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Driving in a simulator might induce stress because of the confrontation with new
environments, dealing with new technologies, and experience with symptoms of
simulator sickness, which, in turn, may influence individuals’ driving performance. The
present study aims to provide a better understanding of the association between simulated
environments and humans’ stress level under consideration of age, simulator adaptation,
experience with simulator sickness, and driving performance. Data from 164 participants
(M � 61.62 years, SD � 12.66 years, ranging from 25 to 89 years, 42 women) were
analyzed in the present study. During three measurement times, participants completed an
advance first simulator drive (T0), followed by an online survey, assessing experience with
simulator sickness (T1), and a second simulator drive (T2) including pre- and post-cortisol
measurements. The hypothesized model shows no correlations of driving performance
with experience with simulator sickness or stress level before and after a further simulator
drive. Beyond the effect of age, previous experience with simulator sickness does further
account for stress-level changes following a simulated drive but current driving
performance did not. The present study provides relevant findings for future studies in
the field of simulated environments.
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INTRODUCTION

Stress can negatively affect humans’ behavior, in learning and memory (e.g., Schwabe et al., 2008;
Wolf, 2009; Wolf, 2019), decision-making (e.g., Gathmann et al., 2014), and also driving (e.g.,
Rimini-Doering et al., 2001). In the past, studies frequently highlighted negative effects of stress
on driving performance as well as on accident rate (e.g., Matthews, Dorn et al., 1998; Rimini-
Doering et al., 2001). While driving is most frequently investigated in simulated environments
and previous findings indicate a relation between the usage of new technologies and stress
induction (e.g., Thomée et al., 2007), it seems inevitable to consider the possibility of simulator-
induced stress. Therefore, the present study aims to provide a better understanding of the relation
between simulated environments and the human stress level under consideration of individual
factors, simulator adaptation, and previous experience with simulator sickness, within a driving
simulator.

Driving a car activates several brain regions, such as the prefrontal cortex (Jäncke et al., 2008) and
the basal ganglia (Uchiyama et al., 2003), both of which are affected by a stress-induced increase in
the level of catecholamines and/or cortisol (Cohen et al., 2002; Nieoullon, 2002; Ramos and Arnsten,
2007; Cabib and Puglisi-Allegra, 2012). To quantify acute psychophysiological effects of driving,
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Yamaguchi and Sakakima (2007) measured salivary alpha-
amylase prior to and every 3 min during a 21-min simulated
drive. Results indicated a significant increase in stress level during
the driving period, compared to the baseline measure. Along with
the assessment of alterations in endocrine activity, heart rate is
frequently used as a biomarker to investigate individuals’ stress
level. For example, Ashton et al. (1972) reported a relation
between heart rate and difficulty of driving scenarios. Their
results are supported by findings from flight simulator studies
(e.g., Roscoe, 1992; Ylönen et al., 1997; Lee and Liu, 2003). For
example, Lee and Liu (2003) identified an increased heart rate
during flight phases with high information load, such as take-off
and landing, compared to phases with lower information load.

Comparisons of simulated and real scenarios reported no
differences in the ‘Driving Behaviour Inventory’ (Gulian et al.,
1989; Matthews et al., 1991; Dorn and Matthews, 1995). In
contrast, Engström et al. (2005) identified increased stress
reactions in real, compared to simulated driving, quantified by
physiological parameters. The authors discussed an indication of
increased effort due to a higher risk in real scenarios compared to
simulated scenarios as responsible for the effects. Their findings
are confirmed by Johnson et al. (2011), who reported significantly
higher means of heart rate in on-road vs. simulated driving.
However, Reimer and Mehler (2011) showed similar patterns of
heart rate and electrodermal arousal with increased cognitive
workload in simulated driving compared to on-road driving but
with higher absolute levels in the real world.

