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Functional recovery of a 41-year-
old quadriplegic spinal cord injury
patient following multiple
intravenous infusions of
autologous adipose-derived
mesenchymal stem cells: a case
report
Ridhima Vij1* , Hosu Kim2, Hyeonggeun Park2, Thanh Cheng1,
Djamchid Lotfi1 and Donna Chang1,2

1Clinical Research, Hope Biosciences Research Foundation, Sugar Land, TX, United States, 2Cell
Production, Hope Biosciences, Sugar Land, TX, United States

Spinal cord injury (SCI) is a debilitating disease with clinical manifestations ranging
from incomplete neurological deficits affecting sensory and motor functions to
complete paralysis. Recent advancements in stem cell research have elucidated
the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of
patients with SCI. Here, we present a case of a 41-year-old quadriplegic male
individual who experienced a traumatic C-5 incomplete SCI, after slipping off a
boat in Florida Keys on August 4, 2017. He was diagnosed with C5–C6 Grade 2
anterolisthesis with flexion teardrop fracture of the anterior C6 with jumped facet
on the right and perched facet on the left at C5–C6 with spinal canal stenosis. On
September 12, 2019, an Individual Expanded Access Protocol was approved for
administration of multiple infusions of autologous, adipose-derived MSCs (adMSCs)
for the treatment of this quadriplegic incomplete C5-6 SCI patient. Thirty-four (34)
recurrent infusions each with 200 million cells were administered, over a period of
∼2.5 years, which resulted in significant improvements in his quality-of-life as
demonstrated by substantial improvements in SCIM-III (Spinal Cord Independence
Measure III) scores. Additionally, electromyography/nerve conduction velocity
(EMG/NCV) studies showed improvements in the patient’s motor and sensory
function. No safety concerns were presented, and no serious adverse events were
reported during the entire course of treatment. Multiple intravenous infusions of
autologous HB-adMSCs for treatment of SCI demonstrated significant
enhancements in the patient’s neurological function with improved quality-of-life.
Further research is needed to evaluate the results of this study.
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1. Introduction

Spinal cord injury (SCI) is a chronic neurological disorder caused by damage to the

spinal cord leading to disruption of neural circuitry that may cause temporary or

permanent, motor, sensory or autonomic dysfunctions. SCI is a debilitating disease

affecting more than 1 million people in the United States alone, with approximately
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17,000 new cases occurring every year (1). Individuals who sustain

SCI suffer from varying degrees of impairments that adversely

affect their quality-of-life.

The pathophysiology of SCI involves an intense inflammatory

response, with elevated levels of cytokines and pro-inflammatory

mediators. The instantaneous primary injury event involves

mechanical trauma to the spinal cord and its components that sets

into motion a local and systemic response with both acute and

chronic effects. This massive biochemical cascade contributes to a

wide range of pathological events that serve as a substrate to

secondary degeneration involving neurotoxicity, vascular dysfunction,

glial scarring, neuroinflammation, apoptosis and demyelination (2–6).

Despite substantial advancements in our understanding of the

complex pathophysiology of SCI, completely restorative treatments

and neuroprotective resources for SCI management are limited.

However, several pre-clinical studies have demonstrated the

regenerative potential of Mesenchymal Stem Cells (MSCs) in the

establishment of spinal cord repair protocols (7–9). In addition to

their ability to differentiate into mesodermal lines, MSCs also

possess the potential to differentiate into the cells of neural lineage,

including neurons and glia (10). Through their paracrine activity,

MSCs have also been demonstrated to exert their regenerative

effects by secreting a broad range of bioactive molecules including

cytokines and growth factors that contribute to immunosuppression,

apoptosis inhibition, enhanced angiogenesis, and myelination (11).

