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Techno-economic analysis (TEA) has been considered an important tool to

evaluate the economic performance of industrial processes. Recently, the

application of TEA has been observed to have exponential growth due to the

increasing competition among businesses across various industries. Thus, this

review presents a deliberate overview of TEA to inculcate the importance and

relevance of TEA. To further support the aforementioned points, this review

article starts with a bibliometric analysis to evaluate the applicability of TEA

within the research community. Conventional TEA is widely known to be

conducted via software modeling (i.e., Python, AMIS, MATLAB, Aspen HYSYS,

Aspen Plus, HOMER Pro, FORTRAN, R, SysML and Microsoft Excel) without

involving any correlation or optimization between the process and economic

performance. Apart from that, due to the arrival of the industrial revolution (IR)

4.0, industrial processes are being revolutionized into smart industries. Thus,

to retain the integrity of TEA, a similar evolution to smart industries is deemed

necessary. Studies have begun to incorporate data-driven technologies (i.e.,

artificial intelligence (AI) and blockchain) into TEA to e�ectively optimize both

processes and economic parameters simultaneously. With this, this review

explores the integration of data-driven technologies in the TEA framework.

From literature reviews, it was found that genetic algorithm (GA) is the most

applied data-driven technology in TEA, while the applications of blockchain,

machine learning (ML), and artificial neural network (ANN) in TEA are still

considerably scarce. Not to mention other advanced technologies, such as

cyber-physical systems (CPS), IoT, cloud computing, big data analytics, digital

twin (DT), and metaverse are yet to be incorporated into the existing TEA. The

inclusion of set-up costs for the aforementioned technologies is also crucial

for accurate TEA representation of smart industries deployment. Overall, this

review serves as a reference note for future process engineers and industry

stakeholders who wish to perform relevant TEA, which is capable to cover the

new state-of-art elements under the new modern era.
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Introduction

Techno-economic analysis, or techno-economic assessment,

oftentimes abbreviated as TEA, is a type of method to analyze

the economic performance of processes in industries. TEA

is conducted through a methodology consisting of a series

of holistic analyses that must be completed consecutively

(process design, processmodeling, equipment sizing, capital cost

estimation, operating cost estimation, and cash flow analysis).

The complexity of the problems demands a wide coverage

of economic indicators (e.g., plant operation, plant design,

transport, market behavior, etc.). TEA is usually addressed with

various modeling approaches at manageable scopes depending

on the level of perspectives; (Micro) biorefinery process model

using ASPEN Plus (Ng and Sadhukhan, 2011) (Meso), plant

design selection with fuzzy optimization (Wan et al., 2016),

and (Macro) supply-chain model with mixed-integer linear

programming optimization (How and Lam, 2018) for the

estimation of various financial and technical values. As such,

TEA is essential to evaluating the feasibility of upscaling or

industrialization of various processes and technologies (i.e.,

biorefinery (Ng and Sadhukhan, 2011), as well as process the

integration of carbon capture (Ng et al., 2013) and smart energy

environment (Sheha et al., 2021).

Based on the TEA result, a process can be evaluated based

on specified parameters and assumptions for a multitude of

purposes. It had been conducted conventionally over the past

two decades for various purposes, ranging from the evaluation

of economic factors [i.e., net present value (NPV) (Lubello et al.,

2021), payback period (PBP) (Datas et al., 2019), internal rate of

return (IRR) (Olszewski et al., 2017; Gönül et al., 2022), return

of investment (ROI) (Qian et al., 2014), discounted cash flow

rate of return (DFROR) (Phillips et al., 2011), capital cost (Han

et al., 2016; Jiang et al., 2020), general costs (Medina-Martos

et al., 2020), profit or revenue (Pérez et al., 2021; Wiatrowski

et al., 2022), economic potential (Touili et al., 2018; Bagnato

and Sanna, 2019), overall economic feasibility (Comidy et al.,

2019)], process factors [i.e., energy saving percentage (Kong

et al., 2020), process parameter optimization (Yang et al., 2018;

Samani et al., 2022), efficiency of operation (Bock et al., 2021)],

and environmental factor (Fahmy et al., 2021; Shawky Ismail

et al., 2022).

Nevertheless, the lack of accessibility to data required for

input parameters or the lack of advanced computational tools

for concise estimation acts as the critical hurdle for TEA to be

conducted in future processes. Thus, the integration of data-

driven technologies [i.e., genetic algorithm (GA), blockchain,

machine learning (ML), artificial neural network (ANN),

Internet of Things (IoT), cyber-physical system (CPS), digital

twin (DT), metaverse, cloud computing, and big data analytics]

can assist vastly in eliminating these constraints. Despite the

existing studies focused on integrating the aforementioned

technologies into the conventional TEA framework, its role

and function have yet to be comprehensively reviewed in the

existing review articles. While the environmental impact in

modern industries is important, the scope of this review does

not extend to Life Cycle Analysis (LCA); instead, it addresses

the revolutionization of the conventional TEA framework for

the future era industries. As illustrated in Table 1, recent reviews

conducted between 2002 and 2022 that considered TEA were

mainly on the review of a particular technology (i.e., carbon

capture system) or processes (i.e., chemical manufacturing

processes), followed by case studies. Regardless, these reviews

either focused primarily on the compilation of reviewed studies,

or on the economic performance of these reviewed studies with

minimal attention to the integration of data-driven technology

in the conducted TEA.

Bibliometric analysis

This section taps into the research trend of TEA and data-

driven technology from the year 2001 to 2021. Apart from

that, an evaluation of the possible future research routes for

TEA was also conducted. The published data utilized in this

bibliometric analysis was extracted from the Scopus database to

identify the research gaps involving data-driven technology in

recent TEA practices (Omoregbe et al., 2020). This bibliometric

study commenced with the screening of related research, which

includes work on TEA and data-driven technologies. Thereafter,

manual sorting (stage 2) is conducted to classify the collected

works based on the scope of the study [i.e., (i) conventional

TEA, (ii) data-driven TEA, and (iii) data-driven non-TEA

application]. Lastly, stage 3 is conducted to categorize all data-

driven TEA papers into TEA application, process application,

and others (recommendation and general overview of data-

driven technology in TEA application). A summarized flow is

illustrated in Figure 1.

The keywords used for the literature search are presented in

Table 2. Some keywords, such as techno-economic analysis, were

entered in different arrangements as a slight difference can lead

to non-identical results. For example, the keywords “Techno-

economic analysis” and “Techno economic analysis” would

give 4,886 total publications, respectively, but “Technoeconomic

analysis” would only give 463 document results. Apart from

that, it is also crucial to enter the different arrangement

keywords together using the “OR” and “AND” function

as it would filter out similar documents. For example,

to have a filtered search on data-driven TEA studies,

keywords should be entered as “Techno-economic analysis” OR

“Technoeconomic analysis” OR “Techno economic analysis”

AND (“Metaverse” OR “Machine learning” OR “Artificial

Intelligence” OR “Blockchain” OR “Block chain” OR “Internet

of Things” OR “Cyber-physical system” OR “Digital twin” OR
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TABLE 1 Compilation of relevant reviews with TEA analyses conducted for past two decades (2002 to present).

Field Area of focus Relevant reviews

Biomass and

organic waste

materials

Biorefinery (i.e., conversion of biomass into value added products such as biodiesel, biochar, biomass

co-digestion, biochemical processes, etc.)

