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Density fluctuations near critical points have a wide range of sizes limited only by the
boundaries of the enclosing container. Howwould a fluctuating image near the critical point
look if we could break it into disjoint spatial scales, like decomposing white light into
narrow-band, monochromatic waves? What are the scaling laws governing each spatial
scale? How are the relaxation times of fluctuations at each spatial scale related to the
dynamics of fluctuations in the original image? Fluctuations near the critical point of pure
fluids lead to different patterns of phase separation, which has a significant influence on the
materials’ properties. Due to the diverging compressibility of pure fluids near the critical
temperature, the critical phase collapses under its weight on Earth. It limits both the spatial
extent of fluctuations and their duration. In microgravity, the buoyancy and convection are
suppressed, and the critical state can be observed much closer to the critical point for a
more extended period. Local density fluctuations induce light intensity fluctuations (the so-
called “critical opalescence”), which we recorded for a sulfur hexafluoride (SF6) sample
near the critical point in microgravity using the ALI (Alice Like Instrumentation insert) of the
DECLIC (Dispositif pour l’Etude de la Croissance et des Liquides Critiques) facility on the
International Space Station (ISS). From the very short (approximately 173 s total recording)
data set very near, within 200 μK, the critical temperature, we determined the effective
diffusion coefficient for fluctuations of different sizes. For transient and non-stationary data
recorded very near the critical point immediately after a thermal quench that steps through
critical temperature, we separated fluctuations of various sizes from the original images
using the Bidimensional Empirical Mode Decomposition (BEMD) technique. Orthogonal
and stationary Intrinsic Mode Function (IMF) images were analyzed using the Fourier-
based Dynamic Differential Microscopy (DDM) method to extract the correlation time of
fluctuations. We found that a single power-law exponent represented each IMF’s structure
factor. Additionally, each Intermediate Scattering Function (ISF) was determined by
fluctuations’ unique relaxation time constant. We found that the correlation time of
fluctuations increases with IMF’s order, which shows that small size fluctuations have
the shortest correlation time. Estimating thermophysical properties from short data sets
affected by transient phenomena is possible within the BEMD framework
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1 INTRODUCTION

Phase transition reveals materials properties near the critical
point, where the buoyancy that leads to the raising of the
vapor bubbles and the gravitational pulling that determines
the falling of the liquid droplets determines the formation of a
flat meniscus by the gravity-induced coalescence of bubbles or
droplets (Beysens et al., 2000; Beysens and Garrabos, 2000).
Earth’s gravity limits both the spatial extent of the critical
region and the duration over which critical fluctuations can be
observed. Weightlessness near critical point experiments also
benefits from the critical slowing down that enables the study
of fast processes on a more accessible time scale. In addition to its
practical material science applications, the study of critical
fluctuations and phase separation processes leads to a better
understanding of critical scaling universality and its
generalization to all fluids.

The DECLIC (Dispositif pour l’Etude de la Croissance et des
Liquides Critiques) is a multi-user facility to study critical fluids’
behavior and directional solidification of transparent alloys. The
DECLIC is a joint NASA and CNES research program onboard the
International Space Station (ISS). The compact design contains
three inserts. We refer here only to the ALI (Alice Like Insert)
dedicated to studying sulfur hexafluoride (SF6) as a near-ambient
temperature critical fluid. The program covers a complete
characterization of SF6, ranging from thermodynamic quantities
measurements (thermal diffusivity, heat capacity, and turbidity
near the critical point) to boiling effects studies (Pont et al., 2011).

We analyzed SF6 critical fluctuations very near the critical
point, within 0.2 mK, using high-resolution DECLIC images
recorded in 2012. For this purpose, we used a supercritical SF6
sample brought from an initial state, which is already in a liquid-
vapor two-phase state very slightly below the critical temperature
Tc = 45.557 297°C to a temperature 0.2 mK below its initial
temperature by a temperature quench (Oprisan et al., 2012;
Oprisan et al., 2014).

In the case of pure fluids near the critical point, their critical
behavior is described by a single variable, i.e., the fluid’s density,
which is the natural choice for the order parameter in such
systems (Domb et al., 2001). The order parameter for pure fluids
is defined as M± = (ρ± − ρc)/ρc, where ρ

± is the mean density of
liquid and vapor phase, respectively, and ρc is the critical density
(Beysens, 1997; Lecoutre et al., 2009). The gas-liquid coexistence
curve is universal and given byM � B(1 − T/Tc)β, where B = 1.60
(Zappoli et al., 2015). Additionally, the volume fraction of the
minority phase, ϕ, is determined by the lever rule (Beysens, 1997;
Perrot et al., 1999; Oprisan, 2006; Oprisan et al., 2008):

ϕ � M+ −M

M+ −M− � 1
2

1 − 1 + ΔT
δT

( )−β( ), (1)

where δT = Tc − Tf is the quench depth with respect to the critical
temperature, Tc = 45.557 297°C, ΔT = Tc − Tcx is the coexistence
temperature depth with Tcx = 46.0072°C, β = 0.32575 is a

universal exponent and M± are the order parameters (relative
densities) of liquid and vapor phase, respectively. According to
the generalized nucleation processes (Schmelzer et al., 2000;
Schmelzer, 2001; Schmelzer and Schmelzer, 2001; Schmelzer
et al., 2006), the volume fraction determines the evolution of
large order parameter fluctuations. At large volume fractions,
hydrodynamic flows during a coalescence process between
domains can induce other coalescence events, and so on. In
this case, the domain size grows as t1, and the phase separating
pattern is interconnected. A small volume fraction leads to
domain collisions via purely Brownian motion. As a result,
liquid droplets and vapor bubbles grow slower as t1/3, and the
pattern is disconnected as an assembly of drops or bubbles
(Nikolayev et al., 1996; Beysens and Garrabos, 2000). The
DECLIC uses light transmitted through a Direct Observation
Cell (DOC) to record high-resolution images of SF6 critical
fluctuations.