In addressing the topic of simulator-related stress, the
phenomenon of simulator sickness needs to be considered.
During recent years, studies showed simulator sickness–related
dropout rates between 5 and 30% (Stanney et al., 1998; Cobb et al.,
1999; Stanney et al., 2002). Based on previous findings, it can be
assumed that the onset of simulator sickness can trigger stress.
For example, Eversmann et al. (1978) reported a stimulation of
hormone secretion induced by different degrees of motion
sickness. Additionally, the authors identified the secretion of
antidiuretic hormones as the most sensitive indicator of
motion sickness–induced stress. Further evidence for a relation
between motion sickness and stress comes not only from the
glucocorticoid/symphaticoadrenergic system (Otto et al., 2006)
but also from the endocannabinoid system (Choukèr et al., 2010).
Furthermore, the sole anticipation of a stressful event induces
stress, as indicated by previous stress studies. Here, results show
that simply instructing participants to give a public speech is a
common method for inducing stress in laboratory investigations
(Levenson et al., 1980; Starck et al., 2008), leading to increased
anxiety and negative mood (Al’Absi et al., 1997) and increased
cortisol level (Dickerson and Kemeny, 2004; Juster et al., 2012).
Interestingly, higher anticipatory stress may also be associated
with a larger decrease in cortisol level during stress recovery
(Juster et al., 2012). Based on these findings, it can be assumed
that previous experiences with simulator sickness may influence
the stress level before further simulator usages, in terms of
anticipatory stress.

Simulator adaptation reflects the process by which drivers
adapt their existing driving skills to the simulator (Sahami et al.,
2009) and is related to the occurrence of simulator sickness.

Domeyer et al. (2013) indicated that using an initial acclimation
to the driving simulator reduces symptoms of simulator sickness.
Together with findings from simulator/motion sickness studies, it
can be hypothesized that a previous adaptation to the simulated
environment decreases the stress level before subsequently using
a simulator, compared to individuals who did not adapt. This is in
line with the allostatic load model—introduced by Sterling and
Eyer (1988)—which claims that stress mainly arises from mental
and physical adaptation to novel and changing conditions (see
also Sterling, 2012). In these situations, allostatic describes the
process by which the body maintains its stability through
behavioral changes (McEwen, 1998; McEwen, 2010).

A further aspect that should be considered in the present
context concerns age-effects. Previous simulator studies indicated
decreased driving performance (e.g., Andrews and Westerman,
2012), increased risk of accidents (e.g., Lee et al., 2003b), and
increased mental workload (e.g., Cantin et al., 2009) in older
compared to younger drivers. While Lee et al. (2003a)
demonstrated the comparability of on-road and simulated
driving in quantifying older adults driving performance,
Matthews et al. (1999) indicated higher stress level in older
adults, compared to their younger counterparts during a
simulated driving. Reimer et al. (2006) report higher workload
impact in older vs. younger drivers during a simulator driving
task. A possible explanation comes from Aldwin (1991), who
argues that older adults are perceived to have less control over
their environment than younger adults and therefore show a
higher stress level. Further studies report increased symptoms of
simulator sickness (Classen et al., 2011) as well as a decreased
simulator adaptation rate (Domeyer et al., 2013) in older
compared to younger adults. According to the allostatic load
model, increased stress stems from a higher load necessary in
order to adapt to a novel environment or changing condition.
This might further explain age-related differences in simulator
tasks, since older adults report increased problems with new
technologies (Kang and Yoon, 2008; Findlater et al., 2013).

With respect to the reported findings, we conducted a
hypothetical model, which is the subject of investigation in the
study at hand (Figure 1).

Besides the statistical testing of the hypothetical model, we
further aimed at investigating the hypothesis that individuals who
had previously adapted to a simulator show lower pre-stress to a
subsequent simulator use than individuals who had not adapted.

METHODS

Procedure
The present study comprises findings from three measurement
times: an advance simulator drive (T0), followed by an online
survey assessing symptoms of experienced simulator sickness
(T1), and the stress assessment and simulator drive (T2)
including a second simulator drive and pre- and post-cortisol
measurements. The study at hand is part of a 3-year
interdisciplinary research project (ALFASY) funded by the
European Regional Development Fund (ERDF.NRW) of the
European Union and the State of North Rhine–Westphalia.
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The project aims to further develop age-based driver assistance
systems. The medical check and the baseline investigation (T0)
serve for the main project. The current study reports on data that
were collected to answer specific research questions,
independently of the main project. Further results out of sub-
studies from the project are published elsewhere: subjective vs.
objective adaptation (Brandtner et al., 2019), driving performance
and specific attentional domains (Liebherr et al., 2019), and
mental abilities and demographic parameters on simulator
adaptation (Liebherr et al., 2020).

