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Addressing the urgent need for more energy-e�cient separation technologies

is paramount in reducing energy consumption and lessening environmental

impact as we march toward a carbon-neutral society. The rapid progression of

AI and its promising applications in separation science presents new, fascinating

possibilities. For instance, AI algorithms can forecast the properties of prospective

new materials, speeding up the process of sorbent material innovation. With the

ability to analyze vast datasets related to processes, machine learning driven

by data can enhance operations to reduce energy wastage and improve error

detection. The recent rise of Generative Pretrained Transformer models (GPT) has

motivated researchers to construct specialized large-scale languagemodels (LLM)

based on a comprehensive scientific corpus of papers, reference materials, and

knowledge bases. These models are useful tools for facilitating the rapid selection

of suitable separation techniques. In this article, we present an exploration of AI’s

role in promoting sustainable separation processes, covering a concise history of

its implementation, potential advantages, inherent limitations, and a vision for its

future growth.
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Introduction

Since its release in late 2022, ChatGPT, an autonomous machine-learning system and

large language model (LLM) developed by Open AI in San Francisco, CA, USA, has taken

the world by stormwith its remarkable performance and unparalleled capabilities to produce

sophisticated and seemingly intelligent writing after training on a massive data set of

text (Hu, 2023). If we consider the history of artificial intelligence (AI), three prominent

milestones emerge: Deep Blue’s defeat of Garry Kasparov in a chess tournament in 1997,

Watson’s triumph on the game show “Jeopardy!” in 2011, and AlphaGO’s unexpected victory

in 2016 (Venkatasubramanian, 2019). The emergence of ChatGPT could be viewed as the

fourth milestone, representing the first time that AI technology has become widely available

and advanced enough to be perceived and utilized by the public. Despite the ongoing

concerns surrounding its usage (Thorp, 2023), the incorporation of machine learning-based

AI in the development of new technologies has been imperative (van Dis et al., 2023) and

yielded tremendous benefits for over a decade in a variety of fields, such as drug discovery,

materials science, and geology (Bergen et al., 2019; Hong et al., 2020; Dara et al., 2022).
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The separation process, which involves eliminating impurities

from raw materials, separating products and by-products, and

purifying water and air effluents, constitutes more than 40%

of the energy demand in the chemical process industries (CPI)

(Humphrey and Siebert, 1992; Kiss and Smith, 2020). The

development of sustainable separation processes plays a pivotal role

in achieving economic and environmental sustainability, and AI

has the potential to dramatically facilitate this process by addressing

the limitations of mechanistic modeling through its ability to learn

complex behaviors, enable cost-effective model development, and

offer optimization advantages (Li et al., 2021).

This article begins by providing a brief history of using AI in

separation. It then delves into AI’s potential to drive sustainable

separation technologies’ development. Finally, the limitations of AI

are highlighted, and an outlook for its growth is presented. The goal

of this article is to give a comprehensive understanding of AI’s role

in the advancement of sustainable separation processes.