Naqi et al., 2019; Parsons et al.,

2020; Mishra et al., 2022

Conversion of organic wastes (i.e., dairy by-product) into value-added product (i.e., biogas, biofuel,

enzymes, etc.)

Sar et al., 2021; Kumar et al., 2022

Modification of lignocellulosic bast fibers for polymer engineering George et al., 2016

Strategies on harvesting microalgae Roy and Mohanty, 2019

Carbon capture Capture and storage system in various industries (i.e., steel and iron, cement, pulp and paper, and oil

refinery)

Leeson et al., 2017

Comparison of choline-based deep eutectic solvents to conventional ionic liquids for CO2 separation Zhang Y. et al., 2018

Evaluation of solid oxide fuel cells (SOFC) and molten carbonate fuel cell (MCFC) for generation

cycles in CO2 capture

Slater et al., 2019

Evaluation on the usage of sorbents for CO2 capture Samanta et al., 2012; Sanz-Perez

et al., 2016

Reduction of CO2 via carbon utilization (i.e., synthesis of formic acid, methane, methanol) Centi et al., 2020; Duarah et al.,

2021

Energy Applications and advantages of hybrid renewable energy Ma et al., 2018

Heat transfer application of nanoparticle-based materials Czaplicka et al., 2021

Hydrokinetics energy conversion systems Kumar and Sarkar, 2016

Photovoltaics/solar (i.e., enhancement of solar technologies, applications such as heating and

air-conditioning systems, etc.)

Zakhidov and Anarbaev, 2013;

Zhang R. et al., 2018; Pathak et al.,

2022

Technology and performances of lithium-ion battery. Hesse et al., 2017

Solar stirling engines Singh and Kumar, 2018

Software usage on TEA for hybrid renewable energy systems Sinha and Chandel, 2014

Transmission systems for HVAC and HVDC systems and their power capability Kalair et al., 2016

Microbes Electrosynthesis of microbial and fermentation of gas Wood et al., 2021

Operations of microbial desalination cells (MDC) Zahid et al., 2022

Synthesis of Escherichia coli for strain engineering Vickers et al., 2012

Synthesis of microbial cellulases Ul-Islam et al., 2020; Bhardwaj

et al., 2021

Chemical synthesis,

parameters and

application

Chemical process synthesis and up-scaling (i.e., synthesis of dimethyl ether and bioethylene,

upscaling of xylitol processing)

Mohsenzadeh et al., 2017;

Schubert, 2020; Queiroz et al., 2022

Application of electrolysis (water electrolysis for energy storage, grid balancing, etc., and

electrocoagulation for water and wastewater treatment)

Hakizimana et al., 2017; Buttler

and Spliethoff, 2018; Al-Raad and

Hanafiah, 2021

Parameters of enzymatic hydrolysis for batch and fed-batch setup Argo and Keshwani, 2019

Sludge dewatering and removal of micropollutants via advanced oxidation processes Lin et al., 2022

Others Comparison of all-optical traffic grooming (AOTG) to alternatives (optically transparent solutions

and electronic grooming (OTN) solution

Khodashenas et al., 2016

Comparison of cold sintering processes (CSP) to existing sintering techniques in ceramic industries Ibn-Mohammed et al., 2019

Methodology on integration of TEA and LCA for processes from wastewater treatment and

renewable technology

Mahmud et al., 2021
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FIGURE 1

Bibliometric analysis flow diagram.

“Cloud computing” OR “Big data” OR “Genetic algorithm”. The

top publication sources for the respective topic are also listed in

Table 2.

Figures 2A,B show the total publications, which are related

to TEA and data-driven technology, respectively. The research

trends in both fields show a significant increase, especially from

2011 to 2021. This indicates the growing importance of both

tools in the current industries. For TEA, the near exponential

research growth may have resulted from the increased business

competitiveness within various industries (Ungerman et al.,

2018; Bal and Erkan, 2019). As cost is one of the main factors

to be considered in industrial operations, TEA is an especially

crucial tool for cost evaluation (Frey and Zhu, 2012; Al-Obaidli

et al., 2020). On the other hand, the initiation of the IR 4.0 back

in 2011 may be the main factor for the 3-fold increment in the

research of data-driven technology from 2011 to 2021 (Alcácer

and Cruz-Machado, 2019).

Apart from that, the widespread of the IR 4.0 ideology has

sparked an increase in smart manufacturing and operations

(Zheng et al., 2018; Phuyal et al., 2020). To maintain the result’s

integrity and efficiency of TEA in these processes, the evolution

of the TEA framework is essential. Therefore, numerous studies

on data-driven TEA have been initiated since the year 2011.

From Figure 3A, it can be observed that more than 94%

of the total publication of data-driven TEA were published

from 2011 to 2021. Apart from that, Figure 3B shows that

studies on data-driven TEA are also globally recognized in top

publishing countries, including the United States of America,

the United Kingdom, China, and Iran. This indicates that data-

driven TEA plays an important role in economic analysis in

the future. Therefore, a deliberate review is conducted on data-

driven TEA to evaluate its potential.

Future systems of techno-economic
analysis

In this section, proven and possible applications of data-

driven technologies in TEA were deliberately discussed. To the

best of the authors’ knowledge (GA, ML, and ANN), AI and

blockchain are among the data-driven technologies that have

been incorporated in TEA; whereas CPS, IoT (big data analytics

and cloud computing), DT/CPS, and metaverse have yet to be

implemented in the documented TEA. Therefore, the following

subsections offer a thorough overview to evaluate the notable

past applications of data-driven technologies in TEA. Lastly,

the potential and literature gaps of under-explored data-driven

technologies in TEA were explored as well.

Frontiers in Sustainability 04 frontiersin.org

https://doi.org/10.3389/frsus.2022.924047
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org


Chai et al. 10.3389/frsus.2022.924047

TABLE 2 Bibliometric trends related to TEA, data-driven TEA, and

data-driven technology.

Topic Keywords Top publication

sources

TEA • Techno-economic analysis

• Technoeconomic analysis

• Techno economic analysis

• Applied Energy

• Energy

• Energy Conversion and

Management

• Journal of Cleaner

Production

• Bioresource Technology

Data-

driven

TEA

• Techno-economic analysis

• Technoeconomic analysis

• Techno economic analysis

• Metaverse

• Machine Learning

• Artificial Intelligence

• Blockchain

• Block chain

• Internet of things

• Cyber-physical system

• Digital Twin

• Cloud computing

• Big data

• Genetic Algorithm

• IFP Advances in

Information and

Communication

Technology

• Applied Energy

• Applied Sciences

Switzerland

• Journal of Engineering

Design

• Canadian Journal of

Chemical Engineering

Data-

driven

technology

• Metaverse

• Machine Learning

• Artificial Intelligence

• Blockchain

• Block chain

• Internet of things

• Cyber-physical system

• Digital Twin

• Cloud computing

• Big data

• Genetic Algorithm

• Lecture Notes in Computer

Science (including

Subseries Lecture Notes

in Artificial Intelligence

and Lecture Notes in

Bioinformatics)

• Advances in Intelligent

Systems and Computing

• Journal of Physics

Conference Series

• Communications in

Computer and Information

Science

• ACM International

Conference Proceeding

Series

Artificial intelligent (AI)

AI is considered a revolutionary system that can mimic the

intelligence of a human but at a much higher capacity (Katiyar

and Katiyar, 2021; Shi et al., 2022). AI has been implemented in

various industries to address complex optimization problems in

a rapid and efficient manner (Shaban-Nejad et al., 2020; Shi et al.,

2022). The applications of AI in TEA can be found in the form of

its subfield, namely, GA, ML, and ANN, which were elaborated

in the next two subsections.