Moreover, MSCs release anti-inflammatory molecules that may

protect damaged tissues (12). The efficacy of MSCs in ameliorating

SCI has also been shown by a few clinical trials. These studies

demonstrated transplantation of MSCs resulted in motor and

sensory improvements as well as improvements in the quality-of-life

of patients with SCI (13, 14). In addition, MSCs derived from

multiple sources have been shown to promote axonal regeneration,

thereby improving both neurological function and the American

Spinal Cord Injury Association (ASIA) grade of SCI patients (13,

15–17). In this case study, multiple infusions of fresh, autologous,

culture-expanded, adipose-derived MSCs were administered to a 41-

year-old quadriplegic male individual with an incomplete C5–C6

SCI, with an objective to improve his overall quality-of-life.
2. Case presentation

2.1. Case history

Here, we report a case of a 41-year-old male individual who

experienced a traumatic C-5 incomplete SCI more than 5 years

prior, on August 4, 2017, when he slipped off a boat while in the

Florida Keys for a family wedding and was immediately unable

to move his legs. He was diagnosed with a C5–C6 Grade 2

anterolisthesis of C5 on C6:7 mm, with flexion teardrop fracture

of the anterior aspect of C6, as well as jumped facet on the right

and perched facet on the left at C5–C6 with spinal canal stenosis

with cord compression, as well as with aspiration and near

drowning. Post-injury, the subject was immediately started on a

hypothermia protocol to reduce spinal cord edema. His hospital

course got complicated by aspiration pneumonia. He was
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discharged to Texas via air ambulance for physical rehabilitation

on August 23, 2017, with a diagnosis of ASIA B C-5 SCI. He

underwent anterior cervical discectomy and fusion (ACDF) of

C5–C6 and reduction of jumped facets for inpatient PT/OT and

finally outpatient PT/OT in Texas. At the final discharge in

January 2019, muscle testing scores were compared to April

2018, which revealed no change. Also, his neurological

assessment conducted at the discharge revealed normal sensation

to light touch and temperature. Extraocular muscles exhibited no

signs of dysfunction, and all cranial nerves (2nd through the

12th) were found to be intact. Muscle strength in the upper

extremities was graded as 5/5, while in all other areas, it was

noted as 0/5. His reflexes were brisk and graded as 2+ in the

upper extremities and 2+ in the ankles. Additionally, the patient

demonstrated an absence of rectal tone.

Functionally, this subject was able to self-propel his manual

wheelchair and, self-cath his bladder with set-up, but relied on

family for suppository insertion necessary for bowel movements,

and was concerned about incontinence when he was out, because

he could not sense the need to defecate until it was immediate. He

was unable to operate a modified vehicle and was dependent on

family for transportation. Since September 2017, he had required

the following medications to manage spasms, pain, and bowel

elimination: Baclofen (20 mg) 2 times daily, Methocarbamol

(750 mg) 3 times daily, Diclofenac sodium (50 mg) 3 times daily,

Senna (8.6 mg) daily prn as needed for bowel movement and

Dulcolax suppository as needed if no bowel movement.

There were not many restorative treatment options available

for the patient. Under an Individual Patient Expanded Access

Protocol, a request was submitted to the FDA, with a primary

goal to improve the quality-of-life of this quadriplegic incomplete

C5-6 SCI patient. On September 12, 2019, Institutional Review

Board (IRB) approved intravenous administration of multiple

doses of autologous, Hope Biosciences adipose-derived MSCs

(HB-adMSCs) for the treatment.
2.2. Isolation and culture of adipose-derived
MSCs

For the isolation of HB-adMSCs, first fat extraction was

performed by a licensed physician from the patient’s abdomen. The

extract was then tested by the quality control unit at Hope

Biosciences LLC., for USP71 sterility and mycoplasma due to

possible contamination from the fat extraction procedures, followed

by centrifugation to phase-separate the adipose tissue. A total of

7 ml adipose tissue was then treated with collagenase to isolate

stromal vascular fraction (SVF). Cells from the SVF were plated in

Hope Biosciences’ HB-103 medium to establish a P0 culture. The

resulting adherent cells were further cultured with HB-101, Hope

Biosciences’ growth medium. Cells were cryopreserved at passages

#0, #1 and #2 to create a complete cell bank for the patient and an

aliquot of #2 culture supernatant was cleared by the quality unit for

USP71 sterility, mycoplasma, and endotoxin. For infusions, passage

#2 cells were thawed, recovered in passage #3, and cultured to

passage #4 (Figure 1). A total of 34 infusions (manufactured from
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FIGURE 1

