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Price Variance in Hybrid-LCA Leads
to Significant Uncertainty in Carbon
Footprints
Arthur Jakobs*, Simon Schulte and Stefan Pauliuk

Faculty of Environment and Natural Resources, Industrial Ecology Freiburg, University of Freiburg, Freiburg, Germany

Hybrid Life Cycle Assessment (HLCA) methods attempt to address the limitations

regarding process coverage and resolution of the more traditional Process- and

Input-Output Life Cycle Assessments (PLCA, IOLCA). Due to the use of different units,

HLCA methods rely on commodity price information to convert the physical units used

in process inventories to the monetary units commonly used in Input-Output models.

However, prices for the same commodity can vary significantly between different supply

chains, or even between various levels in the same supply chain. The resulting commodity

price variance in turn leads to added uncertainty in the hybrid environmental footprint. In

this paper we take international trading statistics from BACI/UN-COMTRADE to estimate

the variance of commodity prices, and use these in an integrated HLCA model of the

process database ecoinvent with the EE-MRIO database EXIOBASE. We show that

geographical aggregation of PLCA processes is a significant driver in the price variance

of their reference products. We analyse the effect of price variance on process carbon

footprint intensities (CFIs) and find that the CFIs of hybridised processes show a median

increase of 6–17% due to hybridisation, for two different double counting scenarios, and

a median uncertainty of −2 to +4% due to price variance. Furthermore, we illustrate the

effect of price variance on the carbon footprint uncertainty in a HLCA study of Swiss

household consumption. Although the relative footprint increase due to hybridisation is

small to moderate with 8–14% for two different double counting correction strategies,

the uncertainty due to price variability of this contribution to the footprint is very high,

with 95% confidence intervals of (−28, +90%) and (−23, +68%) relative to the median.

The magnitude and high positive skewness of the uncertainty highlights the importance

of taking price variance into account when performing hybrid LCA.

Keywords: LCA, environmentally extended input-output analysis, hybrid-LCA, uncertainty, statistics,

environmental footprint, trade statistics

1. INTRODUCTION

Both Process- and Input-Output Life Cycle Assessment (PLCA, IOLCA) are common tools to assess
the environmental burdens of the local, regional, or global economy (Crawford et al., 2018, and
references therein). While PLCA holds the promise of highly detailed assessments, the limited data
availability at this level of detail inevitably leads to gaps in the supply chains, and consequently to an
underestimation of upstream impacts, also called the truncation error (Suh et al., 2004; Crawford
et al., 2018; Ward et al., 2018). IOLCA on the other hand offers a complete supply chain model,
however, it lacks the level of detail of PLCA studies.
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Hybrid Life Cycle Assessment (HLCA) is considered as a way
to mitigate the truncation errors in traditional PLCA, either by
completing the system boundary through the use of IO data
(Treloar et al., 2000; Lenzen, 2001; Suh, 2004; Suh et al., 2004;
Suh and Huppes, 2005), or to improve the precision of IOLCA
studies (Treloar, 1997; Lenzen and Crawford, 2009; Crawford
et al., 2017). Yet in spite of the potential improvements it has to
offer over PLCA and IOLCA, HLCA has yet to see a major uptake
in mainstream LCA practice. This is often attributed to the
highly manual and time consuming process of linking process-
and input-output data. In scientific literature, however, HLCA
is becoming more commonly a tool to assess environmental
footprints of consumption and services (Larsen and Hertwich,
2009; Lin et al., 2013), as for example the effort to promote local
sustainability. That is, sustainability on a city or regional level,
requires higher detail than the average national input-output
tables can provide (Larsen and Hertwich, 2009). On the other
hand, the requirement of higher detail assessments also leads to
the uptake of PLCA for consumption-based accounting (Kalbar
et al., 2016; Froemelt et al., 2018; Sala and Castellani, 2019). This
underlines the need for streamlined and automated hybridisation
methods and tools. As such, multiple projects have been working
on automating the compilation of hybrid databases (Crawford
et al., 2017; Yu and Wiedmann, 2018; Agez et al., 2019; Stephan
et al., 2019) in order to enhance the uptake of hybrid LCA.

Although consensus seems to exist in literature on the
shortcomings of both PLCA and IOLCA as tools to assess the
environmental impacts of product systems, the use of IO data
to expand the system boundary of PLCA and fill in the data
gaps of a typical Process Life Cycle Inventory is not completely
undisputed. Some authors argue that the inclusion of aggregated
IO data can lead to less accurate results due to the introduction
of aggregation errors with the IO data (Yang et al., 2017).
Others argue that the aggregation error introduced with the
inclusion of IO data is smaller than the truncation error of PLCA
alone (Pomponi and Lenzen, 2018). Estimating the magnitude
of truncation error in PLCA studies remains a topic of active
research (Junnila, 2006; Majeau-Bettez et al., 2011; Ward et al.,
2018; Perkins and Suh, 2019), which is a natural consequence
of the lack of an accurate and complete system description or
“true” environmental footprints. Hence, in practice, hybrid LCA
or IOLCA are being used as complete system descriptions to
estimate the magnitude of the truncation error of PLCA systems
(Ward et al., 2018, and references therein).

More recently Perkins and Suh (2019) framed the discussion
on the “correctness” of HLCA vs. PLCA as an accuracy vs.
precision debate: PLCA providing high levels of “precision”
with the high detail LCI data, but lacking “accuracy” due to
truncation errors. They argue that while HLCA can improve
the accuracy through the inclusion of IO data, this leads to
a lower, albeit reasonable, level of precision due to the higher
uncertainty within the IO data sets (Majeau-Bettez et al., 2011).
Using a case study of a jacket, based on a study published by the
Mistra Future Fashion Consortium (Roos and Zamani, 2015),
they show that the inclusion of IO data increases the mean life
cycle greenhouse gas (GHG) emissions by 38%, while the relative
standard deviation of the results only increases by 3–4%.

Various methods exist for the hybridisation of process- and
input-output data which each have their pros and cons (Islam
et al., 2016; Crawford et al., 2018). However, one aspect which
current implementations all have in common, is their reliance
on product- (or service-) price information to deal with unit
conversion between the physical units of PLCA databases and
the monetary units in IO tables. We note that although physical
input-outputmodels are being advocated and developed (Merciai
and Schmidt, 2018; Bruckner et al., 2019; Towa et al., 2020),
current physical models either do not offer a complete sectoral
coverage (Bruckner et al., 2019) or rely on PLCA data to
determine sectoral input structures (Merciai and Schmidt, 2018),
making them unsuitable for a complete hybrid database covering
global supply chains.