Dynamic light scattering (DLS), has long used for measuring
diffusivity in colloids (Nossal et al., 1971) and thermal diffusivity
in fluids near their critical point or mutual diffusion coefficient in
binary liquids near their miscibility critical point (see, e.g., (Levy
et al., 1982)). DLS yields the normalized intermediate scattering
function (ISF) (Berne and Pecora, 2000), which probes density
relaxation processes at length scale 2π/q. The Dynamic
Differential Microscopy (DDM) has been used for almost two
decades and is a well-established method for analyzing images in
a microscope setting. Among the early studies using DDM are the
seminal works by Cerbino and Trappe (Cerbino and Trappe,
2008) The fundamental aspects of DDM method and its
applications to microscopy were explained in by Giavazzi et al.
(Giavazzi et al., 2009). Spectral analysis is a well-established
method that applies to stationary and theoretically periodic
signals to extract, for example, information regarding the
characteristic size of fluctuations (Oprisan, 2006; Oprisan
et al., 2008; Oprisan et al., 2011; Oprisan et al., 2012; Oprisan
et al., 2014). Additional information regarding the temporal
dynamics of fluctuations can be obtained by using the
Dynamic Differential Microscopy (DDM) (see Supplementary
Section S5.1 and (Vailati and Giglio, 1998; Bondarchuk et al.,
2005; Croccolo, 2006)). For example, the DDM allows the
computation of the dynamic structure factor and the
relaxation time of dynamical phenomena (Cerbino and
Trappe, 2008; Cerbino and Vailati, 2009; Vailati et al., 2011;
Croccolo et al., 2016b). DDM has also been applied to
investigating equilibrium fluctuations close to critical
conditions in binary mixtures (Giavazzi et al., 2016a) and
under nonequilibrium conditions in dense colloids (Cerbino
and Trappe, 2008; Cerbino and Vailati, 2009; Vailati et al.,
2011; Croccolo et al., 2016b; Giavazzi et al., 2016b). The DDM
method has recently been applied to critical density fluctuations
from light scattering images of systems approaching the liquid-
gas critical point of pure fluids from the homogeneous domain
(Oprisan et al., 2021a). In such experiments, the results of image
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processing performed with the DDM are consistent with the
modern theory of critical phenomena (Oprisan et al., 2021a).
When compared against the traditional light scattering method,
the DDM has the advantage of a simpler setup and the possibility
to observe fluctuations in the direct space, which facilitates the
interpretation of phenomena. Additionally, the analysis of
fluctuations in the reciprocal space, gives the normalized
intermediate scattering function (ISF), which allows the
investigations of dynamics of fluctuations and measurements
of correlation time. However, the DDM requires a correction
for the optical transfer function, except for some very special
Schlieren optical setups (Croccolo et al., 2006). In practice, for
sufficiently large wave vectors q, the DDM does not need data
correction (Cerbino and Vailati, 2009).

For experiments performed within µK of the critical point,
finite-size effects limit the wavenumbers range over which
thermophysical properties can be accurately measured.
Additionally, short recordings very near the critical point in the
vicinity of the thermal quench that steps through Tc are affected by
transient and non-stationary density fluctuations. Since spectral
methods are not well-suited to analyze transient and non-stationary
data, a necessary pre-processing step is the decomposition of the
original signal into orthogonal and stationary IMFs (Huang et al.,
1998a; Jean et al., 2003; Nunes et al., 2003; Huang et al., 2010; Liu
and Chen, 2018). We previously applied the Bidimensional
Empirical Mode Decomposition (BEMD) to separate density
fluctuation images into multiple spatial scales and investigated
their dynamics with the Fourier-based DDM method (Oprisan
et al., 2021a). The BEMD decomposes the original fluctuation
images into orthogonal images (see Supplementary Section S5.2
for more details and (Oprisan et al., 2021a)). Data-driven
approaches, such as the BEMD, are concerned with identifying
the relationship between the inputs and the outputs of a complex
system without making any hypotheses regarding the internal
processes that led to the observed output (Wang et al., 2006).
The EMD method better describes the local time scale
instantaneous frequencies and does not need any predetermined
basis functions (Huang et al., 1998a; Li, 2006). The EMD-based
techniques are suitable for analyzing nonlinear and nonstationary
data. With the EMD-based methods, data are decomposed into a
small number of intrinsic mode functions (IMFs), which are
derived based on the local characteristic time (for time series) or
spatial (for images) scale of the data itself and describe the dynamic
behavior from high to low frequencies (Huang et al., 1998a; Huang
et al., 2003; Wu and Huang, 2004). All the IMFs are orthogonal to
each other (Huang et al., 1998a; Wu et al., 2015). The first EMD-
based study analyzed the movement of the ocean waves (Huang
et al., 1998a; Zhang et al., 2008). Subsequently, the EMD method
was applied in social science to investigate dengue hemorrhagic
fever (Cummings et al., 2004), the crude oil price (Zhang et al., 2008;
Yu et al., 2010), and the financial markets. The EMD method has
been used for describing the phase distribution and phase
correlation of financial time series (Wu et al., 2006; Wu, 2012)
and the damped oscillations in the ratios of stock market indices
(Wu, 2012). Financial crisis forecasting and foreign exchange rate
forecasting have been investigated with this method, and the results
are significantly improved compared with those obtained with

conventional neural networks (Yu et al., 2010; Lin et al., 2012).
Among other relevant applications of time series analysis using
EMD, we mention earthquake accelerograms (Raghukanth and
Sangeetha, 2012), pulmonary blood pressure investigation (Huang
et al., 1998b), and vibration analysis damage (Garcia-Perez et al.,
2013). The BEMD has been extensively applied to image denoising
(Ben Arfia et al., 2011; Liu and Chen, 2018), image analysis (Jean
et al., 2003; Nunes et al., 2003), texture analysis (Nunes et al., 2005),
facial image analysis (Saha et al., 2016), multispectral and
panchromatic remote sensing (Dong et al., 2014), bamboo forest
analysis (Liu et al., 2016), and gravity anomalies study for mining
industry (Huang et al., 2010).

Thermophysical properties can be determined from
fluctuation images at different spatial scales. Using this
approach, one could investigate how the power-law exponents
for structure factor scaling change with the wavenumber range.
One can also explore the relationship between the correlation
time of small versus large fluctuations and estimate the diffusion
coefficient for fluctuations of different sizes (Oprisan et al.,
2021a). Although there is no rule for selecting the number of
orthogonal decompositions, called Intrinsic Mode Functions
(IMFs), we used three IMFs and a residual in this study. The
main reason for our choice is that the wavenumbers are separated
in low (where we expect large sinusoidal fluctuations of the signal
affected by the optical transfer function of the experimental setup
and also poor Fourier space statistics), intermediate (where the
optical transfer function may play negligible role and data do not
need correction), and large (where the data might be recorded
close to the spatial sampling resolution of the camera).

The paper is organized as follows. The DECLIC setup is
reviewed in Section 2, and a brief description of optical
features is given in Section 2.1. The detailed results obtained
using the DDMmethod for extracting the structure factor and the
correlation time of fluctuations are discussed in Section 3.1. The
orthogonal separation of original images in IMFs and the
corresponding thermophysical properties are discussed in
Section 3.2. The concluding remarks in Section 4 offer a
review and a context for the current multiscale analysis of
critical fluctuations. The two subsections of the Appendix
briefly review the main characteristic features of the DDM
technique (Supplementary Section S5.1) and the BEMD
method (Supplementary Section S5.2), with relevant references.

2 EXPERIMENTAL SETUP

The DECLIC (Dispositif pour l‘Etude de la Croissance et des
Liquides Critiques) has a flexible design with different inserts to
accommodate a thermostat and a sample cell unit (SCU) with the
fluid to be studied. It also contains most of the electronics
associated with user-dedicated temperature sensors. The ALI
(Alice Like Insert) has been used for studying phase
transitions near the critical point at room temperature, critical
fluids, and boiling crisis. DECLIC is a shared project by the CNES
(Centre National d‘Etudes Spatiales) center of Toulouse (France)
and NASA’s Marshall Space Flight Center (Huntsville,
United States).