Passage 4 culture images for all 34 infusions. Images were taken with a Leica inverted microscope at 50× magnification. Color variation is due to flask wall
thickness, angle, and light. * The product released for infusion #14 was lower than the minimum dose requirement (200 million live cells ±20%) due to the
product material harvested at sub-confluency.
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the cell bank created for the patient and freshly harvested from

passage #4), each with 200 million ± 20% MSCs mixed in 250 ml of

0.9% sterile sodium chloride were administered intravenously, over

a period of ∼2.5 years (Table 1).

Before administration of cells, each infusion product underwent

cGMP-compliant quality control standard assessments, which

included viability; appearance; sterility; gram staining;

mycoplasma; endotoxin; and cell identity/purity as indicated by

MSC defining surface markers to ensure a standardized product is

delivered for each treatment. All HB-adMSCs were positive for

CD73 and CD29, and negative for CD45 and CD31 (Table 1).
Frontiers in Transplantation 03
2.3. Results

Since the start of HB-adMSC therapy on October 11, 2019,

improvements were seen in the subject’s dexterity of fingers and

hands, with observed improvements in his hand grip. Following the

first few infusions, the subject began to operate his modified vehicle

that eliminated his need to depend on his family for travel. He

continued to show progress with the sustained MSC therapy and

showed remarkable improvements in his quality-of-life. His

sensation for bladder awareness improved which allowed him to

catheterize himself based on need, as opposed to every 4 h
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TABLE 1 Infusion details for all 34 infusions with MSC quality control metrics.

Infusion # Date of administration (month/day/
year)

Total cell count
(million)

Cell viability
(%)

CD73
(%)

CD29
(%)

CD31
(%)

CD45
(%)

1 10/11/19 205 98.46 98.69 99.97 0.24 0.10

2 10/25/19 224 93.33 96.86 99.95 0.22 0.04

3 11/08/19 240 94.25 97.90 99.92 0.07 0.08

4 11/22/19 178 94.87 98.12 100.00 0.10 0.11

5 12/06/19 166 94.55 99.47 99.99 0.17 0.16

6 12/20/19 186 98.31 94.82 99.96 0.05 0.15

7 01/3/20 195 96.06 97.66 99.96 0.04 0.06

8 01/17/20 200 96.03 90.17 99.92 0.09 0.09

9 01/31/20 131 97.62 99.00 99.96 0.14 0.08

10 02/14/20 232 98.64 98.50 99.91 0.31 0.05

11 06/24/20 240 95.18 95.01 99.69 2.16 0.07

12 07/24/20 240 95.24 93.89 99.97 0.06 0.00

13 08/21/20 224 95.89 96.23 99.88 0.00 0.03

14 10/02/20 99.2a 95.38 99.62 100.00 0.00 0.04

15 10/30/20 240 95.35 97.11 99.87 0.00 0.07

16 11/13/20 240 94.50 94.99 99.73 0.20 0.00

17 12/11/20 240 98.28 98.11 99.89 0.00 0.00

18 01/08/21 240 97.66 95.87 99.90 0.00 0.02

19 02/05/21 240 98.32 92.64 99.91 0.02 0.07

20 03/05/21 211 95.65 88.89 99.87 0.00 0.00

21 04/02/21 240 96.67 83.57 84.62 2.28 0.51

22 04/30/21 240 95.63 98.21 99.89 0.02 0.15

23 05/28/21 240 96.91 95.32 99.88 0.00 0.16

24 06/25/21 182 95.00 92.04 99.40 0.02 0.05

25 07/23/21 240 99.29 99.28 99.90 0.00 0.34

26 08/20/21 240 94.53 98.63 99.91 0.00 0.24

27 09/17/21 240 98.86 94.52 100.00 0.05 0.02

28 10/15/21 240 96.49 91.01 99.87 0.02 0.05

29 11/12/21 205 96.97 97.88 99.94 0.00 0.45

30 12/10/21 240 96.30 95.52 99.86 0.00 0.24

31 01/7/22 221 98.57 99.66 99.72 0.00 0.19

32 02/23/22 240 98.95 96.37 100.00 0.00 0.85

33 03/09/22 240 96.70 98.87 100.00 0.00 0.79

34 04/29/22 205 96.94 99.52 99.97 0.00 0.19

aLow cell-count due to cell growth. MSCs are expected to be positive for CD73 and CD29 and negative for CD45 and CD31 cell surface markers.
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previously. Also, his sensation for defecation improved which

