., 2017).

SoC-based field-programmable gate arrays (FPGA) are well
suited to implement and run neural network algorithms because
they provide powerful parallel computational capability with the
flexibility of a reconfigurable hardware design. However, due to
limited DSP hardware resources, it is quite challenging to
implement floating-point arithmetic functions on FPGAs.
Researchers have long circumvented this limitation by
deploying NN algorithms on the processing system (PS)
section of the hardware platform, rather than the
programming logic (PL) section. This means that the
algorithm never fully utilizes the prime benefits of achieving
hardware acceleration by parallel processing on the FPGA
platform. In this study, we overcome that challenge by
designing a true FPGA-based system on the PL section of the
hardware platform, running at full video frame rate. Our
hardware-centric design approach resulted in a highly
optimized, real-time SoC-based monitoring device that can
identify and track illegal UAVs. Being a SoC-embedded
system, the device could be small and battery-powered,
making it very portable and cost-effective (Omar Salem Baans,
2019).

1.1 Contributions and Organization
The main contributions of our work are:

• to the best of our knowledge, this is the first system to use
the Zynq UltraScale XCZU9EG SoC for UAV detection and
tracking problems;

• we have achieved tracking and detection at full video frame
rate, using the FPGA by designing our own novel processing
system, compared to using a DPU IP block (as used, for
example, in the Vitis Model Zoo from Xilinx);

• the system has been tested against real flying UAVs, running
in real-time;

• we have the ability of loading a data set of weights from
500 k of images on the FPGA using quantization;

• novel background-differencing technique provides the
location of the moving object, for the camera to track.

This allows small flying objects to be detected in a
cluttered environment;

• the integrated UAV monitoring system consists of a UAV
detector and a motor-controlled camera, with auto focus.
From the results, the integrated system outperforms the
detection-only and the tracking-only subsystems;

• as far as the author is aware, this is the first Xilinx UltraScale
implementation of a CNN using a custom network
optimized for UAV detection, using INT8 quantization,
to reduce the DSP48E2 MACC resources to a minimum
while maintaining accuracy. This allows the system to be
ported to a lower cost FPGA, such as the Zynq or Kintex.

The rest of this article is organized as follows. We first
described the problem and proposed implementation in
Section 2. The proposed UAV detection and tracking system
is described in Section 3. The collected UAV datasets are
introduced in Section 4. UAV tracking is presented in Section
5. Our CNN implementation is given in Section 6. The FPGA
considerations are provided in Section 7. Experimental results are
presented in Section 8. Concluding remarks are given in
Section 9.

2 PROBLEM FORMULATION AND SYSTEM
IMPLEMENTATION

To detect an object, we need a method or algorithm that can
recognize features of interest from a sequence of images.
Traditionally, to extract features and descriptors, algorithms
such as the scale invariant feature transform (SIFT) (Lee et al.,
2015) were used, where the features are local and based on the
appearance of the object at particular interest points. The
speeded-up robust features (SURF) method carries out the
task of finding point correspondences between two images of
the same scene or object, and the local binary pattern (LBP)
method is used to describe texture characteristics of the surfaces.
These three discriminant features can be combined to form the
histograms of oriented gradients (HOG) feature vector (Kher and
Thakar, 2014). The advantage of the HOG algorithm is that the
features can still be obtained after the object of interest has
transition, changed orientation, illumination, or rescaling. This
is due to the image being transformed into a large collection of
local feature vectors. The HOG feature vector is obtained by
computing normalized local histograms of image gradient
directions or edge orientations.

Neural networks have been found to be a good alternative to
this type of traditional processing. In deep learning, a CNN is a
class of neural network, with multiple layers. A CNN consists of
multiple convolutional and fully connected layers (i.e., multiple
types of interconnected neural networks), where each layer is
followed by a non-linear activation function. These networks can
be trained end-to-end by back-propagation. This is of interest, as
they can learn from different UAV images. We can also introduce
feature extraction as a layer. The first modern CNNs that were
developed in the 1990s showed us that a CNN model, which
aggregates simpler features into progressively more complicated

Frontiers in Space Technologies | www.frontiersin.org May 2022 | Volume 3 | Article 8780102

Hobden et al. FPGA CNN UAV Tracking Detection

https://www.frontiersin.org/journals/space-technologies
www.frontiersin.org
https://www.frontiersin.org/journals/space-technologies#articles


features, could be successfully used for handwritten character
recognition (Lecun et al., 1998). This work has led to a lot of
follow-up research on the developments and applications of deep
learning methods.