Frontiers in Space Technologies | www.frontiersin.org June 2022 | Volume 3 | Article 8838993

Oprisan et al. SF6 Transport Properties in Microgravity

https://www.frontiersin.org/journals/space-technologies
www.frontiersin.org
https://www.frontiersin.org/journals/space-technologies#articles


The DOC was filled with SF6 at the (temperature, pressure,
density) critical coordinates of the gas-liquid critical point, i.e., Tc =
45.557 297°C, pc = 3.73MPa, and ρc = 742.6 kg m−3. The design of
this cell is briefly reviewed below (see also (Garrabos et al., 2010)).

The fluid sample volume observed by light transmission
corresponds to a cylindrical volume of inner diameter Dcyl =
10.6 mm and inner thickness ecyl = 4.115 mm. The total fluid
volume of the cell is 0.463 cm3 (including a dead volume mainly
due to filling holes), corresponding to a total SF6mass of 0.353 g. The
mean density was ρ = ρc + (0.09 ± 0.01)%. Three small (250 µm bead
diameter) thermistors are located inside the fluid volume so that
three local temperatures are measured close to the gas-liquid
interface in the microgravity environment. The thermistors are
visible in Figures 1A,B. The DOC also allows collecting the light
scattered at small angles and 90°. We analyzed 1,922 images taken
very close to the critical point and recorded at 11.5 frames per second
(approximately 173 s total recording). Based on our estimated value
of the correlation length ξ ≈ (2.4 ± 0.2) µm (see Table 1), the first
image in the series is 99 µK above critical temperature Tc = 45.557
297°C.

2.1 Optical Setup
The following description of the optical characteristics is similar
to ALICE 2 facility used onMIR experiments (see (Lecoutre et al.,
2014; Garrabos et al., 2015; Lecoutre et al., 2015; Mota et al., 2015;

Nikolayev et al., 2015; Garrabos et al., 2016; Durieux et al., 2017;
Garrabos et al., 2018) and references therein). ALI insert has a
modular optical design with a “source optical box” containing the
laser, different filters, and photodiodes, the “thermostat box” that
includes the sample cell unit, and a “collecting optical box” that
contains the CCD and additional photodiodes (Lecoutre et al.,
2009). The complete optical scheme is detailed in (Marcout et al.,
1994), and the optical performances are precisely analyzed for
other experiments, such as turbidity measurements (Lecoutre
et al., 2009).

The fluid sample cell is visualized through light transmission
normal to the windows using LED illumination with a spectrum
centered around 660 nm. ALI instrumentation works with a wide
field of view of 10 × 10mm2 object image at 30 µm resolution. It
also records small field of view images of approximately 1 × 1 mm2

object image from the center of the DOC with a microscope
objective within Δx = 3.5 µm resolution. All images analyzed in
this study were of the small field-of-view type obtained with the
optical microscope at the focal plane in the middle of fluid layer,
centered on the optical axis of the fluid sample.We analyzedNimg =
1,922 recorded with a sampling rate of fs = 11.5 frames per second
(the time interval between two successive images is ts = 1/fs ≈ 87
ms). All images I( �r, t) are digitized with a spatial vector given by
�r � Δx(nx, ny), where nx and ny are integer numbers comprised
between 1 and the image size M = 1,024 pixels.

FIGURE 1 | The Sample Cell Unit (SCU) schematic representation shows the SF6 fluid in a CuCo2Be cylinder sandwiched between two sapphire windows (A).
There is a resistive layer on one window that generates a heat pulse for boiling studies. A full view of the transmitted light through the Direct Observation Cell (DOC) reveals
the location of thermistors (B). A microscope objective was also used for recording a small 1 × 1 mm2 object image from the center of the DOC (C).

TABLE 1 | Effective diffusion coefficient obtained by fitting the correlation time of fluctuations shown in Figure 3D with Eq. 4 at large wavenumbers (first row). The critical
wavenumber was obtained from the peak of the smooth spline interpolation of correlation time data shown in Figure 3D (second row). The peak wavenumber qpeak of
the structure factor S(q) shown in Figure 3C is shown on the third row. The correlation wavenumber, i.e., qcorr = 1/ξ, was obtained by fitting S(q) with Eq. 3 (fourth row).
Based on the scaling law of the correlation length ξ given by Eq. 5, the estimated distance from critical temperature shows strong dependence on the IMF order.

Original IMF1 IMF2 IMF3

Effective diffusion coefficient (10–8 cm s−1) 3.19 ± 0.36 4.43 ± 1.87 3.62 ± 1.46 7.19 ± 3.84
Critical wavenumber qc (cm

−1) 2043 ± 145 4,395 ± 743 3,603 ± 364 2,844 ± 170
S(q) peak qpeak (cm

−1) 3,264 ± 462 9,327 ± 742 4,765 ± 348 2,808 ± 129
Correlation wavenumber qcorr = 1/ξ (cm−1) 4,088 ± 653 16 ,566 ± 707 6,528 ± 326 3,352 ± 166
T − Tc (µK) 97 ± 24 883 ± 60 202 ± 16 70 ± 6
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Figure 2A1 shows an original image and its corresponding
power spectrum in the Fourier space (qx, qy) = qmin(mx,my), with
mx,my integers comprised between −Mw/2 andMw/2, whereMw

is the Fourier window size, and qmin = 2π/(MΔx) = 2π/W in which
W ≈ 1 mm is the side of the small field-of-view image (see
Figure 2A2). In general, the Fourier window size Mw is a
power of two. In this study, the Fourier window size Mw was
the same as the image size M = 1,024. The power spectrum has
azimuthal symmetry, as illustrated by the “ring” surrounding the
DC component at the center of Figure 2A2. Although all spectra
have symmetry, the azimuthal symmetry is not perfect for all
spectra. For some IMFs (see Figures 2C2–D2), the vertical and
horizontal anisotropy of the objects present in these IMFs leads to
a rounded square shape of the power spectra for some
wavenumbers. Due to the azimuthal symmetry of the power
spectra (see Figures 2A2–E2), only the azimuthal averages of the
power spectra versus the magnitude of the wavenumber q �������
q2x + q2y

√
= qmin

��������
m2

x +m2
y

√
were considered for the DDM

analysis (see the red continuous line insets in Figures
2A2–E2). The azimuthal average is calculated over thin rings
with nearly the same wave vector modulus q �

������
q2x + q2y

√
. Each

ring has a width of 1 unit in the discrete Fourier space. Since the
DC component of the power spectrum near q = 0 is orders of
magnitude larger than the rest of the power spectrum, and
because it does not contribute any valuable information to the
subsequent analysis, we removed it from the insets. The DC
component leakage into adjacent wavenumbers and significantly
affects the residual image’s power spectrum shown in Figure 2E2.
The wavenumber resolution in Fourier space is qmin = 2π/W ≈
62.8 cm−1, where W ≈ 1 mm is the side of the small field-of-view
image. At small wave vectors, the azimuthal averaging statistic is
relatively poor, but for large wavenumbers, the number of

independent samples in a single wavevector ring q �
������
q2x + q2y

√
= qmin

��������
m2

x +m2
y

√
increases proportionally to π ×m, in whichm is

the number of the channel which varies from 1 toMw/
�
2

√
, where

Mw is the window size of Fourier transform. Since our images are
square, m = mx = my. At the maximum wave vector
m ≈ Mw/

�
2

√
≈ 724, which results in over 2,000 statistically

independent samples for the respective value of the wavevector
q. The wavevector can be expressed either in Fourier space
integers 1 ≤ m ≤ Mw for an Mw-point Fourier transform or in
corresponding cm units by using the Fourier resolution formula
q = m × qmin.