eliminated incontinence accidents and the use of suppositories that

he needed in the past. With recurrent HB-adMSC treatments, he

showed considerable improvements in his hands and arms with

some improvements in his left leg that had led to a change in his

condition from a quadriplegic to a partial paraplegic. The subject

began to have increased sensation in his trunk and thighs and was

able to voluntarily lift his left leg 8–10 inches from the wheelchair

foot at the knee, dorsiflex his left foot, and push up on his toes. He

was also able to wiggle the toes of his right foot and was able to go

fishing (raising his arms over his head to cast). Post-intervention,

the subject discontinued all his medications, and he could even

stand without support for brief periods of time.
2.3.1. SCIM-III scores
Evaluation of changes in the patient’s ability of daily living was

assessed using a clinician administered spinal cord injury disability

scale, Spinal Cord Independence Measure (SCIM-III). SCIM-III

scores were calculated using both investigator’s assessments as well as

patient’s self-assessments at multiple visits during the whole treatment
Frontiers in Transplantation 04
period. Measures of the SCIM scores demonstrated functional

improvements as early as after the administration of ∼10–12 HB-

adMSCs infusions (Figure 2). As per investigator’s SCIM-III

assessment, the subject started at a score of 70, that increased to a

score of 79 by the end of the study (EOS), after administration of 34

intravenous infusions of HB-adMSCs (∼13% increase from the

baseline; Figure 2A). Similar improvements were observed in the

subject’s self-evaluation SCIM scores (∼17% increase from the

baseline; Figure 2B).
2.3.2. Magnetic resonance imaging (MRI),
electromyography (EMG) and nerve conduction
velocity (NCV)

To visualize the progression of the spinal cord injury over the

course of the treatment period, MRIs were conducted at baseline,

after infusion #17, and at the end of the study (EOS)-after

infusion #34. Vertebral fusion at C5–C6 with central disc

herniation at C4–C5 was reported in all MRIs with no significant

changes at the EOS compared to baseline. Moreover,

hypersensitivity in a lesion at C5–C6, indicative of myelomalacia,
frontiersin.org
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FIGURE 2

(A) SCIM-III scores as evaluated by the investigator, and (B) subject’s self-evaluation assessment, measured at multiple infusion timepoints and at the end
the study, after administration of 34 HB-adMSC infusions. SCIM-III, Spinal Cord Independence Measure III; EOS, end of study.
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was reported in all MRIs. Although no significant changes were

observed between MRI reports at baseline and at EOS, however,

there might be an indication of subtle improvement. As observed

on the sagittal images, there was a slight decrease in craniocaudal

length of T2 abnormality at the EOS, by approximately 2 mm,

when compared to baseline (Figure 3A). Also, on the axial

images (Figure 3B), there is a suggestion that the non-edematous

cord was slightly thicker at the EOS compared to baseline,

although this evaluation is limited by the limited number of axial

slices through the lesion on both exams.