Our proposed design utilizes novel technique to reduce the
heavy floating-point dependency for FPGA implementation
while implementing CNNs. In our design, the traditional
feature transforms, and oriented gradient becomes a layer
within the CNN. The big advantage of CNNs is that they can
be self-learning, i.e., the more images they are subjected to, the
better they are at the classification of objects, just like our brains.
We consider a region of interest (ROI) guarded by a FPGA-based
CNN–enabled UAV monitoring and detection system, which is
composed of a single camera, an FPGA board, etc (Figure 1). For
simplicity, we consider a single UAV intruder that produces a
signature signal (i.e., an image) detectable by the system.

3 UAV MONITORING SYSTEM

To realize high performance, the system consists of two modules,
namely, the UAV tracking module and the neural network–based
UAV detection module. The UAV detection is based on a
modified CNN algorithm, designed to give the maximum
FPGA performance. The tracking module uses our novel
background-differencing algorithm. These two modules
complement each other, and they are used jointly to provide
accurate, real-time UAV detection for a given video input. The
tracking allows the region of interest to be scanned. The tracking
could be locked on to the incorrect object, but the CNN is used to
provide a feedback path to confirm that the tracking is locked on
to an object of interest. Training can be performed on a desktop
PC with multiple graphics processing units (GPU), but the

inference is to be performed on an FPGA. Each neural
network of our CNN is structured in layers. Neurons take
their values from the previous layer and create a weight sum.
Each neuron calculates a weighted sum of its inputs (x). The
neuron is activated by using a linear activation [Figure 2 and Eq.
1 (Rosenblatt, 1962)] followed by a rectified linear units (ReLU)
function Y with a threshold detector to extract a feature. The
weight connecting the i input neuron, Xi, and the j output neuron,
Yj, is denoted by wij. There are different types of activation
functions, such as linear, sigmoid, and hyperbolic tangent,
with the linear function being preferred for the FPGA as it
reduces floating-point resources. The weights themselves are
transferred to block random access memory (BRAM) for
maximum performance. In our CNN, the same set of weights

FIGURE 1 | Block diagram for the proposed UAV tracking and detection system.

FIGURE 2 | Weights (wij) from each input are summed up using a
transfer function, Eq. 1; a bias value (bj) is added to obtain the activation
function, Eq. 2. For a convolution, every neuron has a transfer and activation
function for each new feature layer.
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w is usually reused heavily in convolutional layers, thus forming
input wij type of parallel multiply accumulator (MACC)
operations, as shown in Figure 2.

f � ∑n
i

wijxi + bj, (1)

where wij is the weight for the i
th input (xi) and jth output neuron

of the feature map, and bj is the bias value for the jth output
neuron.

A CNN is a network with many interconnected layers. The
weights and biases are fixed during the learning process. After
training, some optimization can be performed to remove
unwanted layers and to compress the neurons. The CNN takes
a patch of pixels or data and calculates a new value in a new
feature map layer. This is repeated across the complete spatial
map of the input layer. All calculations can be performed in
parallel on the FPGA. As a result of this convolution
(mathematical operation on two functions, processing a third),
we end up with a relatively small number of weights.

y � ReLU ∑n
i�1

∑m
j�1

wijxij + bj⎛⎝ ⎞⎠, (2)

where ReLU is the rectified linear units function max (0, x), i is the
number of inputs,wij is the weight for the i

th input (xi) and j
th output

neuron of the feature map, bj is the bias value for the jth output
neuron, and n, m values represent the size of our convolution.

4 DATA COLLECTION AND
AUGMENTATION

The first step in developing the UAV monitoring system is to
collect UAV flying images and videos, for the purpose of training
the CNN and testing. We collected over 1,000 public domain
images of UAVs. These were rescaled to a size of 227 × 227. Some
of the samples of this data set are shown in Figure 3B. This was
added to the ImageNet Large Scale Visual (ILSVRC) Russakovsky
et al. (2015) data set of 500,000 photographs with 500 categories.

For playback testing, we created a video data set. This
consisted of 40 video sequences that were taken outside, with
different UAV models, in various locations and weather
conditions. Some of these video clips contain more than one
UAV, while others contain non-UAVs and birds to present more
of a challenge. We also added our own video clips shots, taken
locally, using three different UAVmodels. Several examples of the
same UAVs in different appearance are shown in Figure 3B. To
shoot these video clips, we considered a wide range of background
scenes, camera angles, different UAV shapes, and weather
conditions. They are designed to capture UAVs’ attributes in
the real world such as fast motion, extreme illumination, and

FIGURE 3 | Steps involved in data collection and image augmentation. (A) Image augmentation: each image is randomly rotated at various angles to increase the
training set data and enhance CNN learning. (B) Sample database for static image test of the CNN. (C) Processed images from the sample database after the first CNN
convolution layers.
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distance near and far. In addition, some video clips do not contain
any UAVs, which we used for validation.