In their implementation of an automated system-wide
hybridisation, Yu and Wiedmann (2018) investigate the impact
of the uncertainty of commodity prices. Assuming, for each
process, a normal distribution with a coefficient of variation
(CoV) of 30%, they find that the per process carbon footprint
intensity (CFI) varies between −31 and +33%, with an
average relative uncertainty range of −4.7–+5.1%, and a
small variation between the stricter and the less strict double
counting correction strategies they applied. These price variance
induced uncertainties are, however, significantly smaller than
the estimated truncation error corrections themselves, with the
hybrid CFI’s being 21–32% higher than their corresponding
PLCA counterparts.

In practice, commodity prices are subject to a wide range
of factors and depend strongly on the buyer-seller relationship.
Market dynamics may also lead to price variation throughout a
given calendar year, which is the temporal resolution of input-
output data. In specific case studies such as the one from Perkins
and Suh (2019), one might assume that the practitioner may find
reasonable price range estimates for the most important products
from processes that are complemented with input-output data.
Although the contribution of processes to the overall footprint
will likely decrease with each layer of the supply chain, the
number of processes that are hybridised in each consecutive layer
will likely increase. This means that reliable price ranges are
required for all processes in the PLCA database that will take
inputs from the input-output table.

Yu and Wiedmann (2018) point out that reliable price
information is crucial in hybrid LCA, but that obtaining prices
for all reference products in an entire LCA database is an
enormously time consuming task. And while they have shown
that a theoretical price variance has indeed a significant impact on
the footprints of individual processes, the question of how large
this uncertainty is in reality remains unresolved. Therefore, this
paper takes a statistical approach to investigate the magnitude
of this problem, using data on trade flows from the BACI
trade database (Gaulier and Zignago, 2010) to model price
distributions for the reference products of LCA processes. We
first analyse the statistical uncertainty on the process level,
before using a consumption basket to show the effect of price
uncertainty on a consumption footprint. For this we use the
PLCA part of the model of Swiss household consumption
of Froemelt et al. (2018). This model is based on the Swiss
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household consumption survey (HBS 2012–2014; Bundesamt für
Statistik, 2013) and the process life cycle inventory ecoinvent
(Steubing et al., 2016; Wernet et al., 2016). For the hybrid
model we use the open source hybridisation package pyLCAIO
(Agez et al., 2020) to create a complete hybrid model of
ecoinvent 3.5 and the input output database EXIOBASE v3.6 year
2012 in a product-by-product industry-technology construct
(Stadler et al., 2018).

This paper is structured as follows: In section 2, we
first discuss the hybrid LCA model (section 2.1) and the
influence of prices on the hybrid model (section 2.2). We
then introduce the BACI trade data (section 2.3), and the
mapping of ecoinvent process reference products to trade
flows (section 2.3.1). While not all relevant ecoinvent reference
products/services are captured in the BACI trade data, we
use proxy data to estimate the price uncertainty which is
described in section 2.4. The Swiss household consumption
data is introduced in section 2.5 and the Monte Carlo
simulation process in section 2.6. In section 3, the results of the
Monte Carlo simulations are presented before discussing them
in section 4.

2. MATERIALS AND METHODS

2.1. Hybrid Model
Various hybridisation methods have been proposed and applied
in literature, and can be categorised into four different types:
Tiered-, Path Exchange-, Matrix Augmentation-, and Integrated
hybrid (Crawford et al., 2018, and references therein). Crawford
et al. (2018) conclude that only the Path Exchange and Integrated
hybrid have a rigorous mathematical framework in place, and
therefore provide the most comprehensive approach for the
hybridisation of process- and input-output data. Both of these
methods have seen efforts to streamline and automate the
hybridisation of process- and input-output data in recent years
(Bontinck et al., 2017; Crawford et al., 2017; Yu and Wiedmann,
2018; Stephan et al., 2019; Agez et al., 2020). So far the authors
are aware of only two studies that hybridised a complete
process database with a complete input-output database: the
hybridisation of the Australian Life Cycle Database1 with data
from the Australian Industrial Ecology Virtual Laboratory2

(Yu and Wiedmann, 2018), and the hybridisation of the
ecoinvent life cycle inventory database v3.5 (Steubing et al.,
2016; Wernet et al., 2016) with the multi-regional input-output
dataset EXIOBASE 3 (Stadler et al., 2018; Agez et al., 2020). The
mathematical framework used by both of these efforts is given by
Equation (1):

qh =
(

Blca Bio
)

[

I −

(

Alca Cd

Cu Aio

)]−1 (

ylca

yio

)

, (1)

where:

1http://www.auslci.com.au
2http://ielab.info

qh Vector of total environmental burden associated with

the final demand vector
( ylca

yio

)

and has a dimensions

m× 1;

Blca Matrix of m environmental exchanges for the nlca

processes having dimensionsm× nlca;
Bio Matrix of m environmental exchanges for the nio

industry categories with dimensionsm× nio;

I Identitymatrix with dimension (nlca+nio)×(nlca+nio);

Alca LCA technologymatrix, note however that in Equation
(1) we have implied that Alca is given in the input-
output convention where each column gives the
requirements in positive units for the production of
the 1 unit of the reference product, which is implied
but does not show on the diagonal as is does in the
standard LCA convention (Heijungs and Suh, 2002).
It has dimensions nlca × nlca;

Aio Input-output technology coefficient matrix and has
dimensions nio × nio;

Cu Upstream cut-off matrix linking the LCA processes
with input-output sectors. Dimension nio × nlca;

Cd Downstream cut-off matrix linking the IO sectors with
LCA processes. It has dimensions nlca × nio;

ylca Final demand for products or services from processes
with dimensions nlca × 1;

yio Final demand for commodities or services from the IO
sectors with dimensions nio × 1.

It is often argued that the effect of Cd on the result of the
hybrid analysis is minimal while requiring a significant effort
to determine and therefore excluded by many authors using the
integrated hybrid method (Crawford et al., 2018). However, Suh
(2006) argues in a reply to Peters and Hertwich (2006) that
even though the effect of Cd on the final footprints will be very
small, there are cases where the effect would be significant and
Cd should not be disregarded a priori. We note that both Yu and
Wiedmann (2018), Agez et al. (2020) do not include Cd and for
this reason refer to their method as a tiered hybrid as opposed to
the interconnected and balanced system proposed by Suh (2004).
Following the classification of Crawford et al. (2018), we use the
term “integrated hybrid” as a description of the mathematical
framework in this work.