Before starting, participants carefully read the instructions
and gave written informed consent to participation. Prior to
the first simulator drive (T0), participants were medically
examined to ensure simulator suitability (e.g., heart rate and
assessment of current diseases). After a 10 min break, they
received instructions on how to use the simulator. They were
informed that they can stop driving at any time in case they feel
sick or in case they want to cancel for any other reason. If there
were no questions left, participants started the 25-min
simulator driving. In order to quantify intensity of
simulator sickness symptoms, participants received an
e-mail instructing them to conduct an online version of the
simulator sickness questionnaire (Brooks et al., 2010). The
e-mail was sent 5 days after the first simulator drive (T1), to
ensure that symptoms that occur after the experiment are also
considered. Completing the questionnaire took about 10 min.
Approximately 12 weeks after the first drive, participants
visited our laboratory again and completed a further
simulator driving task (T2). Before participants entered the
driving simulator, a first salivary sample was taken (pre-
cortisol measurement). After 20 min of driving, participants
had a 5 min break before completing another 20 min of driving
in the simulator. Immediately afterward, the second salivary
sample was taken (post-cortisol measurement) (see also
Figure 2 for a description of the study setup).

Participants
Originally, 458 individuals (M � 59.45 years, SD � 15.02 years,
ranging from 19 to 89 years, 169 women) met the inclusion

criteria and took part in T0. Participants reported not to have
any neurological or cardiovascular diseases, nor impairments in
the abilities to see or hear. Furthermore, individuals did not show
any signs of dementia or cognitive decline as indicated by scores
below nine in the ‘DemTect-Test’ (Kessler et al., 2000; Kalbe et al.,
2004). However, in total 294 participants were excluded from
further analyses because they either 1) stopped the baseline
testing due to simulator sickness (see Figure 3), 2) did not
participate in T1 or T2, or 3) salivary cortisol samples could
not be analyzed.

The final sample consisted of 164 participants (M �
61.62 years, SD � 12.66 years, ranging from 25 to 89 years, 42
women). The study was performed in accordance with the ethical
standards laid down in the Declaration of Helsinki. A local ethics
committee approved the study. All participants provided written
informed consent prior to each of the experiments and were
informed that they could end participation at any time without
reprisal.

Driving Simulator
The simulator consists of a close-to-real vehicle of the compact
class, which has been extended by force feedback components
for the simulation of forces and torques. The vehicle is
positioned in a rectangular ‘cave’ without a movement
platform (see Figure 4A for an illustration). The simulated
environment is projected on the inner walls of the cave and
presented on screens in each of the side mirrors. In addition,
behind the rear window of the vehicle, a monitor is placed,
which is used for both the rear view and the reflection of the
image in the interior mirror. For simulating a realistic driving
behavior, the driver inputs are read by means of the vehicle CAN
bus and used as inputs of a complete vehicle simulation (cf.,
Maas et al., 2014). Furthermore, road users are represented in
the vehicle environment who interact with the simulated vehicle
(see Maas, 2017). The baseline driving scenario (T0) consisted
of a 3 × 3 km area with inner-city roads, rural roads, and
highways (see Figure 4B for an overview). The total length
of 70 km is merged into several loops to provide an infinite
scenario without dead ends. The second driving scenario (T2)

FIGURE 1 | The hypothetical model of stress, experience with simulator sickness, and age.
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consisted of the same scenario but limited to the highway only.
To ensure a most realistic driving scenario, we did not include
any predefined routes or preceding cars which the participants
should follow.

Within the baseline scenario (T0), driving performance was
quantified only for determining the time of adaptation. While
previous simulator studies with mixed road-scenarios (rural
roads and freeways) measured driving performance by
considering only single driving parameters, we used the index
of performance (IOP), calculated by Joshi’s algorithm (Joshi et al.,
2017). The IOP contains numerous criteria that provide
information on driving performance (steering behavior,

activity of the pedals, and lane drifts) which are considered to
the same extent. During unconventional driving—such as large
steering movements or pushing the accelerator and brake pedals
to their end position—the IOP increases. As soon as the
participant had adapted to the system, the IOP stagnates or
decreases. To identify the time of adaptation, the IOP and its
gradient were calculated and graphically displayed using
‘MATLAB’. Figure 5 shows an example of the driving
performance (measured by the IOP) of a person who has
adapted to the simulator and one who has not. Driving
performance at T2 was calculated by using the IOP, but
without pedal activity since it is negligible in quantifying

FIGURE 2 | Visualization of the experimental setup.