The duration of each video ranges from 1 min to about 15 min,
and the frame resolution is 1920 × 1080. The frame rate is 30
frames per second.

To improve the data set, we took the images, resized, and
rotated them at various angles. From a single image, we created
more than 10 different variants. As an example, we have shown
four different variants of the same drone image in Figure 3A. For
the CNN training set data augmentation, each image has been
slightly altered by a different rotation angle, even though they are
derived from the same original image.

5 UAV TRACKING

In order to obtain best possible accuracy, tracking needs to run at
the full frame rate of the camera Newcombe (2012). To further
improve the tracking performance, we also preprocessed the
video input. This preprocessing involves subtracting the
current frame from the previous frame and taking the absolute
values pixel-wise to obtain the residual image of the current
frame. Note that, we do the same for the three RGB channels of a
color image frame to get a color residual image. If there is a
panning (zoom in or out) movement of the camera, we also need
to compensate for the global motion of the whole frame before the
frame subtraction operation with reference to the background (B)
value of the image. A numerical value of B signifies that it is an
actual background (static), while a non-numerical value implies a
moving object (non-static). We obtained the value of B using a
modified Stauffer and Grimson algorithm (Chan et al., 2011), as
shown in Eq. 3.

B � argbmin ∑b
k�1

ωk >T⎛⎝ ⎞⎠, (3)

where the threshold T is a measure of the minimum portion of
the data that should be accounted for by the background (B), ωk is
the respective mean for the kth Gaussian model, and b is the total
number of Gaussian models. The algorithm models each pixel
with a mixture of Gaussians. At every frame, for each pixel, the
distance of pixel’s color value is calculated from each of the
associated K Gaussian distributions (default value of K = 3). We
classify a pixel as a foreground pixel based on the following two
conditions:

1. If the intensity value of the pixel matches none of theK clusters
(default value of K = 3).

2. If the intensity value is assigned to the same cluster for two
successive frames, and the intensity values x(T) and x(T − 1)
are both outside the 50% (user adjustable) mid-range (ck −
X, ck +X).
where x is the current pixel, X is the number of pixels, ck is the

Gaussian central value, and T is the threshold value used in Eq. 3.
Since there exists strong correlation between two consecutive

images, most of the background of raw images will cancel out and

only the fast-moving object(s) will remain in residual images.
This is especially true when the UAV is at a distance from the
camera and its size is relatively small. The observed movement
can be well approximated by a rigid body motion. Furthermore, if
the tracker loses the UAV for a short while, there is still a good
probability for the tracker to pick up the UAV, but some user
intervention may be required. Also, extra time should be allowed
for the camera to re-pan and focus.

The UAV detector has two tasks: first, we can use the detector
to find the UAV and initialize the tracker. Typically, the UAV
tracker is used to track the detected UAV after the initialization.
However, the UAV tracker can also play the role of a detector
when an object is too far away to be robustly detected as a UAV
due to its small size. In other words, based on the distance of the
object, a tracker can play the role of detector and vice versa.
Second, we can use the tracker to track the object before detection
based on the residual images as the input. Once the object is near,
we can use the UAV detector to confirm whether it is a UAV
or not.

A UAV can be detected once it is within the field of view and of
a reasonable size. The detector (CNN) will report the UAV
location to the tracking camera so that the camera can refocus
on the object. During the tracking process, the detector keeps
providing the confidence scores of a UAV at the tracked location
as a reference to the tracker. The final updated location can be
acquired by combining the confidence scores of the tracking and
the CNN detection, as shown in Eqs 4–6 (Chen et al., 2017).

Ad � 1

1 + e−β1 Rd−∝ 1( )( )adj, (4)

At � 1

1 + e−β1 Rt−∝ 1( )( )adj, (5)
Af � max An, At( ), (6)

FIGURE 4 | Flowchart of the proposed UAV monitoring system.
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where Rd is the confidence of the CNN detection; Rt denotes our
tracker confidence; Ad and At are the confidence score of
detection and tracking, respectively; Af is the overall
“Confidence” score of an UAV detection; and β1, β2, ∝1, ∝2

are acceptance threshold parameters, set by the user, which can be
used while evaluating the condition statement in the UAV
detection flowchart shown in Figure 4.

6 PROPOSED CNN IMPLEMENTATION

The goal of UAV detection is to detect and localize the UAV in
video images, in real time. Our approach is built on a CNN
algorithm, as shown in Figure 5. Each of the stages in this
algorithm is explained in the following sections. In our model,
the CNN can be applied simultaneously to multiple bounding
boxes, as identified by our tracking/background-differencing
algorithm. It then predicts class probabilities for those boxes.
These boxes are confined to the area identified by our
background-differencing algorithm, thus improving
performance, compared to applying the CNN to a full frame.