To access functional changes in the recovery of voluntary

movements, needle electromyography (EMG) and Nerve

Conduction Velocity (NCV) studies were performed at multiple

time points: infusion#1 (baseline) and subsequently after infusions

#11, #17, #23, #29, and at EOS. The initial EMG/NCV report at

baseline (Infusion #1) revealed electrophysiological abnormalities,

including moderate chronic axonal injury at the C5–C6 and C6–

C7 nerve roots bilaterally, moderate chronic right median motor

and sensory neuropathy from the wrist to palm, and mild ulnar

motor neuropathy in cubital tunnels bilaterally. Specifically, there

were decreases in conduction velocities noted in right median

motor nerve, left and right ulnar motor nerves, right median

sensory nerve, and left sural sensory nerve (details of specific

motor and sensory nerves with decreased conduction velocities are
Frontiers in Transplantation 05
provided in Supplementary Table S1). However, after the first 11

infusions of HB-adMSC therapy, significant improvements

emerged in conduction velocities of the left and right ulnar motor

nerve (increasing from 38 to 59 m/s and 50 to 69 m/s,

respectively) and in the right median motor nerve (increasing from

48 to 59 m/s) (Supplementary Table S1). Additionally, there were

improved amplitudes observed in the left and right tibial motor

nerves (1.8–8.4 mV and 1.4–5.2 mV, respectively). Similarly,

increased conduction velocities were noted for the right median

sensory nerve (38–44 m/s), and for left sural sensory nerve (24–

38 m/s). Improvements continued to be observed after infusion

#17, with additional progress noted in conduction velocities of the

sensory sural nerve (38–61 m/s). By the end of the study (after

administration of 34 infusions, in total), left ulnar motor nerve

action potentials and conduction velocities were within normal

limits. However, for the right median and ulnar motor action

potentials at the wrist and forearm, a slight prolongation was

observed after initial improvements, possibly attributed to

intensive physical therapy that the patient underwent during that

period. While improvements in bilateral lower extremities waned

between infusions 23 and EOS, marked improvements were

evident in left sural and peroneal sensory nerve action potentials.

Additionally, improvements in distal latencies were also

documented in these reports.
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FIGURE 3

(A) Sagittal MRI images (baseline vs. EOS) shows mildly decreased craniocaudal length of the area of T2 abnormality (14.70 mm vs. 12.51 mm), and (B) axial
view (baseline vs. EOS) shows minimal increase in the non-edematous portion of the cord at the EOS (post 34 infusions, at month 30) compared to
baseline (represented by arrows). EOS, end of study.
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To assess the safety of the intervention, we performed standard

laboratory evaluations of complete blood count (CBC),

comprehensive metabolic panel (CMP), and Coagulation Panel

(CP) at multiple timepoints during the entire duration of the

study. Analysis of the laboratory values for any of the CBC,

CMP or CP components did not exhibit any unusual changes,

when compared to the values at baseline. No treatment-related

serious adverse events were reported during the entire course of

treatment. Only a few adverse events were reported during the

study period that included cough, fatigue, dizziness, bursitis,

COVID-19, a fall with injury, and a headache that were all mild

in severity, and none of these were related to the intervention.
3. Discussion

Currently, no treatments exist that can fully restore the injury-

induced functional loss caused by SCI. Owing to their

neuroprotective and axon-regenerative potential, MSCs offer a

promising therapeutic avenue for the treatment of SCI. Several

mechanisms have been proposed by which MSCs are known to

ameliorate SCI, including secretion of neurotrophic factors such as

brain-derived neurotrophic factor (BDNF), that has been suggested

to be a part of the mechanism underlying rapid functional

recovery in pre-clinical models of SCI (18, 19). More specifically,

adMSCs have been demonstrated to promote cell survival and

tissue repair by increasing the expression of neurotrophic factors

as shown in animal models of SCI (1, 20). Aside from being an

attractive MSC source due to their easy availability and strong

proliferative capacity, adMSCs also exhibit relatively improved

neuro-regenerative potential in improving functional outcomes of

SCI, as indicated by preclinical studies (21). Although clinical

evidence for the safety of adMSC remains limited (13, 14),

multiple pre-clinical studies demonstrated safety of adMSCs in

animal models of SCI (20, 22). Furthermore, clinical implication

of safety of MSCs derived from various other sources for the

treatment of patients with SCI had been previously suggested,
Frontiers in Transplantation 06
without any indications of any significant adverse events observed

across multiple routes of administration (15, 23–25).

