
ORIGINAL RESEARCH
published: 16 April 2021

doi: 10.3389/frvir.2021.640470

Frontiers in Virtual Reality | www.frontiersin.org 1 April 2021 | Volume 2 | Article 640470

Edited by:

Mar Gonzalez-Franco,

Microsoft Research, United States

Reviewed by:

Oyewole Oyekoya,

Hunter College (CUNY), United States

Wolfgang Stuerzlinger,

Simon Fraser University, Canada

*Correspondence:

Janis Rosskamp

j.rosskamp@cs.uni-bremen.de

Hermann Meißenhelter

hmeiss51@cs.uni-bremen.de

Rene Weller

weller@cs.uni-bremen.de

Gabriel Zachmann

zach@cs.uni-bremen.de

Specialty section:

This article was submitted to

Technologies for VR,

a section of the journal

Frontiers in Virtual Reality

Received: 11 December 2020

Accepted: 16 March 2021

Published: 16 April 2021

Citation:

Rosskamp J, Meißenhelter H,

Weller R, Rüdel MO, Ganser J and

Zachmann G (2021) UNREALHAPTICS:

Plugins for Advanced VR Interactions

in Modern Game Engines.

Front. Virtual Real. 2:640470.

doi: 10.3389/frvir.2021.640470

UNREALHAPTICS: Plugins for
Advanced VR Interactions in Modern
Game Engines
Janis Rosskamp*, Hermann Meißenhelter*, Rene Weller*, Marc O. Rüdel,

Johannes Ganser and Gabriel Zachmann*

Computer Graphics and Virtual Reality, Faculty 03: Mathematics/Computer Science, University of Bremen, Bremen, Germany

We present UNREALHAPTICS, a plugin-architecture that enables advanced virtual reality

(VR) interactions, such as haptics or grasping in modern game engines. The core is a

combination of a state-of-the-art collision detection library with support for very fast and

stable force and torque computations and a general device plugin for communication

with different input/output hardware devices, such as haptic devices or Cybergloves.

Our modular and lightweight architecture makes it easy for other researchers to adapt

our plugins to their requirements. We prove the versatility of our plugin architecture by

providing two use cases implemented in the Unreal Engine 4 (UE4). In the first use case,

we have tested our plugin with a haptic device in different test scenes. For the second

use case, we show a virtual hand grasping an object with precise collision detection

and handling multiple contacts. We have evaluated the performance in our use cases.

The results show that our plugin easily meets the requirements of stable force rendering

at 1 kHz for haptic rendering even in highly non-convex scenes, and it can handle the

complex contact scenarios of virtual grasping.

Keywords: virtual reality, unreal engine, haptic feedback, grasping, plugin architecture, contact point,

collision detection

1. INTRODUCTION

With the rise of affordable consumer devices, such as the Oculus Rift or the HTC Vive, there has
been a large increase in interest and development in the area of virtual reality (VR). The new
display and tracking technologies of these devices enable high fidelity graphics rendering and
natural interaction with virtual environments. Modern game engines like Unreal or Unity have
simplified the development of VR applications dramatically. They almost hide the technological
background from the content creation process so that today, everyone can click their way to
their own VR application in a few minutes. However, consumer VR devices primarily focus on
outputting information to the two main human senses: seeing and hearing. Also, game engines
are mainly limited to visual and audio output. Inputs processed in game engines are typically: key
presses, mouse clicks, or mouse movement, controller button presses, and joystick movement. The
sense of touch and a variety of untypical input devices are widely neglected.

For instance, the lack of haptic feedback can disturb the immersion in virtual environments
significantly. Moreover, the concentration on visual feedback excludes a large number of people
from the content created with the game engines: those who cannot see this content, i.e., blind
and visually impaired people. Another important interaction technique in VR is to use our most
versatile interaction tool directly, the human hand, to perform, e.g., natural grasping interactions. It

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://doi.org/10.3389/frvir.2021.640470
http://crossmark.crossref.org/dialog/?doi=10.3389/frvir.2021.640470&domain=pdf&date_stamp=2021-04-16
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.rosskamp@cs.uni-bremen.de
mailto:hmeiss51@cs.uni-bremen.de
mailto:weller@cs.uni-bremen.de
mailto:zach@cs.uni-bremen.de
https://doi.org/10.3389/frvir.2021.640470
https://www.frontiersin.org/articles/10.3389/frvir.2021.640470/full

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

can help to train (Gomes de Sá and Zachmann, 1999) and inspect
(Moehring and Froehlich, 2011) objects in virtual environments
more accurately and naturally. Moreover, a common way to train
a robot to perform certain tasks is to apply human example
grasps inside a virtual environment. Usually, modern game
engines lack such fine detailed human interactions, like grasping
(Lin et al., 2016).

The main reasons why such advanced input methods are
widely neglected in the context of games are that haptic devices
and sophisticated input devices for natural interaction methods
like Cybergloves are still comparatively bulky, expensive, and do
not support plug and play.

Moreover, they differ in several properties from typical input
devices for games, e.g., update-rate, latency, accuracy, and
resolution. The update-rate is an important property for fine
interaction. It describes how many measurements are made
per second and is coupled with the application and physics.
Although many game engines have a built-in physics engine,
they are most usually limited to simple convex shapes. They
hardly deliver the complex contact information necessary to
handle multiple simultaneous contacts in a stable way that
typically appears during grasping. Moreover, the built-in physics
engines are usually relatively slow: for the visual rendering loop
it is sufficient to provide 60–120 frames per second (FPS) to
guarantee smooth visual feedback. Our sense of touch is much
more sensitive with respect to the temporal resolution. Here, a
frequency of preferably 1,000Hz is required to provide acceptable
force feedback. It is required to decouple the physically-based
simulation from the visual rendering path to reach those
update rates.

In this paper, we present UNREALHAPTICS a plugin system
to enable applications with specialized input devices and the
demand for fast and accurate force calculations, e.g., high-fidelity
haptic rendering, in a modern game engine. Following the idea
of decoupling the simulation part from the core game engine,
UNREALHAPTICS consists of three individual plugins:

• A plugin that we call DEVIO: It is used to implement the
communication with the VR hardware devices.

• The computational bottleneck during the physically-based
simulation is the collision detection. Our plugin called
COLLETTE builds a bridge to an external collision detection
library that is fast enough for high update rates.

• Finally, FORCECOMP computes the appropriate forces and
torques from the collision information.