Our CNN design enables end-to-end training and real-time
speeds while maintaining high average precision. The CNN
trains on full images and directly optimizes detection
performance. This unified model has several benefits over
traditional methods of object detection. First, the CNN is
extremely fast. Since the FPGA sees frame detection as a
regression problem, we do not need a complex pipeline of
images. We simply run our neural network on a new frame
image in the test. Our model unifies separate components of
object detection into a single neural network. Our network
uses feature extraction from the image, as identified by the
“UAV Tracking” module (discussed later). Each object is
examined simultaneously, detected by the tracking
algorithm. This means our network can identify not only
just drones but also multiple objects in the image. The

images used as an input for the CNN are all rescaled for
the CNN to a standard size.

We start by evaluating the CNN on our detection data set
(Chollet, 2018). We discuss the details of this data set in
Section 4 and Section 6.4. Our CNN consists of
convolution layer, pooling layer, and fully connected layer.
The initial convolution layers of the network extract features
from the image (Figure 3C), while the fully connected layers
predict the output probabilities and coordinates. Our network
architecture was inspired by the GoogLeNet model (Das, 2020)
for image classification. The difference being that our network
has additional convolution layers followed by two fully
connected layers. However, instead of the inception
modules used by GoogLeNet, we simply used 1 reduction
layer followed by 3 convolution layers, similar to the
network in network (NIN) model (Mengxi et al., 2018). The
full network is shown in Figure 5.

6.1 Convolution
The convolution extracts and preserves important features
from the input, in a feature map. In most CNNs, the input
can be of multiple layers; for example, one layer for each color.
The feature map layer can also be of multiple layers. This
means that when calculating the weight of each layer of the
feature map, the calculation must also include all the layers of
the input.

For our implementation, each pixel/data point in the
second layer is calculated from a sliding patch of around 25
pixels/data points in the feature map, to produce a smaller map
in the next layer. Where possible, the calculations are
performed in parallel on the PL. This reduces the number
of weights, compared to a fully connected network. For
example, for a UAV image, the colors are on different input
layers, requiring a multidimensional feature layer, as shown in
Figure 6. The convolution value (yn) can be calculated using
Eq. 7 shown below.

FIGURE 5 | Proposed architecture of the CNN algorithm for our implementation. The algorithm has been optimized for speed versus detection performance.
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yn � ∑5
i�1

∑5
j�1

∑3
k�1

wn
ijkxijk + bn. (7)

The maximum values for (i, j, k) shown in Eq. 7 and Figure 6
correspond to 25 pixels (i × j = 5 × 5) for each convolution on
each one of the three RGB colors (k) in the image. For our model,
we are using an optimum value of n = 30 for performance vs.
number of weights.

6.2 Pooling Layer
We use a pooling layer to down sample the image (e.g., Max
pooling, where we look for the maximum values, as shown in
Figure 7). This compresses the image and extracts the main
features. We process the downsampling in parallel on the PL on
the FPGA, for maximum performance.

6.3 Basic Multichannel CNN Convolution
The most complex operation that needed to be accelerated was
the multichannel CNN convolution. Each sum is a convolution
of all the input maps. Each output map uses a different kernel.
The operation can be shown as a set of loops, in pseudocode. In
our case, this is coded in high-level synthesis (HLS)
programming language, with loops set to pipelining, as

these loops are converted to parallel operations on the
FPGA (Hanif and Putra, 2018). HLS coding is discussed in
greater detail in Section 7.3. For the convolution computing
process, variables row and col correspond to the size of the
convolution kernels, to correspond to the size of the input
feature maps, and i and j represent the number of input and
output feature maps. We performed unrolling on i and j. As the
values of i and j increase, the number of parallel processing
elements (PE) also increases. The operation in our PE is the
multiplication of the input feature pixels and the
corresponding weights (w). But, when i and j are large
enough, the resource utilization will exceed the total
number of our hardware resources, so we divided the whole
calculation into several tiles to meet resource utilization as
shown in Figure 8A. Note that, the order of the “loops” in
Listing 1 is independent so that they can be moved around and
can also be run in parallel. Where the computational
requirements are too much for the FPGA, we have broken
down the layers further into subtiles, as shown in
Figure 8B.Where K = kernel, C = columns, TR = tile rows,
R = rows, N = input maps, and M = output feature map.

Listing 1. HLS pseudocode of our FPGA convolution

FIGURE 6 |Multichannel convolution allows images of different types to be processed in parallel on the FPGA. In this example, we have chosen the optimum values
of feature sizes for our FPGA implementation. These optimum values can change for different implementations. For our implementation, we have chosen n = 30 as the
optimum value.