History of AI in separation process
development

In fact, the use of AI to solve separation-related problems

is not recent news (Quantrille and Liu, 2012); as early as 1983,

researchers from Carnegie Mellon University developed an expert

system called CONPHYDE (CONsultant for PHYsical property

DEcisions) to predict the physical properties of complex fluid

mixtures (Banares-Alcantara et al., 1985). This era is regarded

as Phase I: (∼1983 to ∼1995) of AI in chemical engineering

(Venkatasubramanian, 2019). In the post-1990 era, a critical

transition occurred in artificial intelligence applications, marking

the inception of Phase II (∼1990 to ∼2008). This transition

involved a shift from the top-down design paradigm employed by

expert systems to the bottom-up paradigm embodied by neural

networks. The neural network approach possesses the inherent

capacity to autonomously derive knowledge from substantial data

sets, thereby streamlining the processes of model maintenance

and development, and was found to be capable of accurately

modeling complex membrane separation processes (Niemi et al.,

1995; Bowen et al., 1998a,b). Throughout Phase I and II, spanning

two decades of focused endeavors, the implementation of AI has

failed to produce the expected transformative outcomes within

the realms of separation process development and the broader

field of chemical engineering. This may be attributed to various

factors, including insufficient data, limited data accessibility,

inadequate computational power, and lack of programming

environments/paradigms (Schweidtmann et al., 2021). Today,

with the emergence of essential technologies represented by

convolutional neural nets (CNNs), reinforcement learning, and

statistical ML, as well as hardware advances, especially GPU

computing, which brings cheap and powerful computing power,

the AI application has entered deep learning and the data science

era (Venkatasubramanian, 2019). In Phase III (2005–Present), the

rise of bottom-up, data-driven strategy for knowledge acquisition

andmodeling hasmade it much easier to address more complicated

“big data” domain problems. With the technology push and

industry pull, AI offers new possibilities to overcome pressing

challenges in the traditional separation process (see Figure 1).

Perspective of AI in sustainable
separation process development

In 2016, Sholl and Lively identified seven representative

chemical separation processes that, if improved, could achieve

significant global benefits (Sholl and Lively, 2016). These challenges

include separating hydrocarbons from crude oil, uranium from

seawater, alkenes from alkanes, greenhouse gases from diluted

emissions, rare earth metals from ores, benzene derivatives from

each other, and trace contaminants from water. To address those

challenges, the traditional separation techniques, such as multistage

distillation and differential temperature adsorption, often incur a

large carbon footprint and processing costs when employed (Shao,

2020). Developing efficient and low-energy separation technologies

independent of liquid phase changes is considered to be the

key to reducing carbon emissions in the chemical industry, and

AI will contribute to the advancement of sustainable separation

technologies in the following ways (see Figure 2).

Physicochemical property prediction of
complex mixtures

Knowledge about the physicochemical properties of chemicals

and their mixtures is crucial for new separation process design.

Complex mixtures, such as lignin depolymerization products,

crude and renewable oils, etc., require decomposition into more

detailed components before property calculations. Despite the

variety of reconstruction methods, it is still difficult to accurately

calculate the properties of mixtures, such as boiling point, density,

and viscosity (Deniz et al., 2018). For certain complex feedstocks,

like plastic waste pyrolysis oils containing large amounts of highly

reactive olefins, it is almost impossible to experimentally determine

the physical properties due to the reactivity of this mixtures (Daothi

et al., 2021). Integrating a machine learning approach to correlate

the physicochemical properties of mixtures with the molecular

properties and molecular structures of individual compounds can

potentially obtain more accurate predictions than existing methods

(Dobbelaere et al., 2022). And this is of great importance to improve

the hydrocarbon separation of crude oils containing many complex

molecules, both in terms of developing new technologies and

optimizing the operating conditions of existing units.

Membrane technology

Implementing advanced membrane separation technology

leads to a more sustainable process that significantly lowers energy

consumption and carbon footprint, exceeding the efficiency of

traditional distillation methods in separating and purifying many

compounds (Sholl and Lively, 2016). However, the challenge of

accurately predicting the structure-process-property relationship

for the effective design of new membranes with desired properties

has impeded the progress of membrane technology. This is

attributed to the high dimensional features in membrane design,

including intrinsic information like chemical structure, pore size,
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FIGURE 1

History of AI in separation process development.

and surface area, extrinsic conditions like reaction temperature,

concentration, and pH, the difficulties posed by the vast

design space of potential materials in screening, and the added

complexities of physics and chemistry involved in complicated

membrane systems (Yin et al., 2022). The remarkable capability

of machine learning to process massive and high-dimensional data

shows great potential for hastening the advancement of membrane

technology at various stages, including membrane design (Barnett

et al., 2020; Guan et al., 2022), fabrication (Fetanat et al., 2021; Gao

et al., 2021), and operation (Rall et al., 2020). For separating alkenes

from alkanes, the membrane technology is considered the most

promising approach. However, the current state of the technology

is insufficient for bulky separation and necessitates the use of

cryogenic distillation for further refinement of the products (Chen

et al., 2022). Additionally, scaling up the membrane technology

to meet industrial demands, which may require surface areas of

up to 1 million square meters, presents a significant challenge

that requires new manufacturing methods and advancements in

material properties. AI has the potential to play a crucial role in

overcoming these hurdles.