FIGURE 3 | Distribution of driving time regarding the age of participants at baseline driving (T0). Those who did not complete the baseline scenario stopped
because of symptoms of simulator sickness.
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driving performance on highways. Therefore, the IOP at T2
(reflecting driving performance at T2) comprised means of
steering movements and lane drifts only. It has to be
mentioned that a higher IOP indicates worse driving
performance.

Simulator Sickness Questionnaire
In the online survey (T1), we used the Simulator Sickness
Questionnaire with a ten-stage intensity scale, ranging from
0 “none” to 10 “severe” (Brooks et al., 2010). In addition to
the 16 symptoms comprised in the questionnaire, we added
“vomiting” as additional symptom. The questionnaire was
used as an online version. The sum score across the intensity
of all symptoms was calculated as measure of simulator sickness
experience.

Salivary Cortisol
We collected endocrine indicators of stress by sampling
salivary cortisol concentrations before and after driving in
the simulator a second time (T2). A rise of cortisol
concentration indicates the stress response due to HPA axis
activity (see Dickerson and Kemeny 2004). Salivary cortisol
was assessed by means of unstimulated saliva samples obtained
using Salivette collection devices (Sarstedt, Nuembrecht,
Germany). The analyses of the individual cortisol levels
from the saliva samples were performed by the Genetics
Laboratory of the Ruhr-University Bochum (Germany).
Interassay and intraassay variations were below 10%.
Differences between pre- and post-cortisol levels were
calculated by subtracting the first from the second cortisol
level, with scores >0 representing an increase and scores <0

FIGURE 5 | Two examples of driving performances measured by individual IOP. Participant in panel (A) adapted to the simulator after about 400 s, whereas panel
(B) did not.

FIGURE 4 | (A) Schematic representation of the driving simulator used. The four projectors on the ceiling display the virtual environment on the walls around the
vehicle. The monitor behind the vehicle is used for both the rear view and the reflection of the image in the interior mirror. (B) Sketch of the baseline driving scenario
consisting of inner-city roads, rural roads, and highways. The driving scenario in T2 used the same scenario but limited to highway only.
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representing a decrease of the stress level after simulated
driving.

Statistical Analysis
The statistical analyses were carried out by using SPSS 25.0 for
Windows (IBM SPSS Statistics). Pearson correlations were
calculated to test the bivariate relationships between the
variables. We used the Process Macro for SPSS (Hayes, 2017)
to test model hypotheses. To test group differences between
individuals who had adapted and those who had not adapted
in the advance simulator driving scenario, regarding the pre-
stress cortisol level before the second driving scenario, we applied
a t test for independent samples. The critical level for statistical
significance was set to 0.05 for all p values. For the indirect effects,
significance was supposed if the 95% confidence interval did not
include zero.

RESULTS

Description and Correlations
The mean age, the score of simulator sickness experience, and
cortisol levels and their bivariate correlations can be found in
Table 1. In contrast to previous findings (e.g., Garcia et al., 2010),
we identified no gender differences in symptoms of simulator
sickness (men:M � 3.36, SD � 2.65; women:M � 3.16, SD � 2.68; t
(162) � 0.42, p � 0.677).

Driving performance (T2) correlated with age but not with
simulator sickness experience related to T1 nor with measures of
stress (T2). Furthermore, simulator sickness experience solely
correlated with difference in cortisol level. Therefore, the
conditions for testing our originally hypothesized model were
not met. We additionally tested correlations with mean driving
speed (M � 105.48, SD � 18.94), which is not reflected in the IOP,
as this parameter is discussed to decrease in response to internal
and external stimuli (Matthews, 1996; Matthews et al., 1999).
However, findings are replicated as we identified a significant
correlation solely between age and mean driving speed (r �
−0.341, p < 0.001).

Based on the theoretical background of the original model, we
alternatively tested potential interaction effects between a) age ×
driving performance and b) age × simulator sickness experience on
the difference in stress levels (post–pre cortisol levels). Therefore,
we applied two hierarchicalmoderated regression analyses with age
(predictor) in the first step, a) driving performance (IOP) and b)
simulator sickness experience (moderators), respectively, in the

second step, and the interaction term in the third step; the
difference in cortisol level (post–pre) was the dependent
variable (all variables are centralized, Cohen et al., 2003).