3 RESULTS

Our approach to the multiscale investigation of thermal
fluctuations very near the critical point of SF6 was first to
separate spatial scales using a data-driven BEMD method and
then apply the DDM method to determine the structure factor
and the correlation time of fluctuations at each spatial scale.
Fourier-based methods rely on the data stationarity
assumption and cannot be applied to transient phenomena
(Hayes, 1996). However, our very short data set recorded near
the thermal quench that stepped through the critical
temperature most likely includes transient phenomena. A
possible workaround is the use of wavelets (Blanco et al.,
1998; Garcia-Perez et al., 2013; Sang, 2013) instead of the
Fourier basis. However, the wavelet-based analysis of transient
phenomena is strongly dependent on the selected mother
wavelet. Furthermore, the EMD method outperforms the
wavelet method for waveform reconstruction (Labate et al.,

FIGURE 2 | A small field of view original image (A1) was decomposed in three Intrinsic Mode Functions (IMFs) using the Bidimensional Empirical Mode
Decomposition (BEMD)method. The IMFs are shown in panels (B1–D1) together with the residual image (E1). TheM ×M pixels image produced the correspondingMw-
point Fourier images in the Fourier space wavenumbers (qx, qy) shown in (A2–E2) (we consideredM =Mw = 1,024). Each power spectrum shown in (A2–E2) has radial
symmetry as indicated by the round spatial patterns. As a result of the azimuthal symmetry of power spectra, only radial averages of power spectra versus the
magnitude of the wavenumber q �

�������
q2
x + q2

y

√
were used for DDM analysis, and they are shown with the continuous line as an inset in (A2–E2). The very large values of the

power spectrum near q = 0 (the DC component) were removed from the insets.
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2013). The EMD does not assume any basis functions; the
decomposition is data-driven and can be applied to transient,
non-linear, and non-stationary signals (Huang et al., 1998a;
Huang, 2005; Huang et al., 2009).

3.1 Dynamic Structure Factor From DDM
Method for the Original Images
Without repeating the details of the almost two decades old
Differential Dynamic Microscopy (DDM) method (see
Supplementary Section S5.1 for a brief description and
references (Cerbino and Trappe, 2008; Giavazzi et al., 2009)),
we only mention novel results based on this revolutionary
approach to the dynamic light scattering technique. The DDM
is a spectral, Fourier-based image analysis method. The two-
dimensional intensity images I( �r, t) are first normalized by the
average image intensity to account for light source intensity
fluctuations during the measurement, i.e,
i( �r, t) � I( �r, t)/I( �r, t) �r. The fundamental quantity in DDM is
the normalized image difference
δi( �r,Δt, t) � i( �r, t + Δt) − i( �r, t), where Δt is a delay time
between frames (Cerbino and Trappe, 2008). The advantage of
considering the image difference is a significant reduction in
static scattering coming from dust, scratches on the sample cell,
or other static imperfections of the setup (Kessler et al., 2020).

The DDM also uses a moving average of the power spectrum
of the fluctuating image δi( �q,Δt, t) � |FFT[δi( �r,Δt, t)]|2 over
different reference times t and the same delay Δt to reduce optical
noise. Such a moving average is called the image structure

function, i.e., Cm( �q,Δt) � δi( �q,Δt, t)t. The reason for the

temporal average is to increase “the statistical accuracy of the

data” (Cerbino et al., 2017). The number of reference times over
which the average is computed Navg is generally smaller than the
correlation time of fluctuations such that fast relaxation processes
are not averaged out. In practice, one uses a recursive selection
process in which we start with a high enough number of averaged
images to reduce the noise and obtain good statistics, e.g., Navg =
32. Once the correlation time of fluctuations is determined, one
can changeNavg and repeat the estimation of the correlation time.
By varying the delay time Δt during image fluctuation
calculations, one can extract the power spectrum both over the
wavenumbers q and elapsed time Δt between frames. The
dependence of the power spectrum on the elapsed time Δt
between frames contains information on the correlation time
of fluctuations. The two-dimensional image structure function
probes the sample dynamics in different directions in the �q plane.
Whenever the image structure function bears a circular
symmetry, the azimuthal averaging, i.e.,

Cm q,Δt( ) � Cm
�q,Δt( ) �q

is used to obtain the one-dimensional image structure function.
The one-dimensional image structure function Cm(q, Δt) “rises
until saturating when the images are totally decorrelated” as seen
in Figure 3A (Lu et al., 2012).

Examples of azimuthal averages of power spectra, such as
those shown with the continuous red line in Figures 2A2–E2
insets, versus the delay time Δt for fixed wavenumbers q are
shown in Figure 3A. The (one-dimensional) time-dependent
structure functions Cm(q, Δt) describes how the spectral power
changes with the delay time Δt between images for a fixed
wavenumber q, and it is given by (Cerbino and Trappe, 2008;
Giavazzi et al., 2009; Lu et al., 2012):

Cm q,Δt( ) � 2A q( ) 1 − G q,Δt( )[ ] + B q( ), (2)
where A(q) is an amplitude term that contains information about
the static scattering from the sample and the optical system’s
transfer function, B(q) is the background contribution to the
time-dependent structure functions, and G(q, Δt) is “equivalent”
(Lu et al., 2012) of the normalized ISF from the traditional
dynamic light scattering experiments (see Figure 3B). For
particular optical setups, such as Schlieren and Shadowgraph,
the analytical form of the optical transfer function T(q) is known
(see (Trainoff and Cannell, 2002; Croccolo et al., 2006; Cerbino
and Trappe, 2008; Giavazzi et al., 2009; Oprisan and Leilani
Payne, 2013; Croccolo et al., 2016a)).

The effect of DDMmoving average on the structure factor and
fluctuation correlation time. As mentioned above briefly, DDM
relies on the temporal moving average of power spectra to reduce
as much as possible the ubiquitous image noise (see (Vailati and
Giglio, 1998; Croccolo, 2006; Croccolo et al., 2006; Croccolo et al.,
2007; Cerbino and Vailati, 2009; Giavazzi et al., 2009; Vailati
et al., 2011; Ortiz de Zárate et al., 2014; Cerbino et al., 2015;
Croccolo et al., 2016a; Giavazzi et al., 2016a; Bataller et al., 2016;
Croccolo et al., 2016b; Giavazzi et al., 2016b; Cerbino et al., 2017)
and references therein) and to compute the structure factor and
correlation times over averaged fluctuation images. The number
of images over which denoising average is performed depends on
the particular conditions of each experiment. As mentioned
above, the general recommendations are (see (Vailati and
Giglio, 1998; Croccolo, 2006; Croccolo et al., 2006; Croccolo
et al., 2007; Cerbino and Vailati, 2009; Giavazzi et al., 2009;
Vailati et al., 2011; Ortiz de Zárate et al., 2014; Cerbino et al.,
2015; Croccolo et al., 2016a; Giavazzi et al., 2016a; Bataller et al.,
2016; Croccolo et al., 2016b; Giavazzi et al., 2016b; Cerbino et al.,
2017) and references therein) that the number of images averaged
needs to be small enough to avoid averaging out fast-changing
processes or completely de-correlating the images in a batch, and,
at the same time, the number of images in an averaging batch
must be large enough to provide good noise filtering. We based
our selection of the number of images in an averaging batch on
the delay time between frames Δt it takes for the time-dependent
structure functions Cm(q, Δt) to begin saturating. As shown in
Figure 3A, the time-dependent structure functions Cm(q, Δt)
starts saturating around 1–3 s, corresponding to 20–70
consecutive images. In other words, the correlation between
fluctuations becomes negligible after 20–70 successive images.
In this study, we performed the Navg = 32-image temporal
moving average of power spectra since it was on the lower
end of the above saturation range of time-dependent structure
functions Cm(q, Δt). Such a value for the number of images in an