One of the main challenges in the hybridisation of PLCA
and IO data is the issue of double counting inputs in the
supply chain (Lenzen, 2009; Crawford et al., 2018; Agez et al.,
2019). That is, if inputs into a process’ supply chain are already
accounted for in the process description, these should not be
included “again” from the IO data. The Path Exchange method
forgoes this problem by “disaggregating” the IO matrix into a
series of mutually exclusive nodes by means of a structural path
analysis and then replacing individual nodes of these supply
chains with product specific process data (Treloar, 1997; Lenzen
and Crawford, 2009; Crawford et al., 2017). Agez et al. (2019)
discuss the issue of double counting in the integrated hybrid
framework and the different existing strategies to deal with
them. Moreover, they propose a method to correct for double
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counting that relies only on the practitioner’s general knowledge
of the process database. They dub this the “similar technological
attributes method” (STAM).

In this work we build upon the open source hybridisation
package pyLCAIO3 published by Agez et al. (2020), which is an
implementation of the integrated hybrid for the ecoinvent and
EXIOBASE databases, applying either the STAM or the “binary”
double counting correction strategy. The upstream cut-offmatrix
is calculated according to:

Cu
= Corr ◦ [Aio (H ◦ Geo) 5̂]. (2)

Here, Corr stands for the double counting correction strategy
being applied (either STAM or binary), Aio is the commodity-
commodity multi-regional technology coefficient matrix,H is the
concordance matrix matching the processes to the commodity
groups in the MRIO database, Geo is a region concordance
matrix handling the disparity in geographical resolution between
the two databases, 5̂ is the “diagonalised” vector of prices
for reference products in the process database, and ◦ is
the Hadamard or “element-wise” product. For further details
regarding the construction of H, Geo, or the STAM or binary
double counting correction method, we refer the reader to Agez
et al. (2020).

2.2. Product Price Variability
Due to the use of different units in process life cycle inventories
(physical units) and input-output tables or their underlying
supply and use tables (monetary units), linking process data to
IO tables relies on a unit conversion that represents the average
price of the commodities in a given region. As we can see in
Equation (2), the elements of the cut-off matrix in the column
of a given process, and with that its direct requirements from the
IO sectors, are directly proportional to the price of the process’
reference product. However, these prices will vary depending on
the specific buyer-seller relations, such as that a customer placing
a large order is likely to pay less per unit or per volume than one
placing a smaller order.

Reference product prices in ecoinvent activities should be
regarded as an estimate for the basic price of the commodity,
that is the actual cost of the production including labour
and profit, or put differently, the purchaser price minus
trade margins, transport costs, taxes, and or subsidies. These
prices are collected and/or estimated from various sources and
consecutively “balanced” in an iterative process such that the sum
of an activity’s inputs never exceeds the value of the activity’s
output, resulting in a “minimum price” estimate (Moreno Ruiz
et al., 2016). We note that while this last step ensures a minimal
basic consistency, value added and expenses for waste treatment
are not included in this calculation which will likely lead to an
underestimation of these prices.

The main purpose of price information in ecoinvent is that of
economic allocation, meaning that commodity prices have direct
influence on the allocation results and, consequently, the impact
results. Although not all co-production processes use economic
allocation, the high level interconnectivity means that a change

3https://github.com/MaximeAgez/pylcaio

in the price of one product will influence the price and supply
chain impacts of many other products.

Furthermore, even though many prices have to be estimated
from proxy data or via the iterative process described above
(Moreno Ruiz et al., 2016), prices are not reported with ranges or
uncertainties. Given the many different trade relations covered
for each activity, particular those activities representing the
production of a product in large aggregate regions or even
globally, the actual price variability is likely very large. Of
course the magnitude of the price variability also depends on
the volatility of the commodity, with certain products being
subject to very dynamic markets. Table 1 provides an overview
of the number of processes in ecoinvent for which price data are
available as well as the geographic resolution of processes.

2.3. BACI Trade Data
In this paper we aim to capture realistic price distributions based
on commodity trade data. In particular, we use the BACI4 trade
data base version HS12 2020 1 for the year 2012, which provides
bilateral trade data on 5,199 commodities and 221 countries
(Gaulier and Zignago, 2010). BACI is based on the United
Nations (UN) Comtrade Database5 and offers a harmonised data
set in which discrepancies in the raw data between exporter and
importer reports are reconciled. The products are defined in the
Harmonised System (HS) nomenclature, at the six digit level. The
BACI trade flows are reported in Free Onboard (FOB) values,
for which the Cost, Insurance, Freight (CIF) values declared by
the importing country have been adjusted to reconcile them with
their mirror flows reported by the exporting country. All flows
are, crucially, also provided in the physical units of metric-tons,
see Gaulier and Zignago (2010) for details on the conversion
from other units to metric-tons. Most importantly, the reports
of physical flows allow us to obtain an average price for the trade
flows of a given commodity between two countries. This average
price is calculated by dividing the monetary flow value by the
physical amount and then converted from USD to Euro using
the annual average exchange rate for 2012 of 0.78 Euro/USD,
obtained from Eurostat6.

2.3.1. Mapping BACI Flows to Ecoinvent Processes
In a first step to link ecoinvent products to BACI trade flows
we use the concordance tables available at the UN statistics
division7 to create a mapping between the HS12 BACI data and
the ecoinvent reference products of each process which are given
in the “central product classification” system, version CPC2.1.
In order to avoid introducing any more uncertainty, we only
consider ecoinvent products which are quantified in “kg” and that
have a CPC2.1 code with at least the “class” defined (four digits).
We then map the ecoinvent regions, including all unique “rest of
world” (RoW) areas, to the 221 countries present in BACI. Both
concordances are available in the github repository linked at the
end of this document.