Hierarchical Moderated Regression
Analyses
In the first step, age did lead to a significant explanation of
differences in cortisol levels [R2 � 0.029, F (1,162) � 5.914,
p � 0.016]. Adding driving performance in the second step did
not lead to a significant increase of variance explanation [ΔR2� 0.006,
ΔF (1,161) � 0.954, p � 0.330] and neither did the interaction of age
and driving performance in the third step [ΔR2 � 0.003, ΔF (1,160) �
0.474, p � 0.492]. The overall model accounted for 2.6% of the
variance in cortisol-level change (F � 2.439, p � 0.492). The second
analysis, including simulator sickness experience, revealed a
significant additional explanation of variance (beyond the effect of
age) in cortisol-level difference of nearly 10% [ΔR2 � 0.073, ΔF
(1,161) � 13.097, p < 0.001]. In the third step, the interaction between
age and simulator sickness experience was not significant [ΔR2 �
0.014, ΔF (1,160) � 2.470, p � 0.118]. The overall model was
significant, accounting for 10.5% of the variance in difference in
cortisol level before and after simulator drive (F � 7.366, p < 0.001).

Effects of Previous Simulator Adaptation
Mean pre-cortisol level (second scenario) of participants who had
reported previous simulator adaptations (T0) showed slightly
decreased pre-cortisol levels (M � 16.55, SD � 11.70) before the
second driving scenario (T2) compared to participants who had
not adapted previously (M � 17.67, SD � 14.39). However, this
difference was not statistically significant [ t (160) � 0.493, p �
0.623].

DISCUSSION

The present study aimed to provide a better understanding of the
relations between stress and simulated environments. Although
the original hypothetical model could not be confirmed, the
present study identified highly relevant findings that can be
summarized as follows:

• Driving performance correlates with age but not with stress
level nor with previous experience with simulator sickness.

• Age and previous experiences with simulator sickness
predict stress-level changes following a simulated drive.

TABLE 1 | Descriptive statistics and bivariate correlations between age, simulator sickness experience, pre-cortisol level a difference in cortisol level (post–pre), and driving
performance.

M (SD) 1 2 3 4

1. Age 61.62 (12.66)
2. Simulator sickness experience (T1) 3.31 (2.65) −0.125
3. Pre-cortisol 17.25 (13.48) 0.073 −0.064
4. Difference in cortisol level (post–pre) 0.63 (17.48) 0.188* 0.244** −0.434**
5. Driving performance (T2) −0.03 (0.23) 0.216** 0.049 0.042 0.114

*p ≤ 0.050, **p ≤ 0.010.
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• Beyond the effect of age, driving performance does not
further account for stress-level changes following a
simulated drive.

• Individuals who had previously adapted to a simulator and
those who had not do not differ in pre-cortisol level of a
further simulator drive.

The present findings could not confirm any association of
previous simulator sickness experience neither with the stress
level before a subsequent simulator drive nor with driving
performance. This is in accordance with previous findings,
showing that cyber sickness does not necessarily cause anxiety
or discomfort with virtual realities (Von Mammen et al., 2016).
However, Clapp et al. (2011) indicated an interaction effect
between self-reported stress history and anxious driving
behavior. In addition, Jeon et al. (2011), who tested the effects
of specific negative emotions on driving performance, identified
more driving errors for anger than for fear. Previous findings on a
relation between stress and behavior could not be confirmed in
the present context (Westman and Eden, 1996; Struthers et al.,
2000; Siu, 2003). However, it is remarkable that pre-stress level
did not correlate with driving performance, albeit the pre-cortisol
level is similar to those reported after inducing stress by the most
commonly used method, the Trier Social Stress Test (Wolf et al.,
2001). The missing effect might be explained by the relatively
simple driving scenario in T2 (highway-driving with long
straights and smooth curves) and therefore a low variance in
driving performance. It can be further assumed that more
complex scenarios, such as inner-city routes, would increase
the effect of stress on driving performance, as reported by
Matthews et al. (1998). The authors described effects of stress
on driving performance depending not only on the nature of
driver’s stress reactions but also on the traffic environment.
Furthermore, Hill and Boyle (2007) identified a relation
between not only stress and driver characteristics but also the
driving environment. The aspect of environmental
characteristics together with the fact that participants were
able to freely choose how to drive, without a preceding car,
might also explain the missing effect between driving
performance and the post-/pre-cortisol level difference.