This modular structure of UNREALHAPTICS allows other
researchers to easily replace individual parts, e.g., the force
computation or the collision detection, to fit their individual
needs. We have integrated UNREALHAPTICS into the Unreal
Engine 4 (UE4), but the basic concept is also valid for other
game engines.We use a fast, lightweight, and highlymaintainable
and adjustable event system to handle the communication
in UNREALHAPTICS.

In this paper, we will discuss two example applications,
which are using UNREALHAPTICS. While the first use case
focuses on haptic rendering, our second use case shows how
individual components of UNREALHAPTICS can be exchanged

for other non-haptic applications like grasping in VR. For the
collision detection we use the state-of-the-art collision detection
library CollDet (Zachmann, 2001) that supports complexity-
independent volumetric collision detection at haptic rates. Our
force calculation relies on a penalty-based approach with both 3-
and 6-degree-of-freedom (DOF) force and torque computations.
Our results show that UNREALHAPTICS is able to compute stable
forces and torques for different 3- and 6-DOF devices in Unreal
at haptic rates.

2. RELATED WORK

In section 4, we present two applications using our plugins. The
first is using haptic feedback, and the second demonstrates usage
for grasping. We will discuss haptic and then grasping related
work here.

Game engines enable the rapid development with high-
end graphics and easy extension to VR to a broad pool
of developers. Hence, they are usually the first choice when
designing demanding 3D virtual environments. Obviously, this is
also true for haptic applications. Consequently, there exist many
(research) projects that already integrated haptics into such game
engines, e.g., Morris et al. (2004), Andrews et al. (2006), and
de Pedro et al. (2016) to name but a few. However, they usually
have spent much time developing single-use approaches that are
hardly generalizable and thus, not applicable to other programs.

Only a very few approaches provide comfortable interfaces for
the integration of haptics into modern game engines. Kollasch
(2017) and User ZeonmkII (2016) provide plugins that serve
as interfaces to the 3D Systems Touch (formerly SensAble
PHANToM Omni)1 via the OpenHaptics library (3D Systems,
2018). OpenHaptics is a proprietary library that is specific to
3D Systems’ devices, which means that other devices cannot
be used with these plugins. Another example is a plugin for
the PHANToM device presented in The Glasgow School of
Art (2014), also based on the OpenHaptics library. While these
plugins provide communication with some haptic devices, they
do not provide a framework for a wide variety of input devices.
Additionally, they are not integrated into the game engine
and are missing vital elements for haptics like fast collision
detection. Physics engines are often deeply integrated into game
engines, and the rendering frame rate is coupled with the physics
calculation. There seems to be no research on replacing the in-
build physics engine in game engines like Unreal and Unity. We
have only found some experimental showcases but no real project
or plugin. In the case of the Unreal Engine, Steve Streeting,
an independent game developer, described in his blog2, how
he has integrated bullet physics on top of PhysX. This might
use unnecessary performance since PhysX is still active, and
unfortunately, bullet physics does not support haptics.

Outside the context of game engines, there are a number
of libraries that provide force calculations for haptic devices.

1Phantom, O. Sensable Technologies, Inc. Available online at: http://www.

sensable.com (accessed November 11, 2020).
2Steeve Streeting. Available online at: https://www.stevestreeting.com/2020/07/26/

using-bullet-for-physics-in-ue4 (accessed November 11, 2020).

Frontiers in Virtual Reality | www.frontiersin.org 2 April 2021 | Volume 2 | Article 640470

http://www.sensable.com
http://www.sensable.com
https://www.stevestreeting.com/2020/07/26/using-bullet-for-physics-in-ue4
https://www.stevestreeting.com/2020/07/26/using-bullet-for-physics-in-ue4
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

A general overview is given in Kadleček and Kmoch (2011).
One example is the CHAI3D library (CHAI3D, 2016b). It is
an open-source library written in C++ that supports a variety
of devices by different vendors. It offers a common interface
for all devices that can be extended to implement custom
device support. For its haptic rendering, CHAI3D accelerates
the collision detection with mesh objects using an axis-aligned
bounding box (AABB) hierarchy. The force rendering is based
on a finger-proxy algorithm. The device position is proxied by
a second virtual position that tries to track the device position.
When the device position enters a mesh, the proxy will stay on
the surface of the mesh. The proxy tries to minimize the distance
to the device position locally by sliding along the surface. Finally,
the forces are computed by exerting a spring force between
the two points (CHAI3D, 2016a). Due to the simplicity of the
method it only returns 3-DOF force feedback, even though the
library generally allows for also passing torques and grip forces to
devices. Nevertheless, we are using CHAI3D in our use case, but
only for the communication with haptic devices. A comparable,
slightly newer library is the H3DAPI library (H3DAPI, 2019).
Same as CHAI3D, it is extensible in both the device and algorithm
domain. However, by default, H3DAPI supports fewer devices
and likewise does not provide 6-DOF force feedback. A general
haptic toolkit with a focus on web development was presented
by Ruffaldi et al. (2006). It is based on the eXtreme Virtual
Reality (XVR) engine, utilizing the CHAI3D library to allow
rapid application development independent from the specific
haptic interface.

All approaches mentioned above are limited to 3-DOF haptic
rendering and do not support 6-DOF rendering. Sagardia et al.
(2014) present an extension to the Bullet physics engine for
faster collision detection and force computation. Their algorithm
is based on the Voxmap-Pointshell algorithm (McNeely et al.,
1999). Objects are encoded both in a voxmap that stores distances
to the closest points of the object as well as point-shells on the
object surface that are clustered to generate optimally wrapped
sphere trees. The penetration depth from the voxmap is then
used to calculate the forces and torques. In contrast to Bullet’s
build-in algorithms, this approach offers full 6-DOF haptic
rendering for complex scenes. However, the Voxmap-Pointshell
algorithm is very memory-intensive and susceptible to noise
(Weller et al., 2010).

Our second application is grasping. There are two approaches
for grasping, one is based on gesture and the other is physics-
based. Gesture grasps can achieve real-time computations but
lack natural interaction because they are limited to two states:
the grasp and release of the object. The fingers might also
penetrate the object, or there is even no contact with the
object while grasping it. The physics-based approaches have
a trade-off between accuracy and interactivity since they are
very computationally intensive. Such a physics-based approach
was presented in Verschoor et al. (2018), with a library called
CLAP, that was integrated into the Unreal Engine. The hand is
modeled as a soft body, whereas the object is rigid. The overall
simulation reached real-time, but for natural haptic feedback,
this is not sufficient. A hybrid approach was presented in Liu
et al. (2019), where authors introduced a caging-based system

to find a better balance between realism and performance. The
hand was modeled with cylinders, and a grasp is triggered when
the center of the collision contact points lies within the grasped
object. Moreover, they showed a glove that has a Vive Tracker,
a network of IMUs, and some vibration motors. They have
integrated this system in UE4 and achieved stable grasps in
real-time. The performance was evaluated only qualitatively by
grasping different kinds of objects.