Frontiers in Space Technologies | www.frontiersin.org June 2022 | Volume 3 | Article 8838996

Oprisan et al. SF6 Transport Properties in Microgravity

https://www.frontiersin.org/journals/space-technologies
www.frontiersin.org
https://www.frontiersin.org/journals/space-technologies#articles


averaging batch still captures short correlation times down to
1×10–2 ms while producing decent image denoising (see
Figure 3D). We found that a lower size of the moving average
did not change the amplitude factor A(q) fitting nor the
correlation time estimate (not shown). On the upper limit
side, a Navg = 64 images moving average batch could also
work, but that would be towards the upper limit of the
saturation time for the time-dependent structure functions
Cm(q, Δt) (see Figure 3A) and has the potential of filtering
out shorter saturation times. Additionally, such a large
averaging batch size leads to fewer data points at low
correlation times in Figure 3D and, therefore, a less precise
estimation of the effective diffusion coefficient D. Since time-
dependent structure functions Cm(q, Δt) were averaged over Navg

= 32 images, the image index and the corresponding recording
time reported on all figures referring to Cm(q, Δt) or any quantity
derived from it, such as the amplitude A(q), the ISF G(q, Δt), the

correlation time of fluctuations τ(q), and the diffusion coefficient
D, are for the first image in the batch.

DDM data correction to account for the optical transfer
function T(q). The amplitude A(q) = S(q) × T(q) from Eq. 2
contains information on both the structure factor S(q) and the
transfer function T(q) of the optical setup. As shown by Cerbino
and Vailati (Cerbino and Vailati, 2009), “in the limit of coherently
illuminated” optical field and “weakly scattering objects,” the
transfer function is T(q) � sin2(q2 zλ4π ), which has increasingly fast
oscillations as the wavevector q increases. As noted by Cerbino
and Vailati (Cerbino and Vailati, 2009), “in practice, for
sufficiently large wave vectors q, the function T(q) may lose its
oscillatory character and in some cases there is no need for data
correction.” According to Cerbino and Vailati (Cerbino and
Vailati, 2009), for wave vectors larger than the “crossover

wave vector” qcross � min π
���
2

ecylλ

√
, πLsensorzλ{ }, “there is no need for

data correction” due to the transfer function T(q). In our

FIGURE 3 | The time-dependent structure functionsCm(q, Δt) starts flattening around a delay of 1–3 s between successive images (A). The saturation delay time is
determined by the relaxation time of fluctuations and depends on the wavenumber (here, dimensionless wavenumbers q* = q/qmin were used). (B) The linear-log plot of
the Intermediate Scattering Function (ISF) represents the function G(q, Δt) in Eq. 2. (C) The amplitude A(q) from Eq. 2 is proportional to the structure factor S(q) for
wavenumbers larger than qcross = 850 cm−1. At large wavenumbers, the amplitude A(q) obeys the power-law A(q)∝ q−2 (see the continuous solid black line). Over
the range of wavenumbers where A(q) is proportional to S(q), Eq. 3 is a good fit for the experimental data (see thick dashed green line). (D) The correlation time of the
fluctuations determines the critical wavenumber qc and the effective diffusion coefficient D. At large wavenumbers, the correlation time can be approximated by Eq. 4
(see the continuous black line), which allows direct estimation of the effective diffusion coefficient D. The inflection point of the smooth spline interpolation of the
correlation time gives a reasonable estimate of the critical wavenumber qc (see the inflection of thick dashed green curve in panel (D)).
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experiment, the sample thickness is ecyl = 4.115 mm, the sensor
size Lsensor is given by sensor’s resolution Δx = 3.5 µm and the
numberM = 1,024 of pixels, i.e., Lsensor =Δx ×M = 3.584 mm. The
wavelength of the LED used was λ = 660 nm, and the estimated
distance z for the microscopic view images is the order of 1 mm.
The visualization distance z is measured between the sample and
the plane imaged onto the sensor (Croccolo, 2006). With the
above data, the crossover wavenumber due to sample thickness is
qcross ≈ 850 cm−1. Note that this estimation of the crossover wave
number qcross due to the sample’s thickness still holds for all
values of z up to 20 cm, which is well within the range of our
microscope setup. For wavenumbers q larger than the crossover
value qcross ≈ 850 cm−1, we used the amplitude A(q) and the
structure factor S(q) interchangeably. To be on the conservative
side, we only estimated the slope of the amplitude A(q) for
wavenumbers larger than qcross to ensure that there is no need
for T(q) correction (see Figure 3). Based on the above estimate of
the crossover wavenumber, the amplitude A(q) was also fitted
with Eq. 3 in the large wavenumber range where there is no need
for data correction (Cerbino and Vailati, 2009).

Another potential issue when estimating the slope and fitting
the amplitude A(q) with Eq. 3 is the temporal moving average
performed by DDM. In general, image averaging is equivalent to a
lowpass filtering that attenuates high (spatial) frequencies and
could change the slope of the structure factor or slightly shifts it
along the wavenumber axis. We checked that the slope of the
amplitude A(q) shown in Figure 3C with a denoising DDM
average ofNavg = 32 did not change compared to the slope of A(q)
for individual images. The variance for the slopes obtained
without averaging was larger than when averaging over
batches of Navg = 32 images.

The experimental structure factor S(q) obtained by fitting the
one-dimensional image structure function with Eq. 2 can be
approximated with

S q( ) � S0
1 + qξ( )n � S0

1 + q/qcorr( )n, (3)

where S0 is the structure factor value at very low (q → 0)
wavenumbers, ξ is the correlation distance of fluctuations,
qcorr = 1/ξ is the correlation wavenumber given in Table 1,
and n is a power-law exponent usually close to 2 for critical
fluctuations (see also Figure 3A in Ref. (Oprisan et al., 2012;
Oprisan et al., 2021a) for structure factors of equilibrium
fluctuations near the critical point in other systems). The
curve described in Eq. 3 is shown with a green dashed line in
Figure 3C on top of the amplitude A(q) experimental data.
Finally, we notice that the slope of the amplitude A(q) shown
with a continuous black line changes with the wavenumber
range considered. For example, near the peak of A(q), the
slope, i.e., the power-law exponent n from Eq. 3, approaches
zero, whereas, at large wavenumbers, it approaches −4. The
existence of multiple power-law exponents for the structure
factor was attributed to the fractal nature of the observed
dynamics using scattered light (Sorensen, 2001). One should
not give too much weight to data points at large wavenumbers

as they represent data at the lower end of CCD camera
resolution, which is around qmax = 2π/3.5 µm ≈
18 ,000 cm−1 in our experiment. Other factors that limit
the wavenumber range are poor signal-to-noise ratio,
inadequate sampling frequency, and recording duration.
For a more detailed analysis of different limiting factors,
see (Giavazzi et al., 2017).