Prior to the study, we assumed that individuals who previously
reported a simulator adaption would show lower pre-cortisol
levels of a subsequent simulator drive, compared to those who did
not adapt. However, the present findings demonstrate no effects.
Here, the relatively long time interval between the baseline drive
(T0) and the subsequent drive (T2) must be discussed to
potentially be responsible for the missing effect. While
previous studies with a repeated use of driving simulators used
relatively short intervals (Cooper and Strayer, 2008; Thapa et al.,
2015; Large et al., 2017), we used a time interval of approximately
12 weeks between the two simulator investigations. The relevance
of the time interval between a training session and the later
performance is additionally highlighted in studies on cognitive
trainings. For example, Arthur et al. (1998) summarized in their
meta-analysis a relatively large decrement in performance,
28–90 days after skill or knowledge trainings. In addition,
Arthur et al. (2010) reported a significantly improved task-

performance from pre- to post-training (56 days after
completing the training) solely in the long-period training
group, but not in the short-period training group. In
accordance with Roenker et al. (2003), who identified no
significant effect of a baseline simulator training on an
18 month later testing score, it can be suggested that the time
between the baseline measure and the second measure was too
long to produce transfer-effects of simulator adaptation.

Accordingly with previous findings we identified a correlation
between age and driving performance. These effects are discussed
in terms of numerous aspects, such as vision, motor functions,
and also cognitive abilities (e.g., Wood, 2002; Anstey et al., 2005).
Furthermore, previous findings on differences in stress and
related coping strategies in older adults compared to younger
were replicated by a direct effect of age on differences in cortisol
level (Folkman et al., 1987; Diehl et al., 1996). This can be
explained by the allostatic load model and also empirical
findings on age-related differences in simulator tasks, who
reported increased problems with new technologies in the
elderly (Kang and Yoon, 2008; Findlater et al., 2013).

Based on its relevance, future studies should additionally
investigate further individual attributes and conditions of the
driver such as fatigue, drowsiness, or emotional status (e.g.,
Thiffault and Bergeron, 2003). In addition, future studies
should consider further physiological measures (e.g., heart
rate) and also subjective assessments of stress (e.g.,
questionnaires), to provide a broader insight into the effects of
stress.

The fact that we focused exclusively on individuals who
completed the baseline scenario, as only these could be invited to
the second scenario, constitutes another limitation of the study at
hand. Participants who stopped the baseline scenario prematurely
(because of simulator sickness) were excluded from the study and
thus not included in analyzing stress reactions in subsequently
driving in the simulator. Based on the high numbers of simulator
sickness induced dropouts (e.g., Stanney et al., 2002), future studies
should explicitly focus on this group of individuals. Furthermore, in
the study at hand, participants who completed the first drive were
asked to evaluate online their symptoms of simulator sickness 5 days
after the first simulator drive. This procedure was based on previous
findings that identified lasting effects of the symptoms up to one
week or longer (Ungs, 1987). However, for future studies, we
recommend applying the simulator sickness questionnaire twice
(subsequently afterward and a few days later) in order to avoid biases
in intensity recall and to make it more comparable to general
protocols.

Present findings need to be discussed under consideration of
the driving scenario. Here, we used solely a highway scenario for
the second testing in the simulator. However, it can be assumed
that more complex driving scenarios with different
environments such as inner-city roads or rural roads (e.g.,
Ronen and Yair, 2013) and also different conditions such as
day, night, rain, or fog (e.g., Konstantopoulos et al., 2010) would
lead to different findings and, therefore, should be tested in
future studies.

Despite the limitations and the partially contradictory results,
the present study provides relevant findings for future simulator
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studies. Especially, the findings of a missing relation between
previous experience with simulator sickness symptoms (in
participants who completed the baseline testing) and further
simulator driving performance seems to be relevant for future
studies. Accordingly, previous experience with simulator sickness
does not need to be an exclusion criterion for participating in
future simulator studies as it does not seem to have significant
effects on participant’s performance or level of stress. Rather, age
can be considered a relevant influencing factor. Among others,
this aspect should be considered further with regard to varying
time intervals between different measurements as well as
regarding participants who do not finish the baseline testing
because of simulator sickness.
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