In the following, we will give a short overview of the structure
of this paper. We will first show the UNREALHAPTICS plugin
architecture by discussing the three main plugins and their
communication interface in section 3. After that, we show an
UE4 specific implementation. We will then present two example
applications where the plugin is used. The first application
(section 4.1) is haptic rendering, demonstrating a performance
with haptic rates. The second use case (section 4.2) shows a
grasping application with detailed collisions.

3. UNREALHAPTICS

Modern game engines support the most common devices, such
as joysticks or head-mounted displays (HMDs), making them
easy to set up. More specialized input, like haptic devices or
elaborate hand tracking, has to be set up manually. Additionally,
these applications are often in need of custom physics and high-
performance collision detection. To fill that gap and provide an
easy-to-use, adjustable, and generalizable framework, we have
developed UNREALHAPTICS. Our software can be used in games,
research, or business-related contexts, either whole or in parts.
We developed our system in the Unreal Engine because of the
following reasons:

• It is one of the most popular game engines with a large
community, regular updates, and good documentation.

• It is free to use in most cases, especially in a research context
where it is already heavily used (Mól et al., 2008; Reinschluessel
et al., 2017).

• It is fully open-source, thus can be examined and adapted.
• It offers programmers access on the source code level while

game designers can use a comfortable visual editor in
combination with a visual scripting system called Blueprints.
Thus, it combines the advantages of open class libraries and
extensible IDEs.

• It is extendable via plugins.
• It is built on C++, which makes it easy to integrate external

C++-libraries. This is convenient because C++ is still the first
choice for high-performance libraries, e.g., haptic rendering.

Figure 1 presents the previous state before our plugins: on the
one side, there are different haptic devices available with their
libraries. On the other side, there is the game engine in which
we want to integrate the devices. To interact with the virtual
environment using input, such as haptic devices, we need (i)
communication with the device, (ii) fast collision detection,
and (iii) stable force computation. We solve these three major
challenges by using a modular design to fulfill our goal of a
flexible and adjustable system. Each module handles one of these

Frontiers in Virtual Reality | www.frontiersin.org 3 April 2021 | Volume 2 | Article 640470

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

FIGURE 1 | A typical haptic integration without UNREALHAPTICS. (Left) Different haptic devices available with their libraries. (Right) Scheme of UE4, which we want to

integrate the devices with.

tasks. Of course, this structure is not only valid for haptics but
interaction with other input as well. Our plugins are responsible
for the following tasks:

• A plugin called DEVIO that handles the communication with
the input device by adding a general layer to initialize devices
and to receive and send data to the device during runtime.

• A plugin called COLLETTE that communicates with an
(external) collision detection library. Initially, it passes
geometric objects from Unreal to the collision library (to
enable it to potentially compute acceleration data structures
etc.). During runtime, it updates the transformation matrices
of the objects and collects collision information.

• FORCECOMP, a force rendering plugin that receives collision
information and computes forces and torques. The force
calculation is closely related to the collision detection method
because it depends on the provided collision information.
However, we decided to separate the force and torque
computation from the actual collision detection into separate
plugins because this allows an easy replacement, e.g., if the
simulation is switched from penalty-based to impulse-based.
While its main task is to compute forces, it can also be used
to process collision data in general, which will be shown in
section 4.2.3.

The list of plugins already suggest that communication plays an
important role in the design of our plugin system. Hence, we will
start with a short description on this topic before we detail the
implementations of the individual plugins.

3.1. Unreal Engine Recap
Unreal Engine 4 is a game engine that comprises the engine itself
as well as a 3D editor to create applications using the engine. We
will start with a short recap of UE4’s basic concepts.

Unreal Engine 4 follows the component-based entity system
design. Every object in the scene (3D objects, lights, cameras,
etc.) is at its core a data-, logic-less entity (in the case of
UE4 called actors). The different behavior between the objects
stems from components that can be attached to these actors. For
example, a StaticMeshActor (which represents a 3D object)
has a mesh component attached, while a light source will have
different components attached. These components contain the
data used by UE4’s internal systems to implement the behavior
of the composed objects (e.g., the rendering system will use
the mesh components, the physics system will use the physics
components etc.).

Unreal Engine 4 allows its users to attach new components
to actors in the scene graph which allows extending objects
with new behavior. Furthermore, if a new class is created using
UE4’s C++-dialect, variables of that class can be exposed to the
editor. By doing so, users have the ability to easily change values
of an instance of the class from within the editor itself, which
minimizes programming effort.

Unreal Engine 4 not only provides a C++ interface but
also a visual programming language called Blueprints. Blueprints
abstract functions and classes from the C++ interface and present
them as “building blocks” that can be connected by execution
lines. It serves as straightforward way to minimize programming

Frontiers in Virtual Reality | www.frontiersin.org 4 April 2021 | Volume 2 | Article 640470

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

effort and even allows people without programming experience
to create game logic for their project.

When extending UE4 with custom classes, the general idea is
noted in Epic Games (2020a): programmers extend the existing
systems by exposing the changes via blueprints. These can be
used by other users to create game behavior. Our plugin system
follows this ideas.

Furthermore, UE4 allows developers to bundle their code as
plugins in order to make the code more reusable and easier to
distribute (Epic Games, 2020b). Plugins can be managed easily
within the editor. All classes and blueprints are directly accessible
for usage in the editor. We implemented our system as a set of
three plugins to make the distribution effortless and allow the
users to choose which features they need for their projects.

Finally, UE4 programs can be linked against external libraries
at compile time, or dynamically loaded at runtime, similar to
regular C++ applications.We are using this technique to base our
plugins on already existing libraries. This ensures a time-tested
and actively maintained base for our plugins.

3.2. Design of the Plugin Communication
As described above, our system consists of three individual
plugins that exchange data. Hence, communication between the
plugins plays an important role. Following our goal of flexibility,
this communication has to meet two major requirements.

• The plugins need to communicate with each other without
knowledge about the others’ implementation because users
of our plugins should be able to use them individually or
combined. They could even be replaced by the users’ own
implementations. Thus, the communication has to run on an
independent layer.

• Users of the plugins should be able to access the data produced
by the plugins for their individual needs. This means that it
must be possible to pass data outside of the plugins.