Genetic algorithm (GA)

GA is an extremely crucial tool for optimization operations

due to its ability in solving complex non-linear problems

(Gorunescu and Belciug, 2019). It is capable of effective

evaluation of real-world scenarios (i.e., uncertainties and

risk parameters) via a stochastic optimization approach and

determining the optimal solution for a particular problem

(Qin et al., 2010; Lo et al., 2021). The primary concept of

GA is inspired by the concept of Charles Darwin’s theory of

natural evolution, where evaluation, crossover, and mutation

are mimicked in the model to identify the global optimal

solution. The general optimization flow of the GA is presented

in Figure 4. The application of GA is widely fetched in

computational biology, medicine, and engineering studies, but

its implementation in TEA is relatively limited. Although the

number of GA applications in TEA is still rare, it has found

great success in TEA operation. In this subsection, the recent

applications of GA techniques [i.e., multi-objective genetic

algorithm (MOGA), NSGA-II, and micro genetic algorithm

(micro-GA)] in TEA were highlighted. Note that other relevant

works were summarized in Table 3.

In 2022, Zhang (2022) implemented a MOGA in the

optimization of a hybrid nuclear-wind system (HNWS) to

obtain the highest possible economic return while adhering to

the grid demand. The optimization process was evaluated based

on the score (summation of the grid demand and economic

factor) of a particular configuration. The GA system was able to

eliminate configurations with a score lower than a set reference

score while keeping those with scores higher than the inserted

reference scores. As the optimization proceeds until the current

generation is below the max generation number, exceptional

configurations will be merged in a cross-over process. In this

process, the best configuration can be developed via the merging

of these configurations. This optimal configuration can then

be applied to optimally meet the pre-defined objective. Apart

from that, the GA was known to be capable of performing

optimization with consideration of uncertainties (Kong et al.,

2021), which has been illustrated in the aforementioned study.

From the presented result, the use of GA was able to effectively

determine the best configuration for the HNWS, which gives

an enhanced payback time and IRR of 2.29 % while losing

little on grid demand satisfaction. This study showcases the

ability of GA to simultaneously optimize the performance and

techno-economic indicators (i.e., IRR and payback period) of

a process.

In addition, past studies were not able to successfully

optimize both energy efficiency and levelized cost of hydrogen

(LCOH; i.e., an economic indicator to gauge the economic

feasibility of hydrogen production) simultaneously. For
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FIGURE 2

(A) Total TEA related publications from 2001 to 2021; (B) Total data-driven technology related publication from 1991 to 2021 (data extracted

from Scopus database).

FIGURE 3

(A) Total data-driven TEA related publications from 1989 to 2022; (B) Publication breakdown of top publication countries from 1991 to 2021

(data extracted from the Scopus database).

example, a study conducted by Rezaei et al. (2020) and Yilmaz

(2017) was able to identify a configuration with low LCOH,

but the energy efficiency obtained was unfavorably low. This

is due to the inability of conventional optimization models

(i.e., linear programming model Yilmaz, 2017) to effectively

optimize complex problems that are otherwise simplified

(i.e., assume constant and/or linear behavior) for ease of

evaluation. On the flip side, in a recent study conducted by

Wang et al. (2022), the authors were able to conduct a successful

multi-objective optimization using the NSGA-II technique,

which is a non-dominated sorting genetic algorithm model

(Yusoff et al., 2011). In this study, GA has been implemented

to optimize the LCOH and energy efficiency of a novel hybrid-

solar-wind-bioethanol hydrogen production system. For the

optimization, six crucial system parameters, which include

solar collector area, number of wind turbines, heat storage

capacity, number of batteries, hydrogen permeate pressure,

and ethanol steam reforming (ESR) reaction temperature, are

thoroughly analyzed. In addition, some uncertainties, such

as real weather conditions and varying energy (i.e., heat and

electricity) efficiencies, were also considered by the NSGA-II

optimization. From the optimized configuration, the hydrogen

production system was able to optimally operate at an energy

efficiency of 62.48%. This configuration is 38.8 (Orhan et al.,

2008) to 625.9% (Yilmaz, 2017) more efficient compared to

past optimization studies (Mohammadi and Mehrpooya, 2019;

Rezaei et al., 2020) conducted without GA while keeping the

LCOH at a decent level (4.16 $/kg).

Kamazani and Aghanajafi (2022) have also conducted a TEA

on a hybrid geothermal-photovoltaic thermal (PVT) collector

system integrated with phase-change materials with the NSGA-

II method. In this study, up to nine parameters (i.e., number

of boreholes, drilling depth for the pipe in the ground source

heat exchanger, fan coil temperature setpoint, converters length,

numbers of PVT panels, arrangement of PVT panels, number

of batteries, size of storage tanks, phase change materials, and
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FIGURE 4

Genetic algorithm optimization process flow.

percentage of phase change material in the tank) are considered

in determining the optimal exergy efficiency and levelized cost

of energy (LCOE; i.e., the breakeven cost needed, so that the

energy generation system can breakeven at the end of the project

lifespan). Even though the number of investigated parameters

is very large, the NSGA-II method was able to effectively

determine the best configuration to achieve a simultaneous

optimal result for both exergy efficiency (21.96%) and LOCE

(.104 $/kWh). As compared to the single objective LCOE

optimization carried out by the author, the LCOE is 19.45%

lower as compared to the multi-objective optimization model.

However, the exergy efficiency of the configuration by the

single optimization model is also 37.25% lower compared to

the NSGA-II optimization result. On the other hand, the single-

objective exergy efficiency optimization shows a slightly higher

exergy efficiency (5.37%) but higher LCOE (6.87%) compared

to the multi-objective optimization result. With the GA model,

a balance between the targeted variables can be optimally

obtained and it is shown that a single-objective optimization

may provide optimal performance for a particular variable

(i.e., LCOE and exergy efficiency) but may not be as optimal

to the unaccounted variables. This proves that NSGA-II, as

a multi-objective optimizer, can provide a more well-rounded

optimization for future TEA.

In another study conducted by Burhan et al. (2017), a

unique GA, known as micro-GA, was applied for the TEA of

a concentrated photovoltaic (CPV)-hydrogen system. Similar to

NSGA-II, micro-GA is considered a modified GA technique that

does not require a long convergence time and computational

power as compared to a conventional GA (Yu and Gen,

2010; Burhan et al., 2017). On the other hand, micro-GA

is stated to be more efficient than NSGA-II in terms of

optimization problems with small populations (Coello Coello

and Pulido, 2005). In this study, only two parameters (power

supply failure time and hydrogen storage cycle difference) are

investigated to optimize the size of the system components

at the lowest possible overall system cost. This allows a very

rapid computational time for micro-GA to obtain an optimal

configuration to meet the desired result. It is worth noting

that, based on a comparative study conducted by Coello Coello

and Pulido (2005), micro-GA is capable of offering a more

decent computation time (i.e., 12 times faster) as compared

to NSGA-II.