4http://www.cepii.fr/CEPII/en/bdd_modele/presentation.asp?id=37
5https://comtrade.un.org/
6https://ec.europa.eu/eurostat/databrowser/bookmark/bc107428-d077-4a9a-

86a5-a4f045cf63e9?lang=en (accessed November 27, 2020).
7https://unstats.un.org/unsd/classifications/econ/
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FIGURE 1 | The distribution of the number of BACI (HS12) commodities matched to the reference products of ecoinvent activities (A). The vertical red line shows the

median at four commodities per reference product. (B) Shows the distribution of the ratio of ecoinvent prices 5ei and the median- (5̃BACI) and mean (5̄BACI) price

respectively from the BACI volume weighted price distribution 5BACI. The horizontal lines in the violins indicated the 2.5, 16, 50, 84, and 97.5% quantiles. The long

dashed horizontal line shows a ratio of 1. The number of reference products (n = 4,480) is smaller than the number of activities/reference products that have a BACI

price (n = 5,624) because not all of these processes have an ecoinvent price.

To obtain a price distribution for the reference product
of an ecoinvent process, we use the volume weighted export
price distribution of mapped commodities from all countries
within the ecoinvent region. We note that while this excludes
domestic trade flows (BACI only covers international trade), the
assumption is that the international trading price distribution
will also adequately capture the price variability in domestic
markets, as BACI trade flows are given in Free Onboard Prices.
For global processes all trade flows of the relevant commodities
are present in the price distribution.

The median number of flows matched to an ecoinvent activity
is 1,292. The number of flows mapped to an activity is a function
of the number of BACI commodities mapped to the reference
product (see Figure 1A) and the geographical resolution. The
large (median) number of matched flows stems mainly from the
fact that many of the ecoinvent processes are “global” or RoW
processes, or from other large aggregate regions such as “Europe”
(see Table 1). The large (median) number of flows associated
with ecoinvent activities illustrates the many trading relations
covered by each activity. Here, the authors want to point out
though, that the actual number of trading relations will likely be
much higher than the number of flows in BACI, as these cover
only the total trading volumes between countries as a whole. The
number of BACI/HS12 commodities mapped to the reference
products of the ecoinvent processes is shown in Figure 1A.
The first bar indicates that there are 1,771 ecoinvent processes
whose reference product has a 1:1 match to a BACI commodity.
The largest number of BACI commodities matched to a single
reference product is 53, whereas the median is 4. The reason
that multiple BACI commodities can be mapped to a reference
product is the higher commodity resolution of BACI compared to
reference products’ CPC classification. In the mapping between
BACI flows and ecoinvent processes, we rely on a classification
(CPC) that does not fully capture the level of detail present in the
ecoinvent database, e.g., a very particular alloy might be classified

as broader category of alloys because a finer classification does
not exist in the CPC and HS classification schemes. Certainly,
this can lead to an incorrect (median) price estimate for this
particular alloy, but it is reasonable to assume that the real price
will be present in the price distribution for the activity’s reference
product. Moreover, the more specific the reference product is,
the smaller the production volume will become compared to
more generic products, therefore these cases will likely not have a
strong impact on the statistical outcome of this study.

A comparison of the prices in ecoinvent to the BACI median
and mean prices is given in Figure 1B. Here both the median
and the mean price refer to the median and mean of the volume
weighted price distribution for each activity/reference product.
Only 4,480 reference products were used in this comparison
instead of all 5,624 that have a BACI price because for the
remaining reference products ecoinvent does not provide a price.
The horizontal lines in the violins indicate, from bottom to top,
the 2.5, 16, 50, 84, and 97.5% quantiles. The median price ratios
5ei/5BACI are 1.16 and 0.90 for the BACI median and mean
prices, respectively. That the median BACI price is lower than
the mean price is a natural consequence of the skewed nature
of prices (they are “strictly” positive) and the sensitivity of the
mean to outliers. Although there is a rather large spread in the
ecoinvent/BACI price ratios, we see that the distributions are
strongly peaked around 1:68% of BACI prices lie within a factor
of 0.4–5.31 (median) and 0.25–2.66 (mean) of the ecoinvent
price. This means that the hybrid footprints calculated using
BACI prices will likely have very similar expectation values as
the ones calculated using ecoinvent prices. Here, the expectation
value refers to the fact that the BACI prices are treated as random
variables, which leads to a range of possible hybrid footprint
outcomes rather than a deterministic one.

Because of the statistical nature of this study and the high
variability in trading relations, throughout this study we use the
median rather than themean, as the formermetric is less sensitive
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TABLE 1 | The first part of the table shows the number of ecoinvent processes

containing price information for their reference products.

Ecoinvent 3.5 processes #

Total 16,022

With prices 13,517

Markets 4,940

Markets without price 1,073

Unit kg 7,801

Unit kg and price 5,839

With BACI mapping 5,624

Hybridised 6,264

Hybrid. and BACI mapping 1,849

Hybrid. and in CH household LCI 4,789

Hybrid., in CH household LCI, BACI mapping 1,385

Hybrid., in CH household LCI, no BACI mapping 3,404

Global 3,424

Rest of World 3,392

Aggregate 6+ regions 1,904

Europe 1,476

Aggregate 5- regions 44

Single Countries 7,252

Switzerland 1,621

The middle part provides the availability of a BACI mapping for ecoinvent processes

and whether they are included in the Swiss household consumption model (section 2.5).

Statistics on the geographical resolution of the ecoinvent activities are given in the bottom

part of the table. We note that the geographical regions Europe and Switzerland are subsets

of “Aggregate 6+” and “Single Countries,” respectively.

to (extreme) outliers. In the Monte Carlo analysis, the median
price is also the one sampled most frequently. Note that for this
comparison of ecoinvent and BACI prices we applied an inflation
correction8 of 1.16 to the “2005” ecoinvent prices in order to
adjust them to our reference year 2012.

2.3.2. Sources of Price Variance
This paper analyses the effect of price variance on the uncertainty
of environmental footprints in an hybrid-LCA analysis. It
is therefore important to understand what drives this price
variance, e.g., whether it originates in the limited trade data
resolution, the geographical resolution of the processes, or can
we identify other sources? To this end we calculate the median
price variance of the reference products of the (hybridised)
processes with BACI price data, divided in different subsets. The
results of this are presented in Figure 2 as the relative Median
Absolute Deviation (rMAD) of various subsets of the data. We
use the rMAD as an estimate of the variability instead of the
more commonly used coefficient of variation for the former’s
robustness against outliers. The subsets are organised in three
groups: the first group divides the processes by their geographical
resolution: Global, Rest of World, Aggregate regions with six or
more countries, Aggregate regions with fewer than six countries,
and single country processes. The second group divides the
processes based on the level of detail in the CPC classification

8https://www.inflationtool.com/euro?amount=100&year1=2005&year2=2014

(accessed November 27, 2020).

of the reference product and the uniqueness of the CPC-HS
nomenclature matching. The subsets are: four CPC digits (class)
available, five CPC digits (subclass) available, and a unique HS
code mapping, which means only 1 HS code was mapped to the
CPC code of the process’ reference product). The third group
divides processes into CPC sections (section 0 “Agriculture,
forestry and fishery products,” section 1 “Ores and minerals;
electricity, gas and water,” section 2 “Food products, beverages
and tobaccos; textiles, apparel and leather products,” section 3
“Other transportable goods, except metal products, machinery
and equipment,” and section 4 “Metal products, machinery
and equipment”).