To fulfill both these requirements, we implemented a messaging
approach based on delegates. A delegator is an object that
represents an event in the system. The delegator can define
a certain function signature by specifying parameter types.
Delegates are functions of said signature that are bound to
the delegator. The delegator can issue a broadcast which will
call all bound delegates. Effectively, the delegates are functions
reacting to the event represented by the delegator. A delegator
can pass data to its delegates when broadcasting, completing the
messaging system.

The setup of the delegates between the plugins can be handled,
for example, in a custom controller class within the users’
projects. We describe the implementation details for such a
controller in section 3.6.

3.2.1. Our Light Delegate System
Unreal Engine 4 provides the possibility to declare different kinds
of delegates out of the box. However, these delegates have a few
drawbacks. Only Unreal Objects (declared with the UOBJECT
macro etc.) can be passed with such delegates, limiting their use
for more general C++ applications. They also introduce several
layers of calls in the call stack since they are implemented around

the reflection system of the UE4. This may influence performance
when many delegates are used.

To overcome these problems we implemented our own
lightweight Delegator class. It is a pure C++ class that can
take a variable number of template arguments which represent
the parameter types of its delegates. A so called callable can be
bound with the addDelegate(...) function. Our solution
supports all common C++-callables (free functions, member
functions, lambdas, etc.). The delegates can be executed with the
broadcast() function which will execute delegates one after
another with just a single additional step in the call stack. The
data are always passed around as references internally, preventing
any additional copies.

3.3. Devio Plugin—Device Interface
DEVIO provides a common abstraction layer for input devices. To
use a device in UNREALHAPTICS, one has to include the correct
communication library and implement the abstract functions.
With these functions, we gain full control of our device with
either Blueprints or C++ Code. Additionally, the plugin provides
bidirectional data transfer, i.e., data can be received and sent to
the device.

DEVIO mainly consists of three parts: The device manager,
the device thread, and the device interface. The device manager
provides the user interface and is the only part used by the
developer. It is represented as a UE4 actor in the scene and
is used to send and receive data, e.g., positions or forces. If
necessary, the execution loop of the plugin can be separated
from the game thread of the UE4. This device thread allows
higher framerates compared to the game thread. While this is
not required for most devices, it is crucial for haptics, which
can be seen in Figure 2. When new device data are available,
a delegator-event OnTransform is broadcasted, which passes
the data to the device manager in every tick. Users of the
plugin can hook their own functions to this event, allowing
them to react to the new device data. A second delegator-event
ForceOnHapticTick is broadcasted, which allows users to
hook functions like force computation into the device thread.
Our own FORCECOMP plugin uses this mechanism, which is
further described in section 3.6.

3.4. Collette—Collision Detection Plugin
The physics module included in UE4 has two drawbacks that
makes it unsuitable for some devices:

1. It runs on the main game thread, which means it is capped at
120 FPS.

2. Objects are approximated by simple bounding volumes,
which is very efficient for game scenarios but too imprecise
to compute the collision data needed for precise physics
computations.

In order to circumvent these problems, we bypass the physics
module of the UE4.

Our COLLETTE plugin does exactly that. We do not
implement a collision detection in this plugin, but provide a
flexible wrapper to bind external libraries. In our use case, we
show an example how to integrate the CollDet library (see

Frontiers in Virtual Reality | www.frontiersin.org 5 April 2021 | Volume 2 | Article 640470

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

FIGURE 2 | The basic structure of our plugin system with three threads. (Right) The UE4 game thread that is responsible for the visual feedback and runs with up to

120 Hz. (Left) The haptic rendering thread and the collision detection thread. The device communication included in DEVIO and the FORCECOMP plugin run at 1,000 Hz

for a stable update rate. We decided to put the collision detection in its own thread in order to not disturb the device communication, e.g., in case of deep collisions

that require more computation time than 1 ms. The collidable objects in the Unreal scenegraph are represented as ColletteStaticMeshActors that are derived

from Unreal’s built in StaticMeshActors.

FIGURE 3 | Unreal’s editor view of one of our scenes. The sword is controlled by the phantom device, whereas the ring is static. Both are

ColletteStaticMeshActor, which is visible on the right side.

section 4.1.2). Like DEVIO, COLLETTE can run in its own
thread. Thus, high framerates even for complicated scenes can
be achieved. The plugin uses a ColletteStaticMeshActor
to represent collidable objectsas shown in Figure 3. This is an
extension to UE4’s StaticMeshActor. It supports loading

additional pre-computed acceleration data structures to the
actor’s mesh component when the 3D asset is loaded. For
instance, in our use case, we load a pre-generated sphere tree asset
from the hard drive which is used for internal representation of
the underlying algorithm.

Frontiers in Virtual Reality | www.frontiersin.org 6 April 2021 | Volume 2 | Article 640470

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

The collision pipeline is represented by a
ColletteVolume, which extends the UE4 VolumeActor.
We decided to use a volume actor because it allows to
restrict collision detection checks to defined areas in the
level. To register collidable objects with the pipeline, they
can be registered with an AddCollisionWatcher(...)
blueprint function to the collision detection pipeline. The
function takes references to the ColletteVolume as well as
two ColletteStaticMeshActors.

During runtime, the collision thread checks registered pairs
with their current positions and orientations. If a collision
is determined, the class ColletteCallback broadcasts an
OnCollision delegator-event. Users of the plugin can easily
hook their own functions to this event, allowing reactions to
the collision. Blueprint events cannot be used here as they
are also executed on the game thread and thus run at a low
frequency. The event also transmits references to the pair of
ColletteStaticMeshActors involved in the collision, as
well as the collision data generated by the underlying algorithm.
This data can then be used, for example, to compute collision
response forces.

3.5. ForceComp Plugin
The force calculation is implemented as a free
standing function which accepts the data from two
ForceComponents that can be attached especially to
ColletteStaticMeshActors and depends on the current
transform of the ColletteStaticMeshActor. The
ForceComponent provides UE4 editor properties needed
for the physical simulation of the forces: For instance, the mass
of the objects, a scaling factor, or a damper (see section 4.1.3).
We have separated the force data from the collision detection.
This allows users to use the COLLETTE plugin without the
force computation.

3.6. Controlling Data Flow via Events
We already mentioned that we use a delegate-based event
system to organize the data flow between the three plugins.
In order to manage the events, we use an EventHandler
actor. This guarantees a maximum of flexibility and avoids that
the plugins depend on the specific implementation. Basically,
the EventHandler has references to all involved components
and game objects like actors and events. Our EventHandler
supports drag-and-drop in the Unreal editor window, and hence,
there is no coding required to establish these references. For
instance, if we want to add a collidable object in the scene, we
simply have to drag a ColletteStaticMeshActor instance
on the EventHandler instance in the editor window.