The saturation of time-dependent structure functions Cm(q,
Δt) shown in Figure 3A and the dependence of the amplitude
A(q) on the wavenumber q shown in Figure 3C provide insight
into the characteristic relaxation time of the density fluctuations
(Oprisan et al., 2012). The corresponding ISF shown in Figure 3B
exhibits an exponential relaxation for delay times shorter than 3 s.
The slope of the ISF shown in Figure 3B gives the inverse of the
correlation time of fluctuations shown in Figure 3D. At large
wavenumbers, the log-log plot of correlation time is always linear
with a slope of −2 (see the continuous black line in Figure 3D).

Theoretically, the relaxation time τ of critical fluctuations near
critical temperature Tc should obey Kawasaki (Kawasaki, 1970)
formula:

τ−1 ≈ Dq2, (4)
when D is the thermal diffusivity coefficient. Such results are
exemplified in Figure 4B, where the dashed green curve
corresponds to a smooth spline interpolation of the correlation
time of fluctuations in the original image (see the solid black
square in Figure 4B) to highlight the inflection point at critical
wavenumber qc. In this case, the straight line with a slope of −2
(see the continuous white line in Figure 3) gives the effective
diffusion coefficient D.

3.2 Spatial Scales Separation Using BEMD
Density fluctuations near critical points have a wide range of sizes
limited only by the boundaries of the enclosing container
(Beysens, 1986; Beysens et al., 1987; Beysens and Garrabos,
2000; Onuki, 2002; Barmatz et al., 2007; Midya and Das,
2017). Critical density fluctuations near critical points show
fractal patterns (Guenoun et al., 1989; Schaefer et al., 1989;
Antoniou et al., 1998; Antoniou et al., 2000; Oprisan et al.,
2021a; Oprisan et al., 2021b). Nonequilibrium fluctuations can
also lead to fractal patterns (Vailati et al., 2011). The fractal
structures are usually described by a spectrum of fractal
dimensions, which are power-law exponents associated with
different spatial or temporal scales present in the data. How
would a fluctuating image near the critical point look if we could
break it into disjoint spatial scales, like decomposing white light
into narrow-band, monochromatic waves? We noticed in the
previous Section 3.1 that the amplitude A(q) factor in Eq. 2,
which coincides with the structure factor S(q) above a crossover
wavenumber that eliminates the need for optical transfer function
correction of the data, scales as A(q) ∝ q−2 (see Figure 3C). We
also noticed that the amplitude A(q) slope changes for different
wavenumber ranges. Could different power-law exponents
required over different wavenumber ranges reflect the
multifractal nature of critical fluctuations? What would such a
multiscale analysis over disjoint wavenumber ranges reveal about
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the behavior of the fluctuations’ correlation time? The DDM-
based results obtained in Section 3.1 from the original images
indicate that the correlation time decreases with the wavenumber
(see Figure 3D), i.e., the correlation time increases with the
characteristic size of fluctuations. What happens to the slope
of the structure factor over different spatial scales? What happens
to the critical wavenumber qc that marks the transition to a
different fluctuation regime? Where is the critical wavenumber qc
located on images that only capture fluctuation over a limited
wavenumber range? Do the scaling laws governing each spatial
scale change when decomposing fluctuations into narrow
wavenumber ranges? How are the relaxation times of
fluctuations at each spatial scale related to the dynamics of
fluctuations in the original image? We decomposed the
original images over disjoint wavenumber ranges using the
BEMD method to answer such questions. We then determined
the correlation time of fluctuations and critical wavenumbers qc
using DDM as described in Section 3.1.

We used BEMD to break the original image (Figure 2A1) into
three IMFs (Figures 2B1–D1) and a residual background
(Figure 2E1). We performed the data analysis described in the
previous subsection on all IMFs. To compare side-by-side the
structure factors of the original image and the three IMFs shown
in Figures 2A1–D1, we normalized each of them by their
respective maximum values and plotted all four curves in
Figure 4A. We notice that the amplitude factor A(q) of the
original image (solid black squares in Figure 4A), which is
proportional to the structure factor S(q) for wavenumbers
larger than qcross = 850 cm−1, shows a power-law behavior with
an exponent n close to −2 (see the yellow dashed line in
Figure 4A). The theory of critical fluctuations predicts a
power-law exponent equal to −2 (Beysens, 1986; Beysens and
Garrabos, 2000; Domb et al., 2001).

As the BEMD decomposes the original image into orthogonal
IMFs by separating the spatial scales of fluctuations, it only
retains spatial structures larger than a characteristic size starting
from the smallest (IMF1), then intermediate (IMF2) and large
(IMF3). This means that each IMF has both a lower and upper
boundary on the wavenumbers that it can capture. While there
is no set rule for defining the exact boundaries of a given IMF
order, we used the peak qpeak of the structure factor criterion,
i.e., the lower wavenumber for a given IMF is the peak of the
structure factor. The upper limit of the wavenumbers for a given
IMF order is the lower boundary of the precedent IMF order.
For example, qmaxIMF2 = qminIMF1. Specifically, IMF1 only
contains small-size objects from the original images, which
means that its corresponding wavenumbers will start around
the peak of the IMF1’s structure factor, which is qminIMF1 ≈
8,500 cm−1 and expand up to the larges wavenumbers captured
by the original images. IMF2 will only capture intermediate size
objects, which means the wavenumbers over which its results
are accurate cover qminIMF2 ≈ 5,000 cm−1 to qmaxIMF2 ≈ qminIMF1.
Ideally, if the IMFs are truly orthogonal decompositions of the
original image, there should be no leakage between them and,
therefore, the wavenumber ranges for each IMF should be
disjoint. In such an ideal case, we would expect that the
smallest wavenumber in IMF1 qminIMF1 will be close to the
largest wavenumber in IMF2 qmaxIMF2 and so on. Since we have
a bit of leakage between IMFs, the wavenumber ranges may
overlap, most likely due to image noise. The IMF3 will only
capture large-size fluctuations, which means the wavenumbers
over which its results are accurate cover qminIMF3 ≈ 3,000 cm−1

to qmaxIMF3 ≈ qminIMF2. We note that the range of wavenumbers
for IMF3 is well above the crossover wavenumber qcross =
850 cm−1 determined with the criterion from (Cerbino and
Vailati, 2009).