We find that the geographical aggregation, the quality of the
matching and the commodity type all have a strong impact on
the price variance, with the respective lowest uncertainty subsets
being consistent with each other within the 95% quantile range.
The intersection of the “single country” and “unique HS code”
subsets contains less than half the processes of each subset, a total
of 243 processes. Although the “unique HS code” criteria ensures
that the CPC code of the process’ reference product holds the
highest level of detail required for a 1–1 matching with a BACI
(HS) commodity, it does not mean that this classification consists
of homogeneous commodities. This, however, was judged to be
the case for the majority of the cases by the authors, with 173
processes in the “unique HS code” coming from the Agriculture,
forestry, and fishery (CPC section 0) subset, consisting of simple
non-manufactured products. Moreover, 142 of the processes in
the “CPC section 0” subset are “single country processes,” which
is why it is perhaps not surprising that these processes show a low
median uncertainty and a relatively small range compared to the
other subsets.

2.4. Price Distribution for Hybridised
Processes Without BACI Data
Not all hybridised processes in the life cycle inventory of the
Swiss household consumption survey have mapped trade flows
in BACI (see Table 1). We model the price uncertainty for the
remaining processes as a lognormal distribution with a mean at
the ecoinvent price and a shape parameter derived from the price
variance in proxy data. To find proxy data, we categorise the
remaining 3,390 processes with a non-zero production in the full
life cycle inventory (see Table 2). For each category we estimate
a coefficient of variation which we subsequently use to model
lognormal price distributions. For the “electricity” category, we
use the price variance across different consumption groups, based
on volume of consumption, in the EU for the year 20129. Since
the majority of the processes in the “steam and hot water”
category are “heat and power co-generation” processes, their
price distribution is modelled using the same variance parameter
as used for electricity. The variance in the freight category is
derived from the variance in the crude oil prices of OECD
countries between 2012 and 2013 (OECD, 2020). The remaining
processes each get the median coefficient of variation from the
processes that have a BACI mapping.

9https://ec.europa.eu/eurostat/databrowser/view/NRG_PC_205__custom_509016/

default/table?lang=en (accessed January 28, 2021).
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FIGURE 2 | The statistical price variance of the reference products of

processes with a BACI price distribution, given as the median price variability

of the robust indicator relative Median Absolute Deviation (rMAD) for different

subsets of processes hybridised with BACI price data. The subsets are divided

into three groups: “regional resolution,” “CPC-HS mapping quality,” and

“commodity type.” The orange and black horizontal errorbars indicate the

16–84% and the 2.5–97.5% quantiles, respectively.

TABLE 2 | Categorisation of the processes with non-zero production in the Swiss

Household consumption final demand, but without matching BACI trade flows.

Category # Proxy used References

Total 3,404 – –

Electricity 1,439 Elec. prices by

consumption level

EUROSTAT, 2020

Steam and hot water 559 Elec. prices by

consumption level

EUROSTAT, 2020

Freight 98 Oil prices 2014 OECD, 2020

Other 1,308 Median variance of

proc. with BACI

price

BACI

The second and third columns indicate the proxy data and source used to model the price

variance.

2.5. Functional Unit: Swiss Household
Consumption
In order to assess the impact of the price variability on a
hybrid-LCA consumption based footprint, we use the process

LCA part of the model by Froemelt et al. (2018) of the
Swiss household budget survey (HBS 2009–2011; Bundesamt
für Statistik, 2013). The survey provides detailed information
on the consumption of 9,734 households, which reported their
daily expenditures and quantities of purchased goods for the
period of 1 month. Additionally, periodic expenditures, service
subscriptions, and extraordinary purchases and revenues were
reported. Froemelt et al. (2018) used this 2009–2011 household
budget survey to model and assess the environmental impacts
of consumption behaviour, using ecoinvent, EXIOBASE, and
AGRIBALYSE (Koch and Salou, 2016). Here we use the PLCA
part of the model from Froemelt et al. (2018) to obtain a final
demand vector for the average monthly consumption of a Swiss
household. Since in this study we are interested in the effect
of price uncertainty of the hybrid LCA footprint results, we
only consider the consumption mapped to ecoinvent processes,
which cover 61% of the total carbon footprint in 2011. We note
that the consumption covered by AGRYBALYSE processes only
accounted for <0.5% of the average household carbon footprint.
Furthermore, for consistency with the other data sources used in
this study, we scale this data with an inflation- and population-
corrected GDP growth factor for “households and non-profit
institutes serving households” of 1.6% to the year 2012, using data
from the Swiss Statistical Office10. For further details of the Swiss
household consumption model we refer the interested reader to
Froemelt et al. (2018).

Although the complete model by Froemelt et al. (2018) falls
into the “tiered hybrid” category as defined by Crawford et al.
(2018), we note that as we only consider the PLCA part of
the model by Froemelt et al. (2018), the hybridisation in this
study only concerns the background, and the foreground system
remains non-hybridised.

2.6. Monte Carlo Simulation
The main component of the integrated hybrid model is the
upstream cut-off matrix Cu. The elements in Cu depend column-
wise on the product prices of the hybridised LCA processes. To
assess the impact of the price variability we use an adaptation of
the open source hybridisation tool pyLCAIO (Agez et al., 2020)
to create a cut-offmatrix that is not “scaled” with the price vector.
Such that:

Cu
unscaled = Corr ◦ Aio (H ◦ Geo). (3)

We then perform a Monte Carlo simulation by drawing prices
from the price distributions of the relevant processes, defined
as described in sections 2.3.1 and 2.4, to construct 10,000
realisations of the “scaled” Cu matrix. Although in reality
commodity prices will be subject to correlations, i.e., the prices
of steel based products will likely positively correlate with the
market price for steel, market dynamics do not necessarily follow
the same patterns, making such correlations a very complex

10GDP: https://www.bfs.admin.ch/bfs/en/home/statistics/national-economy/

national-accounts/gross-domestic-product.assetdetail.14347475.html (accessed

January 28, 2021).