In addition, the EventHandler implements various
functions that it binds to the events of the plugins during
initialization. For example, it provides functions for the two
most important events: the OnTransform event sent by
the device thread and for the OnCollision event of
the ColletteVolume actor. The OnTransform event
broadcasts the position and orientation data automatically to the
virtual representation, e.g., a hand. This has the same effect as
if the representation would be updated directly in the device

thread.Moreover, theOnTransform event also evokes a second
delegate function from FORCECOMP that computes the collision
forces based on this data. When finished, it may pass the
forces back to the DeviceManager, which applies them to the
associated device (see Figure 4 for a simplified example).

The OnCollision delegator event of the
ColletteVolume actor sends the collision data to the
attached function of the EventHandler and finally stores it
in shared variables. By doing this, the device thread will execute
the delegate after it has updated the virtual tool’s transform. The
delegate itself reads the data from the shared variables and checks
if a collision occurred. If so, the collision information is used to
compute forces. The Collette thread is synchronized with
the force computation. After a force is calculated the Collette
thread stops waiting, reads the device data, and checks for
collisions. This way the frequency of the collision thread is
bounded to the device thread frequency (1,000Hz).

With this solution, however, we keep the concrete
implementations of the plugins separate from each other.
Figure 5 shows and example for the event handling between
FORCECOMP and DEVIO. This modular and customizable
approach guarantees a very flexible data flow between the
different plugins that can be easily defined by the user within
the editor. In the following sections, we want to explore
UNREALHAPTICS for two concrete applications, the first being
haptic rendering with a haptic device and the second grasping
with a hand-tracking device.

4. APPLICATIONS

In this section, we demonstrate how UNREALHAPTICS

can be used in applications. The first example focuses
on haptic rendering, while the second example shows a
grasping application.

4.1. Haptic Rendering
We applied UNREALHAPTICS to an application with support
for haptic rendering. For haptic rendering, we use our plugin
in a setup with three threads: one for the main game loop,
including the visual rendering in Unreal, one for the haptic
rendering that covers DEVIO and FORCECOMP and one for the
collision detection. We decided to run the collision detection
independently in its own thread to guarantee stable haptic
rendering rates even in the case of deep interpenetrations where
the collision detection could exceed the 1ms time frame. Figure 3
shows this three-thread scenario. However, it is easy to use
COLLETTE also in the haptic rendering thread—or to even
use a fourth thread for FORCECOMP—by simply adjusting the
configuration in the EventHandler. This example shows
how the actual collision detection libraries, force rendering, and
communication libraries can be integrated into our framework.

4.1.1. Device Communication via CHAI3D
We use the CHAI3D library to connect to haptic devices. As
already mentioned in section 2, this library supports a wide
variety of haptic devices, including the PHANToM and the
Haption Virtuose (Haption, 2020) which we used for testing.

Frontiers in Virtual Reality | www.frontiersin.org 7 April 2021 | Volume 2 | Article 640470

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

FIGURE 4 | A simplified sequence diagram of the communication of FORCECOMP, COLLETTE, and DEVIO in case of a collision: DEVIO receives the current position and

orientation from the device and informs FORCECOMP via a OnTransform event. ColletteVolume in COLLETTE evokes an OnCollision event and passes the

collision data to FORCECOMP. FORCECOMP computes appropriate forces and torques and passes them back to DEVIO that finally, applies them to the device. Please

note, due to space constrains, we did not include transformations that are send from DEVIO to the respective ColletteStaticMeshActors. Moreover, we omitted

the EventHandler in this example.

FIGURE 5 | A simplified sequence diagram of the communication of FORCECOMP, DEVIO, and our EventHandler that also shows the flexibility of our system. Initially,

DEVIO reads the configuration from the haptic library and evokes an OnTransform event. This is passed to the EventHandler that calls the callable

HandleTransform function that has initially registered for this event. It is easy to register more than one functions for the same event, e.g., to toggle friction or virtual

coupling. The results are finally transferred back to DEVIO via the EventHandler.

Frontiers in Virtual Reality | www.frontiersin.org 8 April 2021 | Volume 2 | Article 640470

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

FIGURE 6 | Objects from our test scenes and their inner sphere representations: (A) Stanford bunny and (B) Crown.

DEVIO links CHAI3D as a third-party library at compile time.
We primarily use CHAI3D’s Devices module as an interface to
the hardware devices, especially to set and retrieve positions and
rotations. We did not use CHAI3D’s force rendering algorithms
as they do not support 6-DOF force calculation.

4.1.2. Collision Detection With CollDet
CollDet is a collision detection library written in C++ that
implements a complete collision detection pipeline with several
layers of filtering (Zachmann, 2001). This includes broad-phase
collision detection algorithms like a uniform grid or convex hull
pre-filtering and several narrow phase algorithms like a memory-
optimized version of an AABB-tree, called Boxtree (Zachmann,
2002), and DOP-trees (Zachmann, 1998). For haptic rendering,
the Inner Sphere Trees (ISTs) data structure fits best. Unlike other
methods, ISTs define hierarchical bounding volumes of spheres
inside the object based on a polydisperse sphere packing (see
Figure 6). This approach is independent of the object’s triangle
count, and it has shown to be applicable to haptic rendering.
Beyond the performance, the main advantage is the collision
information provided by the ISTs: they do not simply deliver a list
of overlapping triangles but give an approximation of the objects’
overlap volume. This guarantees stable and continuous forces
and torques (Weller et al., 2010). The source code is available
under an academic-free license.

COLLETTE’s ColletteVolume is, at its core, a wrapper
around CollDet’s pipeline class. Instead of adding CollDet
objects to the pipeline, the plugin abstracts this process by
registering the ColletteStaticMeshActors with the
volume. Internally, a ColletteStaticMeshActor is
assigned a ColID from the CollDet pipeline through its
ColletteStaticMeshComponent, so that each actor
represents a unique object in the pipeline. When the volume
moves the objects and checks for collisions in the pipeline, it
passes the IDs of the respective actors to the CollDet functions

that implement the collision checking. Analog to CHAI3D,
COLLETTE links to the CollDet library at compile time.