FIGURE 7 | Example of how we make use of pooling layers for downsampling the images in our implementation.
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At the end of the network, a fully connected layer is applied.
Each neuron in the fully connected (FC) layer is connected to all
neurons in our upper layer, and the features are extracted from

the previous layer and combined to function as a classifier in the
CNN. As shown in Figure 5, the final step is to use the loss
function, which distils all aspects of our model and results down

FIGURE 8 | (A) Basic multichannel CNN convolution allowing for FPGA parallel acceleration. (B) Convolution layers broken down further into sub ‘tiles’ to reduce
computation time, by making use of parallel processing.

FIGURE 9 | Training of the CNN using the Broadberry GPU server TYAN Thunder FT48T-B7105 with four NVIDIA GTX 1080 Ti graphics cards. The entire data set
comprises of approx. 500 K images classified under 500 categories (including drone images from the augmented data library), and the entire process took approximately
a week to complete the training. The blue line shows a plot training accuracy against number of iterations. The training accuracy stabilized around 80% at the end of
process (approx. 1,500 iterations).
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into a single number, thus providing our weighting for calculating
the score (confidence value), output prediction yc, and measuring
the distance from the truth values. The loss function can be
calculated using Eq. 8.

Loss � ∑M
c�1

yc logŷc( ), (8)

where M is the number of classes (500 in our case) and yc is the
model’s prediction for that class (c) which can be either 1 or 0.

6.4 Training the CNN
First, we collected the data, avoiding random images and using as
much training data as possible (as discussed in Section 4), a
created a training model, which is based on the ILSVRC data set
plus our UAV data, as discussed in Section 6. We used MATLAB
to create the training set, as shown in Paluszek et al. (2020). This
iterates through each epoch (one complete cycle through the full
training data set), until the training set is optimized. Figure 9
shows the results of the validation data (approx. 50 K images)
against the test data (approx. 450 K images). We used a
Broadberry GPU server TYAN Thunder FT48T-B7105 with
four NVIDIA GTX 1080 Ti graphics cards to carry out the
processing of the training set. Even with additional GPUs, it
took a few days (11,199 min) for the process to complete, as
shown in Figure 9. The lower the training loss, using the loss
equation Eq. 8, the better the model. As the weights are adjusted
while the model keeps training, the loss gets minimized and the
accuracy (Eq. 9) of the detection of training images against our
validation set increases.

Accuracy � tp + tn

tp + tn + fp + fn
, (9)

where tp = true positives, tn = true negatives, fp = false positives,
and fn = false negatives.

To speed up the operation of training, we had to look at batch
normalization parameters; for example, where we had a batch
normalization operation followed by a convolution. Note that, all
the parameters for the batch normalization are constant. These
constant parameters can be folded in the convolution operation.
At the training stage, the batch normalization (BN) finds
parameters γ (standard deviation) and β (mean) in order to
regularize the variance to 1 and the average to 0 for each mini-
batch. B = is our mini-batch, σ is the mini-batch variance, and x =
input. The batch normalization BN algorithm for training is
shown as follows:

μB � 1
m

∑m
i�1

xi, (10)

σ2
B � 1

m
∑m
i�1

xi − μB( )2, (11)

BN � γ
x − μB					
σ2B + ϵ

√ + β. (12)

A hyperparameter ϵ is set for coefficient stabilization, which is
used to adjust the training time. Since both γ and β have been

already trained during classification, the BN can read them
directly from the dynamic random access memory (DRAM).
The end result of this were hundreds of megabytes of floating-
point numbers, so the next step was to look at optimization
(weight compression) using quantization, as the training set data
needs to be loaded on the FPGA BRAM.

7 FPGA CONSIDERATIONS

The main advantage of FPGAs over CPUs and GPUs is that the
whole system can be implemented on the same silicon, including
the connections to the sensors, which reduces latency. We also
have the flexibility to add new CNN layers.

Both Xilinx (Model Zoo) and Mathworks (MATLAB) provide
intellectual property (IP) blocks, called deep learning processor
units (DPUs). Both DPUs (from MATLAB and Xilinx) are
similar hardware IPs; however, the main difference between
the two DPUs is that the MATLAB DPU supports MATLAB
tools, while the Xilinx DPU supports CAFFE and Tensor flow
tools. Biggest advantage of these ready-made DPUs is that one
can download various types of network designs. However, the
downside to a DPU is that they are aimed at higher end FPGAs
(such as UltraScale and UltraScale+); in other words, they are not
optimized to run on a lower cost FPGA with fewer hardware
resources (such as DSP slices) and are much higher power
consumers. Hence, there is a greater need to design a more
customized DPU that can be made portable, enabling us to run on
a lower cost FPGA and using lower power consumption.
Furthermore, for commercial products, the DPU IPs also
comes with licensing restrictions, which make them costlier to
implement and run.