From the presented studies, GA was shown to be

incredibly efficient in process and economic optimization.

The notable advantage of GA is its ability to tackle

problems of greater complexity, otherwise simplified in

conventional optimization approaches. Apart from that,

its ability to solve multi-objective optimization problems

is also a notable feature. The flexibility of GA to cater to

various optimization challenges is also a strong point of this

data-driven technology.
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TABLE 3 Summary of the past and potential data-driven application in TEA.

Data-driven

technology

Industry Advantage Disadvantage

Genetic algorithm Energy (Yang et al., 2009;

Anoune et al., 2020;

Manesh et al., 2022)

Oil and gas (Park et al.,

2022)

Biomass (Lopes et al.,

2021)

Transportation (Škugor

and Deur, 2016)

• Efficient multi-objective optimizer which allows

simultaneous optimization of process and economic

parameter (Rezaei et al., 2020; Kamazani and Aghanajafi,

2022).

• Able to solve complex process optimization problems (i.e.,

stochastic optimization) that typical deterministic

optimization method could not (Rezaei et al., 2020;

Zhang, 2022).

• Able to carry out complex optimization on process and

economic factor with minimal computational time

(Burhan et al., 2017).

• Majority of GA can only provide near optimized results not

the true local optimal solution (Chen and Chen, 1997).

• GA analysis is typically associated with high computational

cost (Chen and Chen, 1997).

• Apart from micro-GA, GA analysis are very time

consuming (Abramson and Abela, 1991).

Machine learning Energy (Walzberg et al.,

2021; Himeur et al.,

2022)

Manufacturing

(Hattrick-Simpers et al.,

2018)

• Able to learn and identify best condition to achieve

desired result (i.e., economic or operating performance)

effectively (Byun et al., 2021).

• Able to accurately make economic and operational

prediction based on input variables (Belyadi and

Haghighat, 2021).

• Have an extremely high computational complexity (Meng

et al., 2020).

• Impose huge computational burden on computing and

system resources (Meng et al., 2020).

Artificial neural

network

Energy (Alirahmi et al.,

2021; Rajabi et al., 2021)

• Able to learn and identify best condition to achieve

desired result (i.e., economic or operating performance)

effectively (Alirahmi et al., 2021).

• Can be employed to significantly reduce computational

burden of large-scale optimization (i.e., TEA

optimization) (Rajabi et al., 2021).

• Requires extremely large sample size to enable efficient

ANN learning (Elmolla et al., 2010).

• Impose huge computational burden on computing and

system resources (Elmolla et al., 2010).

Blockchain Energy (Kobashi et al.,

2020; Galici et al., 2021)

• Ability to act as an effective data collection platform for

TEA purposes (Galici et al., 2021).

• Able to provide unparallel cyber security for data storage

(Wang et al., 2022).

• Ability to create an efficient peer-to-peer (P2P) system to

increase integrity and accuracy of TEA (El Bassam, 2021;

Galici et al., 2021).

• Development of nodes are cost and resources (i.e., energy)

intensive (Golosova and Romanovs, 2018; Sarmah, 2018).

• Unable to alter any made decision even though agreement

is reaches by all parties (Sarmah, 2018).

Internet of Things – • Enable information generation, consumption, and

exchange within interconnected network to improve

system efficiency (Nimbalkar et al., 2017).

• Enable expansion to various technologies such as AI and

blockchain to establish high efficiency system (Galici et al.,

2021).

• Enable real-time observation on the behavior of a system

in practical environment (i.e., metal grain size

development during heat treatment) to reduce defects in

production (Edgar and Pistikopoulos, 2018).

• High investment and maintenance cost in establishing

network connectivity especially at large area coverage

(Walia et al., 2017).

• Increased TEA complexity with the lack of knowledge

(technical and financial matrix) on emerging smart

technology (Supekar et al., 2019).

Cloud computing – • Can be utilized based on an on-demand usage while being

a self-service technology, reduced risks attributed to

physical hardware issue, lower overall cost due to

elimination of need to invest in advanced workstation

such as supercomputers (Sadiku et al., 2014).

• Latency will be a concern that may interfere with the

functionality of cloud computing (Sadiku et al., 2014).

Big data analytics – • Relevant results obtained from big data analytics can assist

in optimized decision making (Berisha and Mëziu, 2021).

• Database may be too big for existing analytics to be able to

process effectively (Berisha and Mëziu, 2021).

(Continued)
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TABLE 3 Continued

Data-driven

technology

Industry Advantage Disadvantage

Digital twin/

Cyber-physical

system

– • Enable automation of industrial processes and reduce

labor cost (Cimino et al., 2019).

• Able to perform real-time data collection operation to

enhance TEA performance (Li et al., 2020).

• Vulnerable to security threats that can potentially lead to

severe degradation or even destruction of system (Yaacoub

et al., 2020; Zhang et al., 2021).

• Generate massive operational data that can lead to

computational problems (i.e., delayed communication,

high computational burden, etc.) (Botín-Sanabria et al.,

2022).

Metaverse – • Can reduce costs associated to physical environment (i.e.,

accommodation cost, health care cost, maintenance cost,

etc.) by shifting to a virtual working environment (Kye

et al., 2021; Choi, 2022).

• Has the ability to revolutionize the economic system via

the creation of a metaverse economy (Thomas, 2018).

• Able to perform data collection operation for TEA

purposes (Kye et al., 2021).

• Can fast-track conventional TEA (Kye et al., 2021).

• Can weaken social connection and skills (Kye et al., 2021).

• Can be time consuming to adapt into a newly introduced

virtual environment. Apart from that, some may

experience maladaptation (Kye et al., 2021).

• Impose high computational burden to smart devices (Lee

et al., 2021).

• Requires various equipment (i.e., AR glasses and VR

headset) to effectively used metaverse which can be costly

(Lee et al., 2021).

Machine learning (ML)

ML is one of the most well-known subsets of AI, which is

popularized by its ability to self-develop via learning of new

knowledge (Woolf, 2009; Holzinger et al., 2018; Helm et al.,

2020). The ability of ML to self-develop allows it to study

patterns within a data set (Belyadi and Haghighat, 2021; Chanal

et al., 2021). This enables it to make predictions and forecast the

optimal method or condition for optimal performance (Edgar

and Manz, 2017; Doshi and Varghese, 2022). The applications

of ML are diverse and have been widely implemented to aid

in process optimization in various sectors (Lary, 2021; Mosaffa

et al., 2022). The usability of ML in TEA has been demonstrated

in two recent studies, which were deliberately discussed in the

following parts. In 2021, Byun et al. (2021) demonstrated the

application of ML not only to investigate the technical and

environmental aspects but also the economic performance of

a methanol steam reforming (MSR) system. In this study, an

ML-based predictive model was developed to simultaneously

study up to 12 TEA parameters (a combination of technical

and economic parameters). For the analysis process, all input

parameters (number of Gibbs reactors, operating temperature,

H2 permeance, membrane area, sweep gas flow rate, steam-to-

carbon ratio, reactor cost, compressor cost, labor cost, reactant

cost and power generation (i.e., natural gas, and electricity) cost)

fed into the predictive model were randomly varied within a

boundary to ensure that a comprehensive analysis is carried out.

From the presented results, up to 12,000 data sets were produced

from the analysis. This enables the narrowing of sensitive factors

that affect the technical, environmental, and economic feasibility

to be identified.