4.1.3. Force Calculation
Force and torque computations for haptics usually rely on
penalty-based approaches because of their performance. The
actual force computationmethod is closely related to the collision
information that is delivered from COLLETTE. In the case
of the ISTs, this is a list of overlapping inner spheres for a
pair of objects. In our implementation, we apply a slightly
modified volumetric collision response scheme as reported by
Weller and Zachmann (2009):

For an object A colliding with an object B we compute the
restitution force EFA by

EFA =
∑

j∩i6=∅

EFAi

=
∑

j∩i6=∅

Eni,j ·max

(

voli,j ·

(

εc −
veli,j · εd

Voltotal

)

, 0

) (1)

where (i, j) is a pair of colliding spheres, Eni,j is the collision
normal, voli,j is the overlap volume of the sphere pair, Voltotal
is the total overlap volume of all colliding spheres, veli,j is
the magnitude of the relative velocity at the collision center
in direction of Eni,j. Additionally, we added an empirically
determined scaling factor εc for the forces and applied some
damping with εd to prevent unwanted increases of forces in
the system.

Only positive forces are considered preventing an increase in
the overlapping volume of the objects. The total restitution force
is then computed simply by summing up the restitution forces of
all colliding sphere pairs.

Torques for full 6-DOF force feedback can be computed by

EτA =
∑

j∩i6=∅

(

Ci,j − Am
)

× EFAi (2)

Frontiers in Virtual Reality | www.frontiersin.org 9 April 2021 | Volume 2 | Article 640470

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

FIGURE 7 | In order to evaluate the performance of our plugins, we have used multiple complex test scenes: (A) Cone and bunny, (B) Two bunnies, and (C) Sword

and ring. The user controls in each scene a reddish object with the phantom device to touch the other object.

FIGURE 8 | Performance of our plugins in the cone and bunny scene. Here, we have used different sphere packing resolutions (approximation of volume) per object.

Top graph shows the number of intersecting spheres. In (A), we have used 10k spheres and in (B) we have used 100k spheres. We have achieved haptic frame rates

even with large number of spheres, and also we have had a constant rendering frame rate (120 FPS).

where Ci,j is the center of collision for sphere pair (i, j) and Am

is the center of mass of the object A. Again, the total torques of
one object are computed by summing the torques of all colliding
sphere pairs (Weller and Zachmann, 2009).

4.1.4. Performance
We have evaluated the performance of our implementation in
UE4 on an AMD Ryzen 7 2700X (8 Cores) with 32 GB of main
memory and a NVIDIA GeForce RTX 2070 running Microsoft
Windows 10 Professional.

We used three different test scenes: the user explores the
surface of an object (in our example, the Stanford bunny) with
a Phantom device. In our test scenes, we represented the end
effector with a red color (see Figure 7).

We achieved almost always a frequency of 850–1K Hz
for the force rendering and haptic communication thread.
It only dropped slightly in case of situations with a lot of
intersecting pairs of spheres. The same appears for the collision
detection that slightly dropped to 850 Hz in situations of heavy

interpenetrations. It is similar to the results reported in Weller
et al. (2010), where a simple OpenGL test scene was used. This
shows that our architecture does not add significant processing
overhead (see Figures 8, 9).

4.2. Grasping
Due to the modular structure of UNREALHAPTICS, we can easily
adapt parts of the plugin to account for different use cases. In the
following, we will show how UNREALHAPTICS can be applied to
a natural grasping application in VR. In this case, we change our
input device to a hand tracking device, i.e., a Cyberglove, which
enables natural grasping of objects in VR (Figure 10).

More precisely, we aim at investigating the human grasping
of different object to transfer it to robots performing everyday
activities. To do that, in this first step, we record sophisticated
human grasping data in VR. This is done by generating heat
maps during grasp experiments of the virtual objects (Tenorth
et al., 2015). To record a heat map, we determine the contact
points of the individual parts of the hand on object. Heat maps

Frontiers in Virtual Reality | www.frontiersin.org 10 April 2021 | Volume 2 | Article 640470

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

FIGURE 9 | Performance of our plugins in different scenes with 100k spheres per object. Top graph shows the number of intersecting spheres. In (A), we have used

two bunnies and in (B) a sword and ring. For these different objects in the scene, we have achieved haptic frame rates and constant 120 FPS for rendering.

FIGURE 10 | A virtual hand is grasping an object. The hand is controlled by the user’s real hand using a Cyberglove.

for a specific object show the combination of contact points from
multiple grasping experiments. Figure 11 show examples of such
maps for different objects. The aggregated contact points are
drawn on the texture of the object. We represent each finger with
a different color, so it is easy to distinguish the grasping positions.
Our generated heat maps show possible candidates for grasp
points of an object. This data can be used, i.e., by robots to learn
stable grasping configurations for a wide variety of objects. We
will discuss the plugins in more detail in the following section.

4.2.1. Device Communication
While the CHAI3D library can be used for many different
haptic devices, no such library exists for hand tracking with the
many fundamentally different tracking methods, such as gloves,
optical-based, or marker-based (references). For this application,
we decided to use a Cyberglove, which uses bending sensors

attached to a glove to track finger motion. We have written a
library that connects and retrieves signals from the glove. These
signals are then transformed into joint angles by a calibration
step. DEVIO links this library, and by implementing the abstract
functions, we can use UNREALHAPTICS with a Cyberglove as an
input device.

4.2.2. Collision Detection With CollDet
Similar to our haptic application, we use the COLLETE plugin
with the CollDet library to precisely detect collisions between
the hand and objects. CollDet can easily handle multiple
contacts from different fingers and the palm while delivering
sophisticated collision information. Each graspable object is
represented by aColleteStaticMeshActor. For the virtual
hand, 16 ColleteStaticMeshActors are registered in the
ColletteVolume, three actors for each finger and one for

Frontiers in Virtual Reality | www.frontiersin.org 11 April 2021 | Volume 2 | Article 640470

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

FIGURE 11 | Heatmaps for a cerial box, a cup, and a milk box. The colors denote the finger used for grasping the object: index finger, middle finger, ring finger,

pinky finger, thumb.

FIGURE 12 | Performance of our plugin for the grasping application with 17

interacting ColleteStaticMeshActors. We used multiple grasping operations

and only used frames with collisions for the analysis. The top graph shows the

number of intersecting spheres. The middle graph shows the number of

colliding ColleteStaticMeshActors. In the bottom graph, the framerate is

shown. The framerate never drops below 550 Hz even for complicated

collisions.

the palm. This separation of actors is necessary because fingers
are movable, and ColleteStaticMeshActors are rigid
objects. At first glance, this may look complex, but in the case
of collisions, we automatically know which part of the hand is
in contact with the object. Moreover, we can also detect self-
collisions between fingers easily. Information about the positions
of the collision on the object allows both grasping and creating
heat maps.