Therapeutic potential of MSCs derived from multiple sources has

also been demonstrated in several clinical studies for the treatment of

SCI, but with less consistent clinical outcomes (13, 26, 27). Only a

few clinical trials demonstrated the efficacy of adMSCs in

ameliorating SCI, with improvements in motor and sensory

function. Hur et al. (13), employed intrathecal administration of

autologous adMSCs in 14 SCI patients and the results of the study

showed motor improvements in five patients with improvements in

sensory function in ten patients. Recently, Bydon et al. (14)

employed intrathecal injection of adMSCs and reported

improvements in motor and sensory scores, based on International

Standards for Neurological Classification of SCI. Here, in this study,

we administered multiple intravenous infusions of autologous HB-

adMSCs and showed substantial improvements in our SCI patient,

improving his overall quality-of-life. In the current study, we used

SCIM-III, one of the sensitive tools for monitoring functional

recovery in SCI patients (28). Our results demonstrated a gain of

∼10 points in SCIM-III score, implicating clinically relevant

functional improvements in this SCI patient. Additionally,

comparison of the EMG and NCV studies pre- and post-therapy

demonstrated substantial improvements in the patient’s motor and

sensory function. These electrodiagnostic studies conducted at

various study timepoints showed improvements in conduction

velocities, distal latencies, and amplitudes of the peripheral nervous

system, indicative of axonal regeneration and re-myelination of the

demyelinated nerve fibers due to SCI.

Although a large focus of myelomalacia were reported in both the

baseline and EOS MRI, these reports showed no evidence of injury

progression, suggesting that the treatment with HB-adMSCs was

safe, with no new abnormalities observed post-treatment. Changes in

cell-dose, administration route, or longer follow-up period may be

required to detect gross anatomical and structural changes in MRI.

However, at least another study using intrathecal administration of

autologous adMSCs showed no interval change in lesion site

between baseline and at the 8-month follow-up MRI, post-treatment
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(13). Moreover, while MRI has become a conventional imaging

technique for spinal cord injuries, it has been suggested that its

usage may be limited because of the non-specificity of changes in

signal intensity that do not directly reflect physiological changes (29).

Additionally, there is evidence that MRIs are more effective when

used acutely following a spinal cord injury, specifically within the

first 72 h, for prognostication, as opposed to being used for

management over lengthy durations of time, as was done in this

study (30). These aspects should be considered while interpreting

such results. Nonetheless, neither this study nor another clinical

study that employed intrathecal adMSC therapy in treatment of SCI

(13) presented any serious adverse events, implicating the safety of

adMSCs via at least two different routes of administration.

This study has a few limitations. The assessment of spinal cord

injury progression relied on MRI, which exclusively captures

structural changes and does not reveal any functional alterations post-

therapy. In order to enhance sensitivity in monitoring physiological

changes resulting from therapeutic interventions for SCI, other

advanced imaging techniques such as SPECT (Single Photon

Emission Computed Tomography) or PET (Positron Emission

Tomography) should be considered to quantitatively evaluate

functional aspects of the recovery process, thereby providing a more

comprehensive assessment of therapeutic efficacy. Additionally, the

study protocol did not incorporate ASIA score assessments—a

standardized tool used to evaluate and classify the severity of spinal

cord injuries based on sensory and motor function. Despite there

were noticeable improvements in the subject’s sensory and motor

functions, as indicated by the classification shift from ASIA B C-5 to

T-5 in the Principal Investigator’s notes, the absence of ASIA

assessments may have limited a more precise reflection of these

improvements.
4. Conclusions

Overall, HB-adMSC therapy was safe and effective in improving the

patient’s neurological function and thus quality-of-life. As demonstrated

by our case report, recurrent administration of multiple intravenous

infusions of autologous HB-adMSCs resulted in improved SCIM-III

scores with improvements in motor and sensory function, as depicted

in electrophysiological findings performed during the treatment

period. HB-adMSC therapy may offer a relatively safe and non-

invasive treatment option with a potential to improve neurological

function of patients with SCI. The results of the current study suggest

that sustained continual treatment may result in further clinical

improvements. Additionally, future clinical trials with a larger sample

size, using a randomized, placebo-controlled study design should be

conducted to validate the findings of this study.
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