Population: https://www.bfs.admin.ch/bfs/en/home/statistics/population.

assetdetail.14367975.html (accessed January 28, 2021).
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problem to model. Without adequate data on possible price
(anti-)correlations, this remains outside the scope of this work,
and prices of the reference products are sampled independently.

3. RESULTS

In this section we present the results of the Monte Carlo
simulations on the effect of price uncertainty for the two double
counting correction scenarios “STAM” and “binary.” We first
present the results of a statistical uncertainty on the process level
[for the midpoint indicator global warming potential (GWP)
100] before presenting the results for the consumption basket of
the Swiss Household budget survey.

3.1. Process Level Uncertainty
Table 3 shows the median increase in the hybrid Carbon
Footprint Intensity (CFI) over the pure PLCA CFI. The CFI
is defined as the carbon footprint of 1 unit of the reference
product of a process. Additionally, the median uncertainty range
(2.5–97.5% quantiles) for both the full hybrid CFI as well as
just the IO part (or truncation error correction) of the CFI are
given. The table provides the results for both double counting
correction strategies, and presents the results for different process
groups. The first column gives the considered process group,
where (A) are all processes in the ecoinvent LCI, (B) are the
hybridised processes with BACI price data, (C) are the hybridised
processes without BACI price data, described in section 2.4,
(D) are all hybridised processes, and (E) are all non-hybridised
processes. Although the latter category of processes do not get a
direct contribution from the MRIO background, they still see an
increase in their hybrid CFI through the hybridised processes in
their supply chain.

We find a median relative increase in the CFIs of 6.1 and
16.7% for all hybridised processes (process group D) in the
“STAM” and “binary” double counting correction scenarios,
respectively. Furthermore, the effect of the price variance on
the hybrid- or IO part of the process’ CFIs is high with the
median uncertainty in the CFIs for all hybridised processes
(group D) being (−33, +103%), resulting in an overall CFI
uncertainty of (−2, +6%) for the same group in the STAM
double counting correction scenario. Using the binary double
counting correction, this becomes (−30, +84%) and (−4, +12%),
respectively. Additionally, we find the impact of hybridisation on
the CFI uncertainty of non-hybridised processes to be (−1, +2%)
and (−2, +4%) in both double counting correction strategies.

3.2. Footprint Uncertainty for the Swiss
Household Consumption Basket
The footprint results (for the midpoint indicator global warming
potential GWP100) of the average Swiss household consumption
basket, for both the “STAM” and “binary” scenarios are presented
in Tables 4, 5, respectively. The results are given for different
subsets of the processes to enable the identification of the impact
of the price uncertainty on the total hybrid footprint (Ŵ), on
the hybridised processes that have BACI price data (1), the
hybridised processes without BACI price data and modelled
as described in section 2.4 (2), and all hybridised processes

(3). The percentage columns show the percentage points of the
footprint stemming from the hybridisation, or input-output part
of the model, compared to the footprint covered by the process
LCA part of the model. We note however, that although the total
number of processes in the life cycle inventory is higher for subset
Ŵ than for subset 3, leading to a higher PLCA footprint, the
number of hybridised processes is the same in both and equal
to the total number of processes in subset 3: 4,789.

Figures 3, 4 show the Monte Carlo result distributions of
the relative increase of the hybrid footprint compared to the
PLCA footprint. The left and right panels show the distributions
of the subsets Ŵ and 1 for the “STAM” and “binary” double
counting correction strategies, respectively. The vertical lines
indicate 2.5, 16, 50% (median), 84 and 97.5% quantiles as well
as the mean and the footprint using ecoinvent prices without
uncertainty. We find that although the distributions for both
double counting correction scenarios are wide, showing a long
tail toward the positive side, the distributions do show a strong
peak around median and mean of the distributions. The skew of
the distribution is a direct consequence of the skewed nature of
prices (5i > 0).

Although using the “STAM” double counting correction, the
hybridisation accounts only for 7.7% of the PLCA footprint for
the full LCI, using the “binary” double counting correction this
goes up to 14.3% for the full LCI (subset Ŵ). If we only consider
the hybridised processes that have a BACI price, this becomes
25.8 and 53.5%, respectively (subset 1). Moreover, the relative
uncertainty of this hybrid part of the footprint (i.e., the truncation
error correction) is (−28, +90%) and (−23, +68%) in the “STAM”
and “binary” case respectively for the 2.5 and 97.5% quantiles.
For subset 1 this becomes, in the same order (−26, +117%) and
(−23, +89%).

4. DISCUSSION

Here we discuss these results in the context of the findings of
other studies and go into the implications and limitations of
this study.

The level of truncation error estimates or the relative increase
of hybrid LCA footprints (-intensities) over process LCA vary in
literature. Most of these studies consider either a specific case
study (Perkins and Suh, 2019), or look at the carbon footprint
intensities (CFIs) of individual processes (Yu and Wiedmann,
2018; Agez et al., 2020), or average truncation errors of processes
in different industry sectors (Ward et al., 2018). In this study
we considered both the median process level uncertainty and
a consumption basket of an average Swiss household. We note
however, that for this analysis we focus only on the process-
or hybrid LCA part of the consumption basket that is covered
by ecoinvent and leave out the part that is modelled solely on
EXIOBASE andAGRIBALYSE. The differentmethodologies used
in literature to study the truncation errors in PLCA make it
difficult to compare the various results one to one. Our process
level CFIs are most comparable to Agez et al. (2020) (STAM
double counting correction) and Yu and Wiedmann (2018)
(binary double counting correction) as both these studies look
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TABLE 3 | The increase and uncertainty in the statistical hybrid carbon footprint intensity (CFI) at the process level, presented as the median GWP100 percentual increase

over the pure PLCA CFI and the variability within the 2.5 and 97.5% quantiles for both the total hybrid CFI and just the IO- (or hybrid-) part.