In the same year, Walzberg et al. (2021) have also

demonstrated the implementation of an ML metamodel to

investigate the influence of social aspects (peer attitude

and influence) in solar photovoltaic (PV) reuse and recycle

programs. The developed ML metamodel is considered well-

suited for this study due to its ability to consider temporal

aspects, adopts a systemic approach, account for human

decisions and interactions between actors, and utilize current

developments in behavioral economics and psychology. Apart

from that, this ML system can also act as a stochastic model,

which can account for uncertainties, such as landfill cost and

initial recycling cost. In the first part of the analysis, the ML

metamodel was able to identify the most sensitive parameters

(initial recycling costs, landfill cost, and the learning effect)

toward the end-of-life PV module circularity by considering the

social factors (i.e., attitudes of PV owner toward used modules).

Based on the determined parameters, the ML metamodel was

able to determine the ideal combination to yield the lowest

cost for optimal PV circularity. According to the ML system,

the ideal combination would be a low recycling cost, high

landfill charges, and a strong learning impact. As shown

in both studies, ML was able to effectively aid in TEA

by determining the most sensitive economic parameters and

finding the best possible combination to yield the optimal

economic condition.

Artificial neural network (ANN)

ANN is considered a sophisticated tool that can carry out

a self-learning similar to an ML system. The difference in an
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ANN system is its ability to carry out self-induction and self-

deduction operations effectively (Yang and Yang, 2014; Vu and

Do, 2021). For example, ANN possesses the ability to learn and

make intelligent decisions by itself, whereas, for an ML system,

the decision-making operations may need to be facilitated by

users. Two common features can be found in ANN. First is the

ability of ANN to mutually link learned knowledge. By a mutual

linkage, ANN can perform prioritization tasks and better co-

relate variables in a system (Atkinson and Nevill, 1998; Wang

et al., 2015). As a result, ANN is an effective tool for a multi-

objective analysis of complex systems (Das et al., 2016; Groshev,

2016). Secondly, ANN will not make any prior assumptions

about a data distribution before learning. This has instilled

high usability of ANNs in various applications (i.e., finance,

education, environmental management, engineering, etc.) (Lek

and Park, 2008; Malekian and Chitsaz, 2021).

In 2021, Alirahmi et al. (2021) incorporated ANN in a

TEA for a novel dual-purpose green energy storage system

hybridized with solar and desalination units. In this study, the

ANN acts as the optimizer for both the round-trip efficiency

(RTE) of the system and the final cost of the manufactured

goods (power and water). Similar to GA, ANN has also the

ability to carry out multi-optimization (Kong et al., 2021).

However, the standout point of ANN over GA is its ability to

precisely predict the outputs based on the input parameters

with a non-complex process and low computational cost. In the

aforementioned study, several uncertainties, such as variations

in annual electricity and water costs, are also addressed by the

ANN optimization model. For the optimization process, ANN is

initially iterated to obtain the optimal RTE for the hybrid solar

and desalination units. The optimal RTE suggested by the ANN

model is 48.7%, which further results in the lowest operation cost

of 3,056 $/h. Next, a case study is applied with the optimized

RTE. From the case study, the solar and desalination units were

able to produce up to 27,551 MWh of power and 226,782 m3

of potable water, respectively. The developed ANN model was

able to determine the shortest payback period (i.e., about 2.6

years) by optimizing the number of effects and the discharge

time of the multi-effect vapor compression (MED-TVC) system.

This study has proven that ANN is an incredibly sophisticated

prediction model that can factor stochastic parameters (i.e.,

inflation rate, demand, etc.) into TEA. This would allow TEA

results to be closer to the real-world situation by eliminating the

deterministic restriction of a conventional TEA (Lo et al., 2021).

On the other hand, in a study conducted by Rajabi et al.

(2021), it has been demonstrated that the incorporation of the

use of GA and ANN can improve the weak point of standalone

GA optimization. In this study, GA is initially employed to

determine the optimum decision variables to minimize the

risk of a non-profitable CO2-circulated geothermal energy

production. However, the computational burden imposed by the

necessity to execute a Monte-Carlo simulation on a standalone

GA would result in a long convergence time. To remedy this

issue, ANN has been incorporated into the optimization model.

The goal is to use a collection of numerical models that contains

input-output pairs to train an ANN to approximate the time

series to obtain an output quality of interest (QoI) for each

model. Then, the trained ANNs are used as metamodels in

GA optimization. Apart from that, ANN allows the estimation

of any non-linear function without prior information about

the data series’ attributes. With the hybridized GA and ANN

optimizer, the best combination of the decision variables to

yield the lowest risk of non-profitability for the implemented

operation was obtained just within 40 out of the expected

100 iterations. Aside from the enhanced computation speed, a

validation study conducted by the authors proves that ANNdoes

not negatively impact the six output QoIs as a result, with 97%

similarity obtained.

Blockchain

The arrival of blockchain has been considered bymany as the

revolutionary point of information handling operations (Singh

and Kim, 2019). Blockchain aims to act as a distributed ledger

that is decentralized to smoothen the processing capabilities of

a particular system. Unlike a typical centralized system that is

vulnerable to a single point of failure, blockchain technology

would eliminate this problem and reduce latency to ensure

that a system can interact real-time without disruption. Apart

from that, the data created on the blockchain are immutable,

which can allow easier tracing of the full history of a particular

data. It can maintain the data integrity of the information

while preventing them from unethical modification (El Bassam,

2021). Blockchain also provides information transparency to all

involving parties, leading to a trusted workflow (Sharma et al.,

2020; El Bassam, 2021). Overall, blockchain as a decentralized

platform provides superiority in terms of cost, settlement

speed, and risk assessment over a typical centralized system

(Aggarwal and Kumar, 2021; El Bassam, 2021). The general

characteristics of blockchain are illustrated in Figure 5. As of

2022, the implementation of blockchain in TEA is still incredibly

limited but has shown to be an improbable tool for TEA in the

following study.

In 2021, Galici et al. (2021) implemented blockchain

technology as an open data ledger to assist in the data collection

operation for a public energy community analysis. For the

data collection process, blockchain-enabled SmartMeters (BSM)

act as the nodes for this operation. Herein, consumption and

production data of local energy communities’ (LECs) public

buildings will be collected and made available to the public. The

availability of these data enabled in-depth and accurate TEA

analysis. This has allowed proper tracking of the environmental

index of targeted buildings while enhancing their transparency

and allowing each institution’s efforts to reduce its carbon

footprint to be evaluated. Furthermore, blockchain plays an
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FIGURE 5

Characteristics of a blockchain system.

important role in offering a safe and secure platform for

global initiatives on climate measures, in which carbon credits

may be issued to bioenergy producers to stimulate bioenergy

generation in the global arena (Loy et al., 2021). Apart from

the aforementioned points, Galici et al. (2021) also proposed a

platform to maximize the potential of blockchain technology for

TEA. The proposed platform suggested that Key Performance

Indexes (KPI) algorithms can be developed by the research

communities and shared on the blockchain as an open-source

code. These algorithms can be directly applied for data analysis

and results can be instantly available via the blockchain for

verification by stakeholders. This would lead to a development of

an entrusting feedback system and efficiently provide real-time

data to enable the development of an up-to-date TEA.