Floating-point implementation on an FPGA needs the use of
digital signal processing/processor (DSP) slices, which are a
limited resource. Traditional CNN implementation on Xilinx
Zynq FPGA requires heavy DSP48E2 slice usage for floating-
point maths for each perception algorithm neuron. To solve this
challenge, we needed a novel method of reducing the floating-
point dependence. From our experiments, we have found that the
CNN can cope with the small changes in the weights and biases of
the neurons/perceptions in our network, resulting from the
quantization of the floating-point values. By using
quantization, we were able to reduce the weights from 32-bit
floating point to 8-bit word length, which further reduced the
weight memory and computation time significantly.

By using the Xilinx’s Advanced eXtensible Interface (AXI), we
movedmemory from valuable BRAM to external DRAM. As with
the accelerated architecture used in DPUs (Zhang et al., 2020), we
processed a single CNN layer at a time (i.e., in a one clock cycle)
with partitioning through tiling. A block diagram of DPU engine
from Xilinx is shown in Figure 10. With DPUs the PE come
under the computing engine, which communicates to the inputs/
weights and output buffers (stored in BRAM). In our
implementation, because the network is hardcoded, we do not
have the need for APB, controller, and microcode sections,
leading to superior performance but reducing our flexibility,
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that is, we cannot process a network of a different design as ours is
a fixed design.

7.1 BRAM Usage and Software
Considerations on the ARM Core (PS)
With FPGAs, BRAM is required for performance but is a
limited resource. BRAM uses a single clock cycle at 220 MHz,
whereas as DRAM requires multiple clock cycles. The
UltraScale devices have a new memory block, which
provides a 6 × increase compared to BRAM. This can be
enabled on the Xilinx DPU, but for our design, we have
only used standard BRAM configured as 18 Kb RAM. The
reason for this is make the code portable for running on non-
UltraScale FPGAs. The convolution, pooling, and ReLU layers
have been implemented in BRAM and grouped together on the
PL. This not only increased the complexity but also improved
performance, as parallel tasks can be performed in a single

clock cycle. In our model, this resulted in only a third of the
memory being transferred to DRAM.

For efficient CNN acceleration on FPGAs, the first task was to
convert all floating operations to fixed points (Reiter et al., 2020)
(Wei et al., 2019). The biggest challenge in order to complete this
conversion is selecting the exponent value. We selected different
exponent values for each layer, saving BRAM and other resources.
For the selection, we looked at the errors of quantization per layer
and channel, against the available resources. Prior to
implementing the design on an FPGA, we used the MATLAB
quantization tool in order to balance the amount of quantization
between performance and accuracy. To do this, we used a set of
images for calibration, and then we ran these though our CNN.
The quantization dynamic range of the weights and biases are
shown as a histogram in Figure 11. The grey shaded areas on the
histogram plot (Figure 11) are the layers where quantization is
not possible, and blue shaded areas are those layers where
quantization is possible. We can then use our data set to

FIGURE 10 | (A) Block diagram of DPU architecture from Xilinx. (B) Our implementation. Note that, we do not have application processing block (APB), controller,
andmicrocode block (used for downloading and executing different CNN designs), instead our implementation is hardcoded to our proposedCNN network architecture.

FIGURE 11 |MATLAB quantization tool used to assign a scaled INT8 type for weights, biases, and activations of the convolution layers of the network, as shown in
the heat map before. Gray regions of the histogram show the bits that cannot be represented. A good result is where the map is mostly blue before the black dividing line.
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estimate the reduction of the size of the network and accuracy,
compared with the original network. From the results obtained
for our network, we were able to achieve a reduction of
approximately 73% in the size of the data set while still
maintaining high accuracy.

In our design, in order to optimize hardware resources on the
PL section and when it did not affect system performance, our
algorithm moved some layers to the Zynq’s Advanced RISC
Machines (ARM) PS core. One such example is the
“concatenation of layers” process that merges two or more
layers at the channel axis. Moving this process to the PS core
will not have any effect on the overall efficiency for the PS as in
this case; parallel performance is not required.

7.2 FPGA Quantization Implementation
Techniques to Reduce DSP Slices
For each layer output, weight, bias, and fixed-point exponent,
we simply looped through each point and selected the value
with the lowest quantization error. With reduction, the lower
values are set to zero. The quantization is the mean square
error of the real value and the quantized value. This is where
we can compare the Xilinx’s Int8 format against other
formats, such as FP32 as used by tensor flow (Yao et al.,
2017). The INT8 technique works on the FPGA by shifting the
values 18-bits to the left using the INT8 optimization. Each of
the DSP slices result in a partial and independent portion of
our final output values. The accumulator for each of the DSP
slices is set to 48-bits. These are then chained to the next slice.
This has the effect of limiting the number of chained blocks to
seven, before saturation of the shifted number affects the
calculation. In our implementation, each layer of the CNN
has hundreds to thousands of input samples. Unfortunately,
with this method, after seven terms of accumulation, the lower
terms of the 48-bit accumulator might become saturated,
requiring an extra DSP48E2 slice for the summation, every
seven terms. This equates to 14 MACCs with every seven DSP
slices plus one DSP slice for preventing saturation. This
reduction in the limited DSP48E2 MACC resources
requirement allows us to run this implementation on a

Xilinx’s Zynq UltraScale XCZU9EG FPGA (depending on
the final size of our CNN).