4.2.3. Force Calculation and Heat Maps
To manipulate objects in VR, knowledge of the force acting on
objects from the virtual hand is essential. We can only estimate
the force in our setup because our hand tracking device has no

haptic feedback. Nonetheless, the force calculation introduced
in section 4.1.3 using the overlapped volume can be used to
approximate the force acting on objects. In this application,
the main goal is the generation of heat maps. Hence, during
a grasping operation, the contact points of the hand with the
object are computed. We do this in the following way: If
the hand is in contact with an object, the collision detection
returns a list of overlapping spheres. To generate heat maps
from pairs of overlapping spheres, we need to compute the
corresponding points on the surface of the object. We can use
Unreal’s linetrace function to determine the nearest point on
the surface with a raycast. Using Unreal’s complex collision
detection, we get a good approximation of the collisions on
the surface. For the linetrace, we define as a starting point, the
center of the hand’s sphere and as an endpoint the center of the
object’s sphere.

4.2.4. Performance
We, again, tested the performance of our collision detection loop.
In comparison with section 4.1.4, the number of ColldetActors
increased from 2 to 17, which in principle could all collide
simultaneously and increase the complexity significantly. We
evaluated the performance on a machine running Windows
10 with an AMD Ryzen 9 3900X (12 cores), 16 GB of
main memory, and an NVIDIA GeForce RTX 2080 SUPER.
The results are shown in Figure 12. To focus only on the
interesting case where the hand is grasping an object, we only
considered frames with collisions and limited the maximal
framerate to 1,000 Hz. Each of the 16 finger parts is packed
with 5,000 spheres and the graspable object with 10,000
spheres. The maximum number of intersecting spheres is around
30,000, and the maximum number of colliding actors is 11,
as can be seen in the upper graph. The frame rate never
drops below 150 Hz, and our application is easily running
in real-time.

Frontiers in Virtual Reality | www.frontiersin.org 12 April 2021 | Volume 2 | Article 640470

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

5. CONCLUSIONS AND FUTURE WORK

We have presented a new plugin system for integrating more
specialized VR input devices into modern plugin-orientated
game engines. Our system consists of three individual plugins
that cover the complete requirements for most devices:
communication with different hardware devices, collision
detection, and force rendering. Intentionally, we used an abstract
design of our plugins. This abstract and modular setup makes
it easy for other developers to exchange parts of our system to
adjust it to their individual needs. Our results show that our
plugin system is stable, and the performance is well-suited for
our applications of haptic rendering and virtual grasping, even
for complex non-convex objects.

With our plugin system, future projects have an easy way
to include special devices in games, research, and business
related applications. Even though other developers may decide
to use different libraries for their work, we are confident
that our experiences reported here in combination with our
high-level UE4 plugin system will simplify their integration
effort enormously.

However, our system and the current CollDet-based
implementation also have some limitations that we want to solve
in future developments. Currently, our system is restricted to
rigid body interaction. Further work may entail the inclusion
of deformable objects. In this case, a rework of the interfaces
is necessary because the amount of data to be exchanged
between the plugins will increase significantly; instead of
transferring simple matrices that represent the translation and
orientation of an object, we have to augment complete meshes.
Direct access to UE4s mesh memory could be helpful to solve
this challenge.

Also, our use cases offers interesting avenues for future works.
Currently, we plan a user study with blind video game players
to test their acceptance of haptic devices in 3D multiplayer

environments. Moreover, we want to investigate different haptic

object recognition tasks, for instance, with respect to the
influence of the degrees of freedom of the haptic device or with
bi-manual vs. single-handed interaction.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JR: evaluation of grasping and research. HM: evaluation of
haptic feedback and research. RW: review and general ideas.
MR: some part of implementation and technical help. JG:
some part of implementation. GZ: review, general help and
supervision. All authors contributed to the article and approved
the submitted version.

FUNDING

The research reported in this paper has been (partially)
supported by the German Research Foundation DFG, as part of
Collaborative Research Center (Sonderforschungsbereich) 1320
EASE—Everyday Activity Science and Engineering, University of
Bremen (http://www.ease-crc.org/).

ACKNOWLEDGMENTS

Some part of this work has previously been published at the
EuroVR 2018 conference in London, United Kingdom, October,
22–23, 2018 (Rüdel et al., 2018). We extended the original plugin
for haptic-based devices to other specialized input devices, e.g.,
Cybergloves, in this follow-up work.

REFERENCES

3D Systems (2018). Geomagic OpenHaptics Toolkit. Available online at:

https://www.3dsystems.com/haptics-devices/openhaptics (accessed September

3, 2020).

Andrews, S., Mora, J., Lang, J., and Lee, W. S. (2006). “Hapticast: A physically-

based 3D game with haptic feedback,” in Proceedings of FuturePlay 2006
(Ontario, CA).

CHAI3D (2016a). CHAI3D Documentation–Haptic Rendering. Available online at:
http://www.chai3d.org/download/doc/html/chapter17-haptics.html (accessed

March 9, 2020).

CHAI3D (2016b). Available online at: http://www.chai3d.org/ (accessed March 9,

2020).

de Pedro, J., Esteban, G., Conde, M. A., and Fernández, C. (2016). “Hcore:

a game engine independent OO architecture for fast development of

haptic simulators for teaching/learning,” in Proceedings of the Fourth
International Conference on Technological Ecosystems for Enhancing
Multiculturality (New York, NY: ACM), 1011–1018. doi: 10.1145/3012430.

3012640

Epic Games (2020a). Introduction to C++ Programming in UE4. Available online
at: https://docs.unrealengine.com/en-US/Programming/Introduction

Epic Games (2020b). Plugins. Available online at: https://docs.unrealengine.com/

latest/INT/Programming/Plugins/index.html (accessed March 9, 2020).

Gomes de Sá, A., and Zachmann, G. (1999). Virtual reality as a tool for

verification of assembly and maintenance processes. Comput. Graph. 23, 389–
403. doi: 10.1016/S0097-8493(99)00047-3

H3DAPI (2019). Available online at: http://h3dapi.org/ (accessed March 9, 2020).

Haption, S. A. (2020). Virtuose 6D Desktop. Available online at: https://

www.haption.com/pdf/Datasheet_Virtuose_6DDesktop.pdf (accessed March

9, 2020).

Kadleček, P., and Kmoch, S. P. (2011). “Overview of current developments

in haptic APIs,” in Proceedings of CESCG (Vienna: Vienna University of

Technology).

Kollasch, F. (2017). Sirraherydya/Phantom-Omni-Plugin. Available online at:

https://github.com/SirrahErydya/Phantom-Omni-Plugin (accessed Septemper

3, 2020).

Lin, J., Guo, X., Shao, J., Jiang, C., Zhu, Y., and Zhu, S. C.