In addition, numerous research deduced that the “free”

inspection feature provided by blockchain is an advantageous

characteristic (Li et al., 2018; Yeasmin and Baig, 2019;

Wilczyński and Kołodziej, 2020). For example, works uploaded

onto a blockchain network will be made available for inspection

by every user that has access to a specific network. This would

allow incorrect data or results to be more detectable. This can be

a top-up recommendation to the aforementioned applications,

where completed TEA can be published onto a blockchain

network for validation purposes. In some cases, TEA data can

be confidential and is not preferable to be released to the

public for such purposes. Therefore, instead of publishing the

result on a public blockchain, a private or controlled blockchain

(i.e., federated or consortium model) is deemed as a more

suitable option (Morkunas et al., 2019). On top of that, concerns

regarding possible tampering of uploaded TEA can also be

eliminated by blockchain as all blocks or nodes are tamper-

proof due to the one-way cryptographic hash functions (Zheng

et al., 2019; Al-Zahrani, 2020; Chatterjee et al., 2021). Therefore,

blockchain is not only limited to the data collection operation

for TEA but can also help improve the result or data integrity

and accuracy of TEA within a secure network.

Instead of a standalone application, blockchain can also

be coupled with other data-driven technologies for TEA
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applications. For example, a study conducted by Wang et al.

(2022) demonstrated the hybridization of AI and blockchain

technology in business innovation. In this hybridized system,

blockchain acts as a decentralized distributed directory to collect

data and provide confidence, security, and transparency, while

the AI provides the ability to effectively enhance and maximize

the process outcome of the system. Hence, these features can be

applied to TEA applications such that the collection of relevant

data (i.e., process parameters and economic data) via blockchain

is reliable for AI to optimize the various TEA indicators (i.e.,

NPV, IRR, etc.).

Internet of things (IoT)

The concept of IoT represents the network connectivity of

various computing devices to generate, consume, and exchange

data to expand their computing capabilities (Farooq et al., 2015).

The use of sensors and communicating modules enables the

observation of a system in greater detail, especially in practical

conditions. In contrast to TEA, IoT aims to digitalize the

real-life environment with greater complexity. Often, in TEA,

estimations and assumptions are commonly made based on

existing databases and simulation tools to address uncertainties;

its existence is due to the lack of information availability

(Supekar et al., 2019). In the wake of IR 4.0, infrastructure

digitalization has become more important than ever to address

problems at greater complexity. Hence, the adaptation of the IoT

concept into various fields, such as smart factories (Alqahtani

et al., 2019) and smart energy (Ceglia et al., 2020), is gaining

traction, which signifies the importance of TEA to consider

IoT applications in various fields. As illustrated in Figure 6,

TEA needs to consider the benefit of IoT, such as increased

efficiency (energy and material saving), which correlates to

reduced operating costs.

Due to the complexity and diversity in manufacturing,

Supekar et al. (2019) proposed a framework to evaluate the

various benefits (e.g., energy efficiency and product yield) of

smart manufacturing in TEA. For example, an automated

control system can aid to regulate the heating unit to compensate

for any change in the air and fuel condition in improving

energy efficiency (Nimbalkar et al., 2017). In addition, optimized

operation dependent on feed quality can achieve better product

quality and reduce defects, especially in metal heat treatment

(Edgar and Pistikopoulos, 2018). A semi-empirical model of

austenite properties and accurate controlled heat distribution

will result in fewer defects due to undesirable grain size.

Apart from the operational aspect of TEA in smart factories,

consideration of capital investment in network connectivity

for IoT is essential in TEA as well. Walia et al. (2017)

performed the TEA of the latest 5G wireless technology to

enable machine-to-machine (M2M) communication within the

industry ecosystem. This serves as a base-case for stakeholders

to strategize the capital required for future smart manufacturing.

In short, the adaptation of IoT plays an important role in future

manufacturing to achieve high-efficiency systems [i.e., energy

saving (Nimbalkar et al., 2017) and reduced defects (Edgar and

Pistikopoulos, 2018), etc.].

Apart from IoT inmanufacturing, the extensively researched

smart energy meter is no stranger to the lack of TEA review.

Among the few works of IoT TEA literature, Hidayati et al.

(2019) evaluated the economic performance of the network

infrastructure for smart energy metering. Due to the large-

scale connectivity required to establish smart energy metering,

the Narrow Band Internet-of-Things (NB-IoT) is reviewed for

its low-cost benefit for large-scale projects. For example, the

deployment of low bandwidth wireless networks in a large area

production facility is more economical compared to high-speed

small area wireless technology (i.e., the Latest 5G technology).

In addition to the limited TEA on IoT deployment in the energy

industry, an extension to blockchain (Galici et al., 2021) and

solar power (Spyrou et al., 2019) for energy saving in TEA is rare

in literature.

Overall, various TEA literature on IoT applications were

explored, but the rarity of these literatures to highlight

the economic benefit of IoT adaptation is concerning. For

instance, the economic comparison of implementing IoT

infrastructure to non-IoT counterparts or existing industry

is not explored to address the economic influence of IoT,

such as operational (i.e., energy-saving) and capital expenditure

(i.e., NB-IoT, 5G wireless network), in existing TEA literature.

Hence, future TEA works may consider the adaptation of IoT

infrastructure in their case study to address the economic gains.

Furthermore, the concept of IoT can be realized through the

utilization of these two technologies: big data analytics and

cloud computing. These technologies are explored in detail in

subsequent sections.

Big data analytics

According to Rajaraman (2016), big data analytics refer to

software or program that analyze relevant data from big data

(Figure 7). Big data is commonly described as massive sets of

data that are high in volume, velocity, and variety. While all

these data are equally valuable depending on the application, it

is essential to be able to decide based on data that are relevant

to us. Given how vast the amount of data is available in big data,

it may be difficult to process these data through conventional

means. This is where big data analytics comes into play. By

utilizing big data analytics, relevant solutions can be generated

to allow the user to make a sound decision. Leveling et al.

(2014) compiled the utilization of big data in supply chain

management for the purpose of optimization. Available data that

was compiled in a physical database can be outdated eventually,

hence, emphasizing the need to extract relevant data from big

data via big data analytics.
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FIGURE 6

TEA of IoT vs. non-IoT infrastructure.

FIGURE 7

Extraction of valuable information via big data analytics.

For instance, Coble et al. (2018) studied the application

of big data analytics in agricultural activities, where they

utilized big data analytics to obtain information for weather

forecast, prediction and selection of crop yield, irrigation system,

prediction of crop disease, and agricultural trade and policy. All

these studies were conducted in the past and had a sufficient

historical data based on a multitude of external factors. These

studied applications were related as they were all influenced

by external factors. Therefore, by utilizing big data analytics to

gather information based on these external factors, they were

able to obtain various correlated parameters, as well as external

factors (i.e., in their case, an external factor is the frequency of

rain) that may be difficult to quantify or track. In the context

of TEA, big data analytics can be utilized to gather relevant

information based on historical external factors, allowing the

usage of parameters that have overlapping properties, which

takes these external factors into account. These parameters

would provide more realistic output parameters from respective

TEA; generally optimized parameters do not take various

external factors into consideration.