7.3 IP Block Integration for the Trained CNN
Implementation
Our IP Block for the CNN implementation has been integrated into
the block diagram, under Xilinx’s Vivado (Crockett and Northcote,
2019), with the Zynq ARM processor and the Xilinx Video
Processing SubSystem (VPSS) Intellectual Property (IP) core for
the camera color balance and gamma image correction. We in turn
run Peta Linux, and Python. Our CNN implementation was written
inHLS, a C like language, which converts the code in to PL, giving us
maximum FPGA performance, while using a slow clock rate
(Skliarova and Sklyarov, 2019). Unlike micro-controllers, FPGAs
can run logic operations in parallel. The Xilinx Zynq ARM micro-
controller is used to run the Peta Linux. This allows us to run Python
script, which provides an application programming interface (API)
interface between our IP Block and OpenCV graphic functions. The
background-differencing algorithm is also an IP Block, running on
the FPGA PL fabric and written in Verilog/VHDL, whereas the
tracking code is written in Python, giving us added flexibility where
top performance is not required. Graphic processing is performed
using the Xilinx’s “Vitis vision” OpenCV (Johansson, 2015). For
example, drawing the on-screen boxes around the detected object
and displaying the on-screen object confidence weight value.
OpenCV library functions are seen as essential for developing
computer vision applications. The Xilinx’s “Vitis vision” libraries
for computer vision, is based on key OpenCV functions, allowing us
to compose and accelerate vision functions in the PL FPGA fabric. In
addition, “Vitis vision” functions are consistent with OpenCV and
are optimized for FPGA performance, resource utilization.

The total power consumption for our design is approximately
5.5 W. Within this total power consumption of the chip, the PL
power consumption is approximately 1.2W, PS is approximately
2.65W and the BRAM consumed 0.555W. It should be noted
that 8.1 W is the maximum for the UltraScale XCZU9EG. In
Table 1, we have also compared the power consumption of our
design with the MATLAB and Xilinx DPUs and our design is
approximately 10–15% more efficient than the state of the art.

TABLE 1 | Results for tracking and detection accuracy obtained in real time for four live runs. Each live run was approximately 15 min of flight time (limited by battery life). The
maximum flight distance was approximately 100 m during each run. Combined accuracy is the average of tracking and detection accuracy.

Run Tracking (%) Detection (%) False detection (%) Combined accuracy (tracking/detection)
(%)

1 87 82 12 84.5
2 76 84 14 80
3 83 81 7 82
4 81 83 18 82

Xilinx DPU MATLAB DPU Our design

DSP slices 642 768 220
LUT(K) 41 179 48.5
BRAM(18 Kb) 250 373 223
Power consumption(W) 6.6 6 5.5
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8 EXPERIMENTAL RESULTS

The fully integrated system contains both the detection and
the tracking modules. We used our own UAV data set to
evaluate the performance of the fully integrated system. The
results in Table 1 is from 4 runs, at different locations, taken
in real-time using real UAVs and compared against results
taken from a study of human UAV operator observations
(Alaparthy et al., 2021), giving better detection rate of 92%,
but for periods less than half an hour versus the 24 h running
of our system.

The system is designed to work in real-time, so the detection
has to work at full video frame rate. Figure 12 shows the
average of all the test runs taken of live tracking of UAVs
against time in minutes. We recorded the weighting reported
against a UAV detection and the tracking algorithm. The

results show that both the tracking and CNN give good
detection when the UAV is clearly visible. Once the UAV
becomes around 10 or less pixels in size, both the tracking and
CNN struggle. The author believes that this could be improved
upon, with a zoom camera, although this could affect the
tracking performance. The results also show that the
combination of both the tracking and CNN produce the
most accurate results for a positive identification. It also
shows that tracking can continue even though not every
frame has been reported as a positive UAV detection from
the CNN, as the UAV still remains locked.

8.1 Results Comparison
We compared the MATLAB and Xilinx DPU implementation on
the UltraScale ZCU102 against our model, using the same data set
of images (Figure 13). We tested the performance against two

FIGURE 12 | Chart showing our results for a typical detection of UAVs over a period of 15 min. As evident from the plot, nearer objects have greater tracking/
detection accuracy and vice versa.