FIGURE 4 | Normalized structure factor for the original (solid black rectangles), IMF1 (solid red circles), IMF2 (solid blue triangles), and IMF3 (solid inverted green
triangles) (A). The structure factors were fitted with the general Eq. 3 (except for IMF3, which did not meet the most conservative criterion q > qcross = 4,900 cm−1) and
only shown for the original image with a dashed green curve superimposed on the solid black squares (A). The corresponding dashed vertical lines mark the peak
wavenumber for the original and each IMF image (except IMF3). The wavenumber ranges for each IMF are marked with correspondingly labeled solid rectangles
along the wavenumber axis. The correlation time of density fluctuations (B) shows that each IMF has a maximum correlation time (marked by the corresponding points
B1-B3). The correlation times over the range of wavenumbers appropriate for each IMF overlap with the correlation time for the original image (solid black squares). The
green dashed curved line superimposed on the solid black squares represents a smooth spline interpolation of the data to highlight the inflection point that determines
the critical wavenumber qc. At wavenumbers outside the range of the IMF, the correlation time diverges from the theoretical formula (see the green solid inverted triangles
marked outside the IMF3 wavenumber domain).

Frontiers in Space Technologies | www.frontiersin.org June 2022 | Volume 3 | Article 8838999

Oprisan et al. SF6 Transport Properties in Microgravity

https://www.frontiersin.org/journals/space-technologies
www.frontiersin.org
https://www.frontiersin.org/journals/space-technologies#articles


Suppose we retain only the wavenumbers larger than the peak
location of IMF1 in the structure factor of the original image (see
point A1 in Figure 4A). In that case, the structure factor of the
original image is determined mainly by the structure factor of
IMF1 and IMF2. This is because, as seen in Figure 4A, for
wavenumbers larger than those indicated by the peak A1 of IMF1,
the structure factor of IMF2 is one order of magnitude smaller
than IMF1, and IMF3 is at least three orders of magnitude smaller
than IMF1. At the same time, the slope of the original image’s
structure factor is intermediate between the slope of IMF1, which
is on average −2.1 ± 0.6, and the slope of IMF2, which is on
average −4.3 ± 0.3. The solid red rectangle marks the
wavenumber range for IMF1 on the wavenumber axis in
Figure 4A. The solid blue rectangle marks the corresponding
wavenumber range for IMF2 on the wavenumber axis in
Figure 4A.

Finally, at small wavenumbers, between the peak of the IMF2
(blue vertical dashed line in Figure 4A) and IMF3 (green dashed
vertical line in Figure 4A), the structure factor of the original
image lies between points A2 and A3 in Figure 4A. The structure
factor of the original image is determined mainly by IMF2 and
IMF3 as the structure factor for IMF1 is more than one order of
magnitude smaller than the other two. Since the slope of the
original image’s structure factor swings from positive (at low
wavenumbers) to negative (at higher wavenumbers), it is a mix of
IMF2, which has a positive slope, and IMF3, which has a very
abrupt negative slope of −5.6 ± 1.1. The fact that the original
image’s negative slope of the structure factor is not as steep as for
IMF3 shows that the positive slope of IMF2 contributed
significantly to the original image’s structure factor. The peak
wavenumber decreases for successive IMFs, as shown in
Figure 4A.

A similar picture emerges when analyzing the correlation time
of fluctuation in the original image and the corresponding IMFs
(see Figure 4B). We did not normalize the correlation times but
retained the actual values in seconds as obtained from the
intermediate scattering function (see Figure 3B) with
Supplementary Appendix SEq. 7. We repeated the correlation
time fitting for all IMFs following the procedure detailed in the
previous section and determined the corresponding D and qc. As
we notice from Figure 4B, the peak location of the correlation
time (qc) for IMF1 (see point B1 in Figure 4B) determines the
range of wavenumbers over which it overlaps with the correlation
time of the original image (see the red rectangle marked IMF1 on
the wavenumber axis in Figure 4B). Similarly, the IMF2
correlation time starts overlapping the correlation time of the
original image at the onset of intermediate-range wavenumber
(point B2 in Figure 4B). Finally, the IMF3 wavenumber range
extends from low wavenumbers marked by point B3 in
Figure 4B, and the overlap does not extend farther than B1.
At large wavenumbers, the correlation time for IMF3 flattens out
(solid green inverted triangles in Figure 4B), suggesting that we
reached the limit of maximum acceptable wavenumber for the
respective IMF. Similar behavior can be observed for IMF2 (blue
solid upright triangles in Figure 4B). However, as seen in
Figure 4B, the flattening out of the correlation time of IMF3
(solid inverted triangles in Figure 4B) is determined by the fact

that the results past qmaxIMF3 are not accurate since there is no
information in IMF3 regarding objects at such wavenumbers.

In addition, the correlation time of fluctuations (see
Figure 4B) shows that the maximum correlation time τmax

increases with IMF’s order. In other words, large wavenumber
fluctuations, i.e., small physical size fluctuations, have short
correlation times. For example, the smallest spatial scale of
IMF1 has a maximum correlation time of 0.2 s, the IMF2
reaches 2 s, and the largest spatial scale of IMF3 reaches a
maximum correlation time of 10 s (see Figure 4B). This
relationship between the maximum correlation time and the
physical size of the fluctuations confirms the fractal nature of
fluctuations (see also (Oprisan et al., 2021a)). Most of the focus of
scaling laws near criticality was on spatial criticality, i.e., deriving
the universal laws for correlation length of fluctuations
(Moldover et al., 1979; Beysens, 1986; Beysens et al., 1990;
Wilkinson et al., 1998; Barmatz et al., 2007). This study shows
that near the critical point, the correlation time of fluctuations
also separates in multiple domains, similar to the spatial
separation of fluctuations.

Once we fit the correlation time of fluctuations (Figure 4B)
with Eq. 4, one gets the effective diffusion coefficient D shown in
Figure 5A. The critical wavenumber qc is the inflection point of
the correlation time (see the points B1, B2, and B3 in Figure 4B),
and they are shown in Figure 5B. Based on the examples shown
in Figure 4B, we expect that the correlation time slopes for the
original images and their IMFs are almost identical within the
experimental variability. Since the slopes of the correlation times
at large wavenumber are virtually identical, we anticipate from
Figure 4B that the effective diffusion coefficient is the same
across the original images and all IMFs. Indeed, as we see from
Figure 5A, the effective diffusion coefficients computer for each
batch of Navg = 32 images are very similar within experimental
errors. We also notice from Figure 5A example and Table 1 that
the effective diffusion coefficient variance increases with the
IMF’s order.

The continuous black line that fits the effective diffusion
coefficients for the original image in Figure 5A is given by
equation D = (3.66 ± 0.06) 10–8 + (−5.9 ± 0.6) 10–11 × t (in
cm s−1), where t is the temporal variable shown in Figure 5. The
above linear fit’s statistics show a χ2 = 5.47 × 10–18 and an adjusted
coefficient of determination R2 = 0.588. Given the significant data
variance of the average diffusion coefficient D (see Table 1), even
for the original image, the slight negative slope of
−1.18×10–10 cm2 s−2 might not be statistically significant. To
determine that the effective diffusion coefficient decreases over
time, as the fitting line for the original images in Figure 5A
suggests, future studies need to include more experimental data.