Big data analytics can also be utilized to improve economic

factors based on consumers’ behavior. Le and Liaw (2017)

studied the effect of e-commerce factors (i.e., recommendation,

search information, reputation, privacy, etc.) on customer

behaviors. By understanding the effects of these aforementioned

factors and predicting the behavior of these customers,

corresponding actions can be performed to improve the

favorability of these responses. Hence, such big data-driven

decisions can provide economic benefits to the respective

processes, products, or services. Apart from agriculture and e-

commerce, big data analytics were also utilized in various fields,

such as healthcare (Wang et al., 2018), manufacturing operations

(Kumar et al., 2021), and logistics (Govindan et al., 2018; Yan

et al., 2019). All these analyses were to provide researchers
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with relevant data to make a decision. Based on the abundance

of key information that we can obtain via big data analytics,

researchers are encouraged to integrate the usage of big data

analytics in TEA. Big data analytics can be utilized to obtain

relevant input parameters from existing available data to be

utilized in their analyses, hence, leading to updated output

parameters. By having access to a wide array of relevant data

and trends extracted via big data analytics, these data can be

utilized for both the assessment of TEA and smart industries,

as well to increase gain and profit from the prediction of

customer behavior.

Cloud computing

Cloud computing is a technology that relies on accessing

resources or services through the internet (Sadiku et al., 2014).

Typically, software modeling and cost estimation are used

to evaluate the economic performance in conventional TEA

approaches, which are constrained by the data availability and

computational power when evaluating sophisticated systems

(i.e., supply-chain, market behavior, etc.). As illustrated in

Figure 8, the adaptation of cloud computing in TEA can

address the lack of computational power and further extend to

big data analysis. The primary objective of cloud computing

is the utilization of distributed resources to solve complex

computational problems. In TEA analysis, it is possible to

increase the rigidity of the result by introducing more complex

mathematical models. Nevertheless, it may be impractical to

do so with conventional methods (i.e., personal computers). A

usual approach to such a model is the usage of supercomputers,

which are not accessible to a vast majority of researchers. This is

where the usage of cloud computing shines, where researchers

can just utilize cloud computing to access powerful devices,

which are required to solve such models. This is also applicable

to computational problems that are less complex, due to the

parallelism nature of computers via cloud computing, where

mathematical problems were divided into multiple sections and

computed in a parallel manner (Fox, 2011). Cloud computing

can reduce the time required to solve problems that may take up

to hours or even days to mere minutes. In fact, researchers have

started to integrate the usage of cloud computing in scientific

applications in various fields. Notably, Wang et al. (2011)

utilized commercial cloud computing (EGS5) for modeling of

transport of electrons and photons in a heterogeneous medium

via the Monte Carlo methods. They found that the usage of

cloud computing reduced the time required to complete the

simulation from 2.58 h to 3.3min, with a local computer and

cloud computing, respectively. By utilizing cloud computing,

they were able to speed up the time required to solve the

computations by 47 times. Wu et al. (2017) studied the

effectiveness of cloud computing by utilizing commercial cloud

computing to solve complex models that had a degree of

freedom of eight million. They reported that Azure Cloud (32

cores) and Nimbix Cloud (16 cores) were able to speed up the

time required to solve the model by seven and times faster when

compared to a local computer (8 cores), respectively.

In another study by Berisha and Mëziu (2021), the

hybridization of big data analytics in cloud computing has been

investigated. The motivation for coupling big data analytics

with cloud computing is due to the limitations (i.e., storage,

data transfer, analytics tools, etc.) of traditional data processing

tools to handle big data analytics. This is due to big data

being an accumulation of an extremely large and complex

database. As cloud computing is considered the revolutionary

form of online servers, storage, analytics, and databases, its

incorporation with big data can resolve the aforementioned

limitations associated with the traditional data processing tools.

In short, cloud computing can provide a suitable environment

for a cost-effective and efficient big data analytics operation.

Given the ability of cloud computing to solve complex models,

researchers can perform TEA with rigorous complex models

and utilize cloud computing to solve them promptly while

being economically feasible (i.e., eliminating the need to invest

in advanced computation devices, such as supercomputers, to

conduct rigorous TEA), hence, generating output parameters

with better reliability while keeping the computation time

practical. Therefore, the integration of cloud computing into the

performed TEA, as well as assisting in the workflow for smart

industries, can be greatly beneficial.

Digital twin (DT)/cyber-Physical system
(CPS)

DT and CPS are both considered the future of industrial

systems (Haag and Anderl, 2018; Cimino et al., 2019; Blume

et al., 2020). DT is referred to as the virtual counterpart

of a physical system that allows replication of the system

in real-time for analysis purposes (Cimino et al., 2019),

while CPS are physical systems that are integrated with

smart technology (Törngren et al., 2017). These data-driven

technologies are typically employed in the production system

to replace manual labor for general tasks (i.e., maintenance

work, control systems, etc.) (Cimino et al., 2019). With an

automated system, the performance of TEA indicators can be

greatly improved via the cost reduction of manual labor. Some

of the past implementations of DT and CPS are discussed in the

following parts.

From a review conducted by Cimino et al. (2019), the

roles of DT and CPS in a production system have been

investigated. These roles include supporting the production

systemmanagement, monitoring and improving the production

process, supporting the lifecycle of a machine process, handling

the flexibility of a production system, providing for maintenance

purposes, aiding in safety operation, machine design, and data
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FIGURE 8

Conventional vs. Cloud assisted TEA.

collection. From the stated roles, these data-driven technologies

would not only be a great asset in the optimization of a techno-

economic state of a system but can aid in the analysis as well.

For example, DT can aid in the optimization of the process to

determine the lowest operation cost. To achieve this, DT can be

employed in conjunction with CPS to replace manual labor jobs

(i.e., maintenance work, control systems, etc.).

Blume et al. (2020) performed a case study with a

data-driven DT and CPS, as well as data mining, via the

cross-industry standard process for data mining (CRISP-DM)

procedure. The case study was performed on an industrial

cooling tower located in Germany, where they utilized the

framework to enhance understanding of the prediction of

performance. The usage of such a framework provides valuable

insights into the performance of the overall system, as well

as the reliability of the operation. In a case study conducted

by Li et al. (2020), they studied the usage of a DT platform

network by constructing a framework with five dimensions and

the coupling relationships of these dimensions. The purpose of

the framework is to assist enterprises in obtaining economic,

social, and environmental benefits. They performed a case

study on the constructed framework to study the dynamic

mechanism of “Haier” (a home appliance company), as well as

two other types of similar enterprises. They stated that with

this framework, enterprises will have the ability to eliminate

potential disadvantages that can arise when the focus is given

to just a single product life cycle. Comprehensive networks can

be formed as well, promoting upgrades that are sustainable. The

focal point of this study is the ability of DT to help collect,

transfer, and integrate fragmented knowledge in the industrial

system into the digital platform.

Although DT and CPS can offer numerous advantageous

features to the economic performance of a system, the

cost associated with the implementation of these data-driven

technologies is often overlooked. For example, numerous past

studies that have conducted TEA on DT (Xu et al., 2019;

Gerogiorgis and Castro-Rodriguez, 2021; Koulouris et al., 2021)

and CPS (Zhao et al., 2019) incorporated only processes, taking

into account the cost associated with production processes (i.e.,

equipment cost, contractor’s fee, etc.), while ignoring the cost

required to set-up these smart technologies. By ignoring these

costs, the accuracy of TEA in the smart manufacturing process

would be skeptical. Thus, to improve the integrity of future

feasibility studies of the smart manufacturing processes, set-

up costs associated with data-driven technologies should not

be abided.