STAM Binary

Subset Nproc Increase Hybrid CFI IO part CFI Increase Hybrid CFI IO part CFI

% % % % % %

A 16,022 4.2 (−0.9,+3.2) (−27.7,+87.9) 10.7 (−2.0,+6.7) (−24.7,+70.5)

B 1,849 5.3 (−1.5,+6.8) (−35.0,+129.5) 13.4 (−3.2,+13.4) (−31.2,+118.6)

C 4,415 6.6 (−1.6,+5.2) (−31.6,+86.7) 18.8 (−3.5,+10.8) (−29.8,+68.7)

D 6,264 6.1 (−1.6,+6.0) (−32.6,+102.7) 16.7 (−3.4,+11.7) (−30.0,+83.9)

E 9,758 3.3 (−0.7,+2.1) (−25.1,+80.0) 8.7 (−1.5,+4.4) (−21.9,+64.0)

The first column gives the process group considered in each row, where (A) are all processes, (B) are the hybridised processes with BACI price data, (C) are the hybridised processes

without BACI price data, (D) are all hybridised processes (B+C), and (E) are all non-hybridised processes (which see an increase in their hybrid CFI through the hybridised processes in

their supply chain). The second column shows the number of processes in each group. The top row indicates the double counting correction strategy applied.

TABLE 4 | The footprint results (GWP100) of the consumption basket of an average Swiss Household using the “STAM” double counting correction strategy.

Subset Nproc PLCA HLCAeco HLCABaci

[102 kg CO2eq] [102 kg CO2eq] % [102 kg CO2eq] %

Ŵ 12,065 11.44 0.82 7.2 0.88+0.79
−0.25 7.7+6.9

−2.2

1 1,385 1.51 0.30 20.1 0.39+0.45
−0.10 25.8+30.2

−6.6

2 3,404 3.62 0.52 14.2 0.46+0.59
−0.18 12.8+16.3

−5.0

3 4,789 5.13 0.82 16.0 0.88+0.79
−0.25 17.2+15.5

−4.9

The results are presented for different subsets of processes given in the first column. Here the subset Ŵ are all processes in the life cycle inventory, 1 are all hybridised processes

with BACI price data, 2 are all hybridised processes without BACI price data and 3 are all hybridised processes. The second column contains the number of processes from the life

cycle inventory considered, the third provides the carbon footprint from the process LCA, the fourth and fifth columns provide the additional footprint from the Hybrid LCA part using

ecoinvent prices in absolute numbers and percentage of the PLCA footprint, respectively. The sixth and seventh columns show the footprint results of the Monte Carlo simulation using

BACI and/or proxy price distributions, again in absolute numbers and percentage points of the PLCA footprint. For the MC simulation results, the values and lower/upper uncertainty

ranges represent the median and the 2.5/97.5% quantiles of the distribution.

TABLE 5 | As Table 4, but for the “binary” double counting correction scenario.

Subset Nproc PLCA HLCAeco HLCABaci

[102 kg CO2eq] [102 kg CO2eq] % [102 kg CO2eq] %

Ŵ 12,065 11.44 1.53 13.3 1.63+1.11
−0.38 14.3+9.7

−3.3

1 1,385 1.51 0.69 45.5 0.81+0.72
−0.18 53.5+47.5

−12.2

2 3,404 3.62 0.84 23.2 0.78+0.75
−0.24 21.5+20.7

−6.7

3 4,789 5.13 1.53 29.8 1.63+1.11
−0.38 31.8+21.6

−7.3

at the hybridisation of a whole database. However, to provide
a better context and highlight the complexity of the issue of
truncation errors we discuss below how the results of this study
fit into the wider literature.

At the process level, we find that the CFI of hybridised

processes (subset D, Table 3) sees a median increase of 6.1 and

16.7% in the “STAM” and “binary” double counting correction

scenarios, respectively. This is below most estimates of the

truncation error in literature on a process basis: e.g., Ward
et al. (2018) find average sector truncation errors between 7
and 76% for different industry sectors and estimation methods,
Yu and Wiedmann (2018) find an average increase between 21
and 32% in their different double counting correction scenarios,
and Perkins and Suh (2019) find a relative increase of 38%

compared to a pure PLCA in their case study of a jacket.
In the case of the household consumption basket, the relative
increase of the HLCA compared to the PLCA of the overall
footprint (subset Ŵ), is also modest, though not insignificant,
being 7.7+6.9

−2.2% in the “STAM” scenario, and increasing to

14.3+9.7
−3.3% in the “binary” case. However, out of the 12,065

processes in the total life cycle inventory, only 4,789 were
hybridised. If we consider these processes only (subset 3),
we find a relative increase of 17.2+15.5

−4.9 and 31.8+21.6
−7.3 in the

“STAM” and “binary” scenarios respectively, which is still below
the aforementioned studies, but consistent within the 95%
confidence interval of our results. We note here that (Agez
et al., 2020), using the “STAM” double counting correction
method, find a relative carbon footprint increase per process
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FIGURE 3 | The uncertainty distribution of the relative increase in carbon footprint (GWP100) due to hybridisation, using the STAM double counting correction

method, for the overall hybrid footprint (A) and the 1,385 processes with a price sampling variance from the BACI trade data based on produced commodity and

region (B). The dotted (cyan) and dashed (orange) vertical lines indicate the 95 and 68% confidence intervals, the red solid and dashed dotted lines show the median

and mean of the distribution. The black dashed line indicates the impact using the ecoinvent prices.

FIGURE 4 | The uncertainty distribution of the relative increase in carbon footprint (GWP100) due to hybridisation, using the “binary” double counting correction

method, for the overall hybrid footprint (A) and the 1,385 processes with a price sampling variance from the BACI trade data based on produced commodity and

region (B). The dotted (cyan) and dashed (orange) vertical lines indicate the 95% and 68% confidence intervals, the red solid and dashed dotted lines show the

median and mean of the distribution. The black dashed line indicates the impact using the ecoinvent prices.

with a median of 7% and an average of 14%, but a large spread
with processes displaying up to 1,100% relative increase. The
slightly lower median increase on process level CFIs in this study
can be explained by the slightly lower median prices for the
reference products in BACI compared to the ecoinvent prices (see
Figure 1B).