Adsorption technology

Adsorption technology is a promising solution for large-

scale industrial separations of dilute streams due to its low

energy requirements and favorable economics. Over the past

two decades, adsorption technology has seen significant growth

with the development of new adsorbents and modifications of

existing adsorbents in compositions, structures, and functions.

The technology has been utilized to address complex separation

challenges, such as isomer separation (e.g., xylene, cresol, and
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FIGURE 2

Perspective of AI in sustainable separation process development.

toluene), CO2 capture, water treatment, uranium extraction from

seawater, and the recovery of Rare Earth Elements (REEs) (Mandal

and Kulkarni, 2011). The integration of AI, such as advanced

machine learning algorithms, has the potential to further improve

the design and optimization of adsorbent materials. For instance,

Metal-Organic Frameworks (MOFs), a newly discovered class

of porous crystalline materials composed of multimetallic units

and organic linkers, can be functionalized for CO2 separation,

particularly in the removal of CO2 from CO2/H2 (pre-combustion

carbon capture), CO2/CH4 (natural gas purification), and CO2/N2

(post-combustion carbon capture) mixtures (Mandal and Kulkarni,

2011). However, the synthesis of novel MOF structures still

necessitates researchers to rely on their expertise and adopt a

trial-and-error methodology. Applyingmachine learning to predict

synthesis parameters for a target MOF crystal structure, based

on scientific literature and high throughput experimental data,

could substantially advance and expedite the chemical synthesis

process (Luo et al., 2022). LanM, a protein-based biosorbent,

can recover REEs from e-waste and lignite leachates. It has

demonstrated exceptional selectivity for lanthanides with over

one million times higher than that for other ions (Dong et al.,

2021; Ye et al., 2023). However, LanM is currently unable

to facilitate the separation of individual lanthanides from one

another, necessitating further optimization of protein selectivity to

attain this objective. Employing machine-learning-guided directed

evolution in protein engineering enables the enhancement of

protein functions. Machine-learning methodologies facilitate the

prediction of sequence-to-function mapping in a data-driven

manner, circumventing the need for comprehensive models of

the underlying physical or biological pathways. By learning from

the properties of characterized variants, these approaches could

expedite directed evolution, utilizing the acquired information to
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select sequences more likely to exhibit improved properties (Yang

et al., 2019).

Extraction technology

Liquid-liquid extraction (LLE), also known as solvent

extraction or partitioning, is a widely employed separation

technology in numerous scientific and industrial applications. The

technique is based on the differential solubility and partitioning

of solutes between two immiscible liquid phases, typically one

aqueous phase and one organic phase (Cantwell and Losier, 2002).