FIGURE 13 | Comparison results of our FPGA CNN against a DPU MATLAB implementation (nearest known equivalent).
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network designs, AlexNet and Resnet18 which are seen as
comparable against our network architecture. The frame rate is
from time of receiving the image from the camera, to displaying the
output results. Because of the larger size of the DPU and its
requirement for more BRAM, we implemented this on the
UltraScale ZCU102 development board, together with our
research model. This board does not have a HDMI input, so
we used the Analog devices reference design of the FMC-
IMAGEON (based on the ADV7611) for both video in and
out. For direct camera input, the FMC-IMAGEON interfaces to
the AES-CAM-ON-P1300C-G (PYTHON-1300 color image
sensor camera module). For the Xilinx DPU, we used a USB
camera as supported by the Xilinx’s Vitis-AI Model Zoo Xilinx
(2022) example application (using the Xilinx DPU). Only our
model included the UAV tracking in the results. The video
processing and NN DPU are running completely on the PL
logic for the MATLAB DPU and our model. Xilinx used the
Linux for camera interfacing, which adds to the latency, compare
to using a direct FMC connected camera. The clock frequency of
the DPU processors and our model was set at 220MHz, to give
lower power consumption. The DPUs and our model all ran as a
single thread and as a single core. The Xilinx DPU ran 3 cores,
tripling the throughput, so the result has been adjusted accordingly.
We acknowledge that performance can be greatly improved by
using a higher clock rate and multiple threads/cores for each
implementation, but this must be balanced against the power
consumption and the maximum frame rate of the camera. The
results are accessed by the ARM PS core, by reading from the
DRAM for all implementations. On our CNNwith tracking, we are
able to achieve a high detection rate of 82% at a frame rate of 54.67
frames per second (fps). Figure 13 shows the comparison of our
implementation with the nearest comparable known systems
implemented using DPU engines. The Xilinx DPU actually had
the highest frame rate of 184.9 fps, but this was using three cores at
224 × 224 as mentioned, so adjusting for a comparable single core
system and frame size, we actually get 61.6 fps, minus the latency is
then this is actually about 45 fps. As can be seen, our
implementation far exceeds both in detection accuracy for UAV
detection, with a higher frame rate when comparing like for like.
Moreover, the CNN detection rate and the tracking rate should
ideally be matched (Newcombe 2012), which is true in our case.
The good performance of our model is in part due to our network
design being optimized for our UAV data set with reduced number

of layers as compared to Resnet18’s 18 layer structure. On the
MATLAB DPU each layer takes an average of 1.8 ms, thus
reducing the throughput performance for unoptimized systems.
Moreover, Res18Single (single precision) achieves only 5 frames a
second (as compared to 55.67 fps for ours), since it is not quantized
as compared to our system, although detecting performance is
slightly increased. This demonstrates the importance of
quantization when implementing a CNN on an FPGA, for
performance and reduced resource utilization. Our system could
improve the end-to-end latency further by moving all the OpenCV
video processing to the FPGA’s PL fabric, but this adds to the
complexity of design and will be explored in future
implementations.

9 CONCLUSION

In this work, we have presented a novel video-based UAV
monitoring system using the UltraScale XCZU9EG FPGA
platform that overcomes the challenge of floating-point
dependency. The system comprises the UAV detection
module and the UAV tracking module. The detection
module design is based on a novel CNN implementation
running on FPGA’s PL fabric, together with a tracking
module using novel background-differencing technique to
locate UAV-shaped moving objects. We also developed
model-based data augmentation technique to enrich the
training data. Furthermore, we dramatically reduced the
size of the training set by 73%, thus saving valuable
BRAM. The fully integrated monitoring system takes
advantage of both the tracking module and the CNN
detector to achieve high performance monitoring.
Extensive experiments were conducted to demonstrate the
superior performance of the proposed UAV monitoring
system. This included live real-time testing, with real
radio-controlled UAVs as shown in Figure 4. Our design
has shown to operate at full video frame rate with real-time
processing performance thanks to FPGA’s ability to process
data in parallel, just like the human brain. Our proposed
implementation achieves far greater detection accuracy at
considerably higher frame rates, than any other UAV tracking
and detection CNN-based implementation methods,
currently known.

FIGURE 14 | Screenshots obtained from a live system demonstrating tracking and detection of a drone during flight. The red box highlights CNN UAV detection,
with weighting. The blue box highlights tracking. The panel (A) shows tracking only, while (B,C) demonstrate both tracking and CNN detection. It can be noted that (A,C)
show a rooftop/trees as a point of reference, while (B) is a sky-only view. This is because the camera is continuously moving and panning in alignment with the tracking.
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