Metaverse

The concept of metaverse was first introduced in 1992 but

has only recently gained a tremendous amount of attention

from the research industry (Jeon et al., 2022). The meaning of

Metaverse is self-explanatory, where “Meta” and “verse” translate

to “virtual” and “universe”, respectively (Han et al., 2021; Jeon

et al., 2022). The categories classifying this virtual universe are,

i.e., (i) an environment that reflects the real-world scenarios,

(ii) lifelogging features that allow everyday information to be

captured and stored, (iii) a virtual realm, in which one may

immerse themselves in a faultless virtual reality, and (iv) a type

of augmented reality that displays a combination of augmented

information in the real world (Jeon et al., 2022; Park and Kim,
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2022). From the aforementioned categories, numerous studies

have backed up Metaverse as a critical instrument that can be

used to perform daily and economic tasks in a unified manner,

which makes it a very suitable and potential tool for TEA (Han

et al., 2021; Ning et al., 2021).

From a study conducted by Choi (2022), the potential

of working in a Metaverse to reduce population pressure in

megacities was thoroughly investigated. In this study, it was

stated that numerous companies have started to adopt the

Metaverse concept to revolutionize their working environment.

By opting for telework in a Metaverse, an individual’s intention

to relocate to a more remote location away from megacities

is positively influenced. This leads to a significant population

pressure reduction inmegacities, which allows challenges related

to human health, safety, traffic congestion, and environmental

pollution to be overcome. This can also be adopted for

conventional process operations. By shifting from a physical

environment to a virtual environment, the performance of TEA

indicators (i.e., NPV, IRR, payback period, etc.) can be improved.

This can be caused by the reduction of the land size required

for accommodation (lower capital cost) and the omittance of the

high amount of manpower (lower labor cost). Other than that,

as majority of physical labor is shifted to a virtual environment,

hazards associated with operations and human health, especially

in the current post-pandemic era, can be significantly reduced.

This would further improve the economic state of the operation

as maintenance [ranges from 15 to 70% of the cost of goods

sold (Thomas, 2018) or 5 to 10% of indirect capital cost (Ng

et al., 2017)] and health care cost [coverage of up to 90% of

total treatment cost (Stoltzfus Jost, 2014)] can be lessened. In

addition, teleworking also allows an organization to evolve from

a fixed operation to a resilient system. This is an incredibly

crucial point as it would allow a worthful shift toward a smart

system, which is the future aim of most companies.

In addition, Kye et al. (2021) have also performed a review

on the possible application of Metaverse in education. Various

examples of Metaverse applications that have the potential

to be adopted for TEA have been presented. For example,

augmented reality has been implemented in medical education

to allow practicing surgeons to perform various surgery in

virtual reality. This can also be adopted for developing and

existing processes. Similar to the previous study, instead of

opting for a conventional non-telework environment (i.e.,

physical environment), operators, engineers, and managerial

teams can work in a virtual environment. This would lead

to a reduction in manual labor and capital investment costs.

Another adaptable feature of Metaverse is its lifelogging ability

(a variation of inner-world augmentation), which is the ability

to capture and store data via learning of daily routines of

owners with smart devices. Lifelogging has been adopted by

some of the most well-known social media providers, which

include Twitter, Facebook, and Instagram. In a TEA application,

this feature can be incorporated into a certain process for data

collection purposes. Metaverse can also be used in the developed

digital environment via its mirror world feature. Numerous

institutes have utilized this feature to develop digital lab that

has tremendously sped up research progresses. For example, the

University of Washington has deployed a digital lab to allow

players or interface users to investigate the optimal protrusion

structure of proteins. Within 10 days, the desired protein

structure was found, which has laid the foundation for an AIDS

treatment. A similar approach can also be applied in TEA, where

a case study to determine an optimal framework for an operation

to achieve maximum TEA performance can be developed. This

case study can then be uploaded on theMetaverse interface to be

solved by a group of players or interface users. Thus, aside from

the ability of Metaverse to provide a safe and low-cost operation

(by shifting to a virtual working environment) to work in, it has

the potential to effectively aid in TEA (via its mirror world and

lifelogging feature).

In another study conducted by Ynag et al. (2022), it is shown

that Metaverse can be incorporated with other data-driven

technologies (e.g., AI and blockchain) to develop a metaverse

economy. This idea stems from the view that Metaverse can

be considered as a full and self-contained economic system,

with the ability to carry out digital production-based economic

operations (i.e., creation, exchange, and consumption). This

metaverse economic concept has the potential to change the

conventional economic structure, which would, in turn, impact

the overall flow of TEA as well. For example, when shifting

to an entirely different economic system, different costing

parameters (i.e., digital labor cost, digital employment creation,

etc.) need to be developed. However, the development of a digital

economic system has its challenges. One of the challenges is

the requirement to construct a decentralized ledger or trading

system to facilitate efficient trading in the virtual environment.

Apart from that, the need to process a tremendous amount

of digital data is also a challenge. To resolve these problems,

blockchain and AI have been recommended as key enablers for

the respective barriers while Metaverse acts as the data or the

information provider. In this system, these three technologies

work in conjunction with one another, which is illustrated

in Figure 9. This suggests that Metaverse can be incorporated

with other data-driven technologies to enhance their respective

efficiency. To put it in another way, Metaverse has the potential

to be incorporated into the current data-driven TEA to further

enhance its analysis efficiency.

Conclusion

The arrival of IR 4.0 has revolutionized conventional fixed

operation in smart industries via the incorporation of data-

driven technologies (i.e., AI, blockchain, IoT, DT, CPS, and

metaverse). To maintain the data integrity of TEA in current

smart industries, a necessary evolution is crucial. Therefore,
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FIGURE 9

Collaborative system of metaverse, AI, and blockchain (Ynag et al., 2022).

studies have begun to incorporate data-driven technologies into

TEA. It was shown by past studies that the incorporation of data-

driven technologies can significantly boost the integrity of TEA.

To date, AI (i.e., GA and ANN) have been the most incorporated

data driven in TEA due to their ability to perform multi-

objective optimization on both processes and TEA indicators,

whereas blockchain has yet to receive extensive attention in TEA

but possesses notable potential, especially in data processing

operations. IoT and its applications (i.e., cloud computing and

big data analytics) have not been demonstrated in TEA yet,

but they have the potential to contribute toward improving the

process of TEA (i.e., enable rigorous computation of model

in performed TEA, extraction of relevant data to provide

parameters for TEA), as well as being a key component in smart

industries. On the other hand, the application of DT, CPS, and

metaverse is more toward the optimization of processes (i.e.,

replacement of manual labor with automated systems, shifting

of a physical working environment to a virtual environment,

etc.) instead of TEA itself. Apart from the incorporation of data-

driven technologies into TEA, the inclusion of cost required to

set up smart industries in future TEA is critical. To the best of the

authors’ knowledge, the costs associated with smart industries

set-up (i.e., cloud computing network, CPS framework, etc.)

have never been included in TEA, which would result in an

inaccurate analysis that could not represent the actual form of

modern industry. All in all, this review aims to emphasize the

urgency and necessity of revolutionizing the conventional TEA

framework. It is essentially a reference note for future process

engineers who wish to perform reliable TEA in the advanced era.
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