Looking at the relative uncertainty due to price variances,
Yu and Wiedmann (2018) find relative uncertainties for the
individual CFIs between −31 and +33% in their different double
counting correction strategies, with average CFI variations
between −4.7 tp +5.1% and −3.3 to +3.2% for the two different
double counting correction strategies. These results are based
on normally distributed price uncertainties with 30% relative
standard deviation. We find a median hybrid CFI uncertainty of
(−1.6, +6.0%) and (−3.4, +11.7%) for the “STAM” and “binary”

scenarios, respectively. We see that where the uncertainties of
Yu and Wiedmann (2018) are relatively symmetric as a natural
result of their symmetric price uncertainties, we find highly
positively skewed uncertainty ranges, with the lower range being
smaller than found by Yu and Wiedmann (2018) and the
upper range well above the results of that study. Considering
the consumption basket case we find a total hybrid footprint
uncertainty of (subset Ŵ) of (−2.0, +6.4%) and (−2.9, +8.5%) (in
the 95% confidence interval) for “STAM” and “binary” scenarios,
respectively. Focusing again only on the hybridised processes
(subset 3), we find a variance of the hybrid carbon footprint
of (−4.2, +13.2%) and (−5.6, +16.4%). Considering only the
processes for which BACI price data are available (subset 1),
we find the uncertainty increases even further to (−5.2, +22.9%)
and (−7.6, +30.5%) for the “STAM” and “binary” scenarios,
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respectively. These relative uncertainties of the hybrid carbon
footprints are in the higher end of the range in the findings of
Yu and Wiedmann (2018).

Placing our findings in the light of the accuracy vs precision
debate (Perkins and Suh, 2019, and references therein), we see
that at an “accuracy” (truncation-) correction of 17 and 32%,
the uncertainty associated with this correction is (−28, +90%)
and (−23%, +68%) relative to the magnitude of the correction,
for all hybridised processes in our consumption basket (subset
3) in the “STAM” and “binary” scenarios, respectively. This
equates to an overall precision loss (added total footprint
uncertainty) of (−4, +13%) and (−6, +16%). On the total
consumption basket (subset Ŵ) we find an accuracy correction
with a magnitude of 8, 14% with the same relative uncertainty
as subset 3 and a footprint precision loss of (−2, +6%) and
(−3,+8%).

We have to keep in mind that this is a statistical work, based
on statistical trading data, but as Yu and Wiedmann (2018)
point out, finding accurate prices, and price distributions for
individual commodities and services is a highly time and effort
consuming task which makes it at this point an unrealistic option
for a database-wide hybridisation. A statistical approach such as
taken in this study might have its shortcomings, e.g., the available
commodity categories in trade databases such as BACI might
be too aggregated to accurately capture the prices of individual
commodities that do not represent the “average” product within
the commodity category. However, the diversity of trading
relations between different countries will likely still capture
much of the variance accurately. Moreover, we have shown
that the geographical aggregation of the ecoinvent processes is
responsible for a significant part of the price variance in low
geographical resolution (e.g., global or rest-of-world) processes.
This indicates that regionalisation of process inventory databases
(Mutel and Hellweg, 2009) has the added benefit of smaller price
variation of the reference products, leading to more accurate
hybrid CFIs.

The results of this study show that price variation can lead
to significant uncertainty in hybrid footprints, although the
positive skew of this uncertainty means that the probability
of underestimating the truncation error correction is larger
than the probability of overestimating the resulting hybrid
footprint. This implies that precision loss (added uncertainty)
due to price variance in the hybridisation process, will
likely not weigh up to the accuracy gain (truncation error
correction). As pointed out above, finding accurate price
data (including information on variance and ranges) for all
reference products of a databases is an unrealistic undertaking
for each individual hybrid LCA study. So until process
inventory databases publish information on the price variance,
practitioners have to rely on statistical price data such as
presented in this study for background processes and may
put extra effort into finding accurate price ranges for the
foreground processes of the study. As a first step toward price
variance inclusion within process inventories, a pedigree matrix
approach as used in ecoinvent for technosphere exchanges
(Muller et al., 2016) could be developed for price data,
particularly given the strong dependence of the price variance

on geographical resolution and product type as we found in
section 2.3.2.

In section 2.2, we discussed that prices of products in co-
production are used for economic allocation purposes. This
of course means that if these prices are not deterministic but
also random variables, this will directly impact allocation of the
inputs to co-products and hence all supply chains containing
any of these co-products. Because of the high interconnectivity
(Moreno Ruiz et al., 2016) in practice this means that most
processes are affected. The authors are not aware of published
studies looking at the effect of price variance on economic
allocation in process inventory databases and the resulting
process CFIs.

In this paper we presented the carbon footprint (intensity)
results to illustrate the impact price uncertainty or variance
has on hybrid LCA footprints. We note however, that although
the actual footprint uncertainty ranges for different impact
categories might change due to different IO industries having
varying impact levels for different impact indicators, the impact
of the price uncertainty remains the same. That also leads us
to the fact that in this study we only look at the uncertainty
arising from price variance. We do not consider uncertainty
within the LCA supply chains, nor in the biosphere flows
and impact categories. Furthermore, uncertainty remains due
to aggregation error of IO sector compared to the individual
processes of the PLCA database (Yu and Wiedmann, 2018;
Perkins and Suh, 2019), which will depend on the sectoral
and regional resolution of the (multi-regional) IO table. To
include this fully, one would need to capture the variance
in intraindustry supply chains as well as the intraindustry
stressor variation (emission/euro) (Majeau-Bettez et al., 2011).
Another important source of uncertainty in integrated and
tiered hybrid models is the issue of double counting (Agez
et al., 2019). We find the difference in truncation error
correction between the more conservative STAM double
counting correction method and the less strict “binary” approach
to be around a factor of almost 2 for all processes in the
Swiss consumption case (subset Ŵ). This indicates that the
uncertainty arising from the double counting correction is
another substantial source of uncertainty in hybrid LCA and
needs to be taken into consideration. Finally, as discussed
in section 2.6, we also do not consider possible correlations
between the prices of different products. Although the presence
of correlations would reduce the uncertainty, they are subject
to various influences acting on different time scales. The
complexity of this problem puts it outside the scope of
this study.

In conclusion, we present the first data driven analysis of the
effect on price uncertainty on process carbon footprint intensities
and illustrate the magnitude of the resulting uncertainty on
a statistical footprint study of Swiss household consumption.
We find that although the relative increase of hybridisation
is small to moderate in the consumption study (8–14%) for
the two different double counting correction methods, the
uncertainty of this contribution to the footprint due to price
variability is very high (−28 to +90%) and asymmetric, with
the uncertainty ranges being (strongly) positively skewed. This
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highlights the need of accurate prices and price distributions in
hybrid LCA studies.
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