The choice of solvent is critical to the LLE process, as it directly

affects the partition coefficient and, consequently, the extraction

efficiency. The ideal solvent should possess high selectivity for the

target solute, low miscibility with the other phase, low toxicity, and

ease of recovery (Gmehling and Schedemann, 2014). Currently,

there are two main approaches to solvent selection: the use of

experimental thermophysical properties stored in a database

for reliable results with limited solvent selection and the use of

prediction models or empirical methods for a broader range

of solvents with lower accuracy in predicted separation factor

(Piccione et al., 2019). In the case of mixed solvent extraction,

extensive experiments are often necessary to determine the optimal

solvent system. For instance, centrifugal partition chromatography

(CPC), an emerging liquid-liquid preparative chromatographic

separation technique used in pharmaceutical and natural product

purifications, frequently requires a solvent system with three

or more components (Lorántfy et al., 2020). When applied to

complex feedstocks, such as lignin depolymerization products,

multi-stage hybrid solutions with various components are essential

to achieve the desired outcomes (Alherech et al., 2021). AI presents

considerable potential for enhancing the intricate solvent selection

process. The training dataset can be accessed and curated from a

myriad of published sources, including academic journals, printed

handbooks, and online repositories. Machine learning can be

employed to construct quantitative structure-property relationship

(QSPR) models, which link the molecular structure of solvents

and solutes to their physicochemical properties and extraction

performance which predict the behavior of untested solvent-solute

combinations, offering insights into the most promising solvents

for specific extraction tasks (Kern et al., 2022). Combined with

optimization algorithms, AI can facilitate the exploration of

multi-dimensional solution spaces and identify optimal trade-offs

between competing objectives, such as extraction efficiency,

selectivity, environmental impact, and cost.

Process optimization and fault detection

Upon transitioning a high-efficiency separation method from

laboratory-scale validation to industrial-scale implementation,

the process complexity increases substantially. A simple step

performed at the bench scale may result in a unit operation

with numerous operating parameters during the scaling-up

process. Considering this, developing a comprehensive tool that

can effectively simulate and optimize processes to minimize

energy losses and optimize separation efficiency is imperative.

Even a 1% improvement in energy consumption can result in

substantial economic and environmental benefits. The traditional

mechanistic-based methods relied on chemical, fluid-mechanic,

and thermodynamic laws, which require a deep understanding

of the underlying physics. However, this conventional approach

is complex and computationally demanding due to the highly

nonlinear nature of the process parameters and output.

In contrast, the data-driven machine learning approach could

provide a similar level of detail and accuracy as mechanistic-

based methods by utilizing readily available process data, with a

significantly reduced computational effort (Rahimi et al., 2021).

Another process-level area where AI can be highly effective is

fault detection and diagnosis (Tian et al., 2020), an application

scenario that garnered significant interest from the industry

during its early stages (Venkatasubramanian, 2019). The abnormal

conditions in separation processes are often masked by factors

such as compensatory controls, measurement errors, and operator

ignorance. Currently, the primary methods for identifying faults

in abnormal operating conditions still rely on human experience,

making it difficult to accurately and quickly detect abnormalities,

potentially leading to incorrect decisions, improper actions,

and even hazardous incidents (Van Hardeveld et al., 2001).

By analyzing the complex and nonlinear relationships between

processing parameters, machine learning algorithms can improve

fault detection by identifying relevant features or combinations of

features that indicate abnormal behavior even before it occurs.

Beyond the advancement of specific separation technologies,

AI has the potential to make substantial contributions to the

resolution of challenges at the system level of separation processes.

Selecting suitable separation techniques, for instance, is a complex

task requiring meticulous contemplation of various parameters.

These include the physical and chemical attributes of the substance

undergoing a separation, operational conditions, efficiency, cost,

environmental restrictions, and prevailing regulatory standards.

Machine learning algorithms can be leveraged to examine these

properties of the subject substance and establish correlations with

the performance of diverse separation techniques. This potential

opens the door to rapid, high-throughput examination of feasible

technologies—a process that, in traditional approaches, could be

laborious and time-consuming. By integrating AI into the system-

level design and decision-making processes, we can therefore

expect substantial enhancements in the efficiency and effectiveness

of separation system design and operation.

Limitations and outlook

While AI has shown significant promise in revolutionizing

various aspects of sustainable separation process development,

several limitations must be considered.

Data availability and quality

Knowledge acquisition and modeling using deep convolutional

networks, reinforcement learning, and statistical learning are

primarily bottom-up, data-driven strategies that require large
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amounts of data to achieve satisfactory results. This data

requirement may not pose a significant challenge for some

technologies development, such as adsorbent materials design,

zeolite (Baerlocher and McCusker, 2023), and MOF (Groom et al.,

2016), which already have extensive databases with comprehensive

information that can serve as a training set. As for process-level

optimization, data could be achieved by utilizing vast amounts of

historical data or through direct simulation using process software.