We also extracted the value of the critical wavenumber qc,
i.e., the wavenumber for which the correlation time reached the
peak in Figure 4B and plotted it in Figure 5B. As expected, the
critical wavenumber decreases with the IMF’s order. The
horizontal lines in Figure 5B show the average for the
corresponding IMFs.

To conclude, using the BEMD decomposition over a narrow
wavenumber range, we obtained structure factors with a single
power-law exponent, e.g., IMF1 exponent is −2.1 ± 0.6, IMF2
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exponent is −4.3 ± 0.3, and IMF3 exponent is −5.6 ± 1.1. We
previously reported that depending on the wavenumber range,
one gets different power-law exponents for the structure factor in
the original image. Using BEMD we can trace those exponents to
different IMFs.

3.3 Critical Temperature Estimation From
the Correlation Length
To find the values of the correlation length wavenumber qcorr = 1/ξ,
we fitted each structure factor with Eq. 3. Although the correlation
length wavenumber qcorr seems to change over time slightly (data
not shown), we estimated its average value and standard deviation
in Table 1. Using qcorr = (4,088 ± 653) cm−1 from the original
image, we found that the corresponding correlation length ξ = 1/
qcorr ≈ (2.4 ± 0.2) µm. This means qc × ξ ≤ 1, which shows that we
are in the hydrodynamic regime (Onuki, 2002), which justifies the
use of the Kawasaki (Kawasaki, 1970) formula shown in Eq. 4 to
determine the effective diffusion coefficient.

The experimentally estimated correlation length of ξ = 1/qcorr
≈ (2.4 ± 0.2) µm allowed us to determine the corresponding
temperature distance from Tc by using the scaling law for
correlation length (Domb et al., 2001):

ξ � ξ+
T − Tc

Tc
( )−]

, (5)

where ξ+ = 1.892×10–10 m, Tc = 318.733 K and the universal
exponent is ] = 0.6304 (Moldover et al., 1979; Lecoutre et al.,
2009). Our computations show that this 0.2 mK temperature
quench stepped through Tc, which seems to be right in the middle
of the quench with the first image in the 1922 series 73–121 µK
above Tc.

If we assume that the same scaling law given by Eq. 5 applies to
the IMFs, we can estimate their “temperatures.” The range of
temperatures is as follows: IMF1 823–943 µK above Tc, IMF2

186–217 µK above Tc, and for IMF3 64–75 µK above Tc (see
Table 1. Because the BEMD breaks the original image into
different wavenumber ranges, the “temperature” of the first
IMF will always be larger than the second, and so on.

4 CONCLUSION

In this study, we used DECLIC data from the ISS to study critical
density fluctuation in SF6 under microgravity conditions extremely
close to critical temperature Tc, i.e., within 0.2 mK (see Figure 1)
(Marcout et al., 1994; Lecoutre et al., 2009). The advantage of
DECLIC data is the 1,024 × 1,space mission, and contributed to
writing024-pixel high-resolution image recordings with a small
field of view of 1 × 1 mm. To extract thermophysical properties,
such as the effective diffusion coefficient, from recorded images of
critical density fluctuations, we used the Differential Dynamic
Microscopy (DDM) method (see Supplementary Appendix
S5.1 and (Oprisan et al., 2012; Oprisan et al., 2021a)). Given
that the thermal quench of 0.2 mK stepped through Tc and that we
only investigate a relatively short set of images covering
approximately 80 s of data, it is expected that many of the
observed phenomena are transitory. To our knowledge, one of
the best approaches to investigating transitory phenomena is the
Empirical Mode Decomposition (EMD), which is a data-driven
and fully unsupervised technique suitable for the analysis of locally
nonlinear and nonstationary data (see Supplementary Section
S5.2 and (Oprisan et al., 2021a)). We used a Bidimensional
Empirical Mode Decomposition (BEMD) algorithm to separate
the contribution to thermophysical properties of the fluid of
different spatial scales of density fluctuations (see Figure 2).
Once the original images are decomposed into orthogonal
Intrinsic Mode Functions (IMFs) using BEMD, we extracted
thermophysical properties from each IMF (see Figure 3). In
this study, we only decomposed the original images in three

FIGURE 5 | The experimental effective diffusion coefficients obtained usingEq. 4 for the original (solid black squares) and the first three IMFs show a slight slope (A).
The data fitting variance increases with IMF’s order, as seen from Table 1. The critical wavenumber qc decreases with the IMF’s order and reflects the characteristic
length of larger and larger structures separated by BEMD from the original image (B).
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IMFs and a final residual, which we did not include in the data
analysis as it gives the correction for nonuniform illumination of
the original image.

Due to the high resolution of the recorded images, it was possible
to show that the structure factor has a well-defined range of
wavenumbers over which it is valid (see Figure 4). The first order,
IMF1, retains the smallest objects from the original image and has its
natural upper limit of wavenumbers at the largest possible value qmax

= 2π/3.5 µm ≈ 18 ,000 cm−1. We set the cutoff wavenumber for IMF1
at the peak of the structure factor qminIMF1. Similarly, the range of the
wavenumbers covered by IMF2 has an upper limit qmaxIMF2 =
qminIMF1 and a lower limit qminIMF2 determined by the peak of
IMF2. Breaking the wavenumbers in disjoint intervals
corresponding to each IMF allows us to identify the contribution
of each spatial scale of fluctuation to the structure factor of the original
image. We were able to identify multifractal exponents associated
with the power-laws followed by structure factors at different spatial
scales using the BEMD framework. Although we have known for a
long time that the structure factor does not have a uniques power-law
exponents but rather a whole spectrum of exponents for different
ranges of wavenumbers, this is the first systematic study to reveal the
multiscale components of the structure factor near Tc. We found that
the linear portion of the IMF1 structure factor (in log-log coordinates)
has an average slope of −2.1 ± 0.6, increases to −4.3 ± 0.3 for IMF2,
and reaches −5.6 ± 1.1 for IMF3.

We found that all ISF for IMFs exhibit an exponential relaxation
with a characteristic time. The correlation time of fluctuations has
remarkably similar shapes with the distinction that they peak at
durations that increase with the IMF orders.

From Figure 5A, the average value of the experimentally
determined effective diffusion coefficients of the original images
and their IMFs is D = (3.19 ± 0.36) 10–8 cm2 s−1. This
experimental value from high-resolution images recorded
with DECLIC matches our previous results (Oprisan et al.,
2012; Oprisan et al., 2021a). As we notice from Table 1, the
effective diffusion coefficients of the original image and all its
IMFs are statistically identical. The effective diffusion coefficient
values for the original images seem to support a linear fitting
with equation D = (3.66 ± 0.06) 10–8 + (−1.18 ± 0.13) 10–10 × t
(in cm s−1) with a χ2 = 5.47 × 10–18 and an adjusted coefficient of
determination R2 = 0.588. The very small slope of (−1.18 ± 0.13)
10–10 cm2 s−2 of the effective diffusion coefficient versus time
may not be statistically significant given the large standard
deviation of the data shown in Table 1. As a result, more

experimental data are needed in order to establish with
certainty any temporal dependence of the effective diffusion
coefficient during the quench through Tc.
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