But it should be noted that this field is not exactly a “big data”

domain. The data points generated from a complex laboratory

separation process are typically at a slow pace and are frequently

reported in an inconsistent manner in the literature.

Moreover, due to commercial considerations, some high-

value data are kept in the databases of industry companies and

may not be readily accessible to the public. To address the

data shortage, accelerating the laboratory’s automation, promoting

high-throughput experimental techniques, and gradually creating

a unified data platform for storing and sharing data related

to the separation process could be effective solutions. Also,

multi-party validation could be utilized to create a high-quality

training set, ensuring the removal of incorrect data points and

reducing inaccuracies.

Interpretability and explainability

AI models, especially the deep learning models, can be

considered “black boxes” due to their complex and inscrutable

decision-making process. However, the separation process is

governed by fundamental laws and principles of physics, chemistry,

and biology. The lack of transparency in AI models may impede

the generation and transfer of this fundamental knowledge. This

makes it challenging to incorporate domain-specific expertise

and principles into the model, which results in suboptimal

solutions. Considering the stringent safety requirements of

industrial separation processes, the inability to explain AI solutions

raises concerns about reliability and complicates the task of

meeting regulatory requirements. In the future, AI should

aim to create more comprehensive systems that go beyond

purely data-driven methods. This can be achieved through the

integration of Explainable AI (XAI) techniques such as Local

Interpretable Model-agnostic Explanations (LIME) or Shapley

Additive Explanations (SHAP) and the use of hybrid models that

blend data-driven processing with first principles-based knowledge.

This approach will not only enhance the decision-making process

but also provide insights into how decisions are made, explain

the underlying causes, and allow for specialized knowledge in

specific domains.

Human usability

In addition to the advancements in technology, AI presents

new challenges to the people who utilize it, particularly in

the field of separation technologies. Experts in this field

typically come from experimental disciplines, including chemical

engineering, chemistry, materials science, and biology. Most have

not received systematic training in artificial intelligence during

their academic pursuits, although their mathematical, statistical,

and programming skills may be helpful inmastering AI technology.

As the low-hanging fruit in this field is harvested, gaining a deeper

understanding of machine learning, transitioning from merely

knowing how to use AI to understand why AI is solving problems

in specific ways, will become essential for further progress. Just as

process experts should not ignore learning about partial differential

equations despite the popularity of commercial process software,

mastering the underlying principles of AI is crucial.

Conversely, AI methods tailored to this specific area should

be made available to researchers in a more user-friendly and

accessible form. There is no need to solve partial differential

equations manually when process software can provide solutions

in a much easier way. Similarly, offering easy-to-use AI tools can

help researchers focus on their core expertise and drive innovation

while maintaining a strong human presence in decision-making.

Conclusion

In 1950, when Alan Turing posed the question, “Can machines

think?” (Krach et al., 2008), many people considered it a distant

dream. However, by 2023, OpenAI’s GPT-4 has made remarkable

advancements, showcasing its capabilities by passing the bar exam

(Katz et al., 2023), outperforming 90% of humans on the SAT

(Leswing, 2023), and even persuading skeptics of the rapidly

approaching era of AI integration into daily work and study. In

fact, the next generation of scientists and engineers is already

getting a head start on embracing AI technology, albeit in a way

that educators may not appreciate (Nancy Loo, 2023). Separation

processes, a field dating back to early civilizations when humans

sought to process food and pharmaceutical products, now span

all manufacturing industries and account for 22% of all in-

plant energy use in the United States (Angelini et al., 2005).

Developing novel, high-efficiency separation technologies is crucial

for reducing energy consumption and environmental footprint in

pursuit of a carbon-neutral society. Rapid advancements in AI and

its application in this essential field offer exciting opportunities,

such as the better design of sorbent materials, improved selection

of extraction solvents, and optimized process operating conditions.

By harnessing the power of AI, researchers, and engineers have

the potential to revolutionize separation processes, transform

industries, and contribute to a more sustainable future.
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