(2016). “A virtual reality platform for dynamic human-scene

interaction,” in SIGGRAPH ASIA 2016 Virtual Reality Meets
Physical Reality: Modelling and Simulating Virtual Humans and
Environments (New York, NY: ACM), 1–4. doi: 10.1145/2992138.29

92144

Liu, H., Zhang, Z., Xie, X., Zhu, Y., Liu, Y., Wang, Y., et al. (2019). “High-fidelity

grasping in virtual reality using a glove-based system,” in 2019 International
Conference on Robotics and Automation (ICRA) (Piscataway, NJ: IEEE), 5180–
5186. doi: 10.1109/ICRA.2019.8794230

Frontiers in Virtual Reality | www.frontiersin.org 13 April 2021 | Volume 2 | Article 640470

http://www.ease-crc.org/
https://www.3dsystems.com/haptics-devices/openhaptics
http://www.chai3d.org/download/doc/html/chapter17-haptics.html
http://www.chai3d.org/
https://doi.org/10.1145/3012430.3012640
https://docs.unrealengine.com/en-US/Programming/Introduction
https://docs.unrealengine.com/latest/INT/Programming/Plugins/index.html
https://docs.unrealengine.com/latest/INT/Programming/Plugins/index.html
https://doi.org/10.1016/S0097-8493(99)00047-3
http://h3dapi.org/
https://www.haption.com/pdf/Datasheet_Virtuose_6DDesktop.pdf
https://www.haption.com/pdf/Datasheet_Virtuose_6DDesktop.pdf
https://github.com/SirrahErydya/Phantom-Omni-Plugin
https://doi.org/10.1145/2992138.2992144
https://doi.org/10.1109/ICRA.2019.8794230
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Rosskamp et al. UNREALHAPTICS: Advanced Interactions in Game Engines

McNeely, W. A., Puterbaugh, K. D., and Troy, J. J. (1999). “Six degree-of-freedom

haptic rendering using voxel sampling,” in Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’99 (New York, NY: ACM Press/Addison-Wesley Publishing Co.), 401–408.

doi: 10.1145/311535.311600

Moehring, M., and Froehlich, B. (2011). “Effective manipulation of virtual objects

within arm’s reach,” in 2011 IEEE Virtual Reality Conference (Piscataway, NJ:
IEEE), 131–138. doi: 10.1109/VR.2011.5759451

Mól, A. C. A., Jorge, C. A. F., and Couto, P. M. (2008). Using a game engine for

VR simulations in evacuation planning. IEEE Comput. Graph. Appl. 28, 6–12.
doi: 10.1109/MCG.2008.61

Morris, D., Joshi, N., and Salisbury, K. (2004). “Haptic battle pong: High-degree-

of-freedom haptics in a multiplayer gaming environment,” in Proceedings of
Experimental Gameplay Workshop (San Jose: Game Developers Conference).

Available online at: https://www.microsoft.com/en-us/research/publication/

haptic-battle-pong-high-degree-freedom-haptics-multiplayer-gaming-

environment-2/

Reinschluessel, A. V., Teuber, J., Herrlich, M., Bissel, J., van Eikeren, M.,

Ganser, J., et al. (2017). “Virtual reality for user-centered design and

evaluation of touch-free interaction techniques for navigating medical

images in the operating room,” in Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems, CHI
EA ’17 (New York, NY: ACM), 2001–2009. doi: 10.1145/3027063.30

53173

Rüdel, M. O., Ganser, J., Weller, R., and Zachmann, G. (2018).

“Unrealhaptics: a plugin-system for high fidelity haptic rendering in

the unreal engine,” in International Conference on Virtual Reality and
Augmented Reality (Chem: Springer International Publishing), 128–147.

doi: 10.1007/978-3-030-01790-3_8

Ruffaldi, E., Frisoli, A., Bergamasco, M., Gottlieb, C., and Tecchia, F. (2006).

“A haptic toolkit for the development of immersive and web-enabled

games,” in Proceedings of the ACM Symposium on Virtual Reality Software
and Technology (New York, NY: ACM), 320–323. doi: 10.1145/1180495.11

80559

Sagardia, M., Stouraitis, T., and Silva, J. L. E. (2014). “A new fast and

robust collision detection and force computation algorithm applied to the

physics engine bullet: method, integration, and evaluation,” in EuroVR
2014–Conference and Exhibition of the European Association of Virtual and
Augmented Reality, eds J. Perret, V. Basso, F. Ferrise, K. Helin, V. Lepetit, J.

Ritchie, C. Runde, et al. (The Eurographics Association).

Tenorth, M., Winkler, J., Beßler, D., and Beetz, M. (2015). Open-EASE: a cloud-

based knowledge service for autonomous learning. KÜnstl. Intell. 29, 407–411.
doi: 10.1007/s13218-015-0364-1

The Glasgow School of Art (2014). Haptic Demo in Unity Using OpenHaptics With
Phantom Omni. Online Video. Available online at: https://www.youtube.com/

watch?v=nmrviXro65g (accessed September 3, 2020).

User ZeonmkII (2016). Zeonmkii/Omniplugin. Available online at: https://github.
com/ZeonmkII/OmniPlugin (accessed September 3, 2020).

Verschoor, M., Lobo, D., and Otaduy, M. A. (2018). “Soft hand simulation

for smooth and robust natural interaction,” in 2018 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR) (Piscataway, NJ: IEEE), 183–190.
doi: 10.1109/VR.2018.8447555

Weller, R., Sagardia, M., Mainzer, D., Hulin, T., Zachmann, G., and

Preusche, C. (2010). “A benchmarking suite for 6-DOF real time collision

response algorithms,” in Proceedings of the 17th ACM Symposium on
Virtual Reality Software and Technology (New York, NY: ACM), 63–70.

doi: 10.1145/1889863.1889874

Weller, R., and Zachmann, G. (2009). “A unified approach for physically-based

simulations and haptic rendering,” in Sandbox 2009, ed D. Davidson (New

York, NY: ACM), 151. doi: 10.1145/1581073.1581097

Zachmann, G. (1998). “Rapid collision detection by dynamically aligned DOP-

trees,” in Proceedings of IEEE Virtual Reality Annual International Symposium;
VRAIS ’98 (Atlanta, GA), 90–97. doi: 10.1109/VRAIS.1998.658428

Zachmann, G. (2001). “Optimizing the collision detection pipeline,” in Procedings
of the First International Game Technology Conference (GTEC) (Hong Kong).

Zachmann, G. (2002). “Minimal hierarchical collision detection,” in Proceedings of
ACM Symposium on Virtual Reality Software and Technology (VRST) (Hong

Kong), 121–128. doi: 10.1145/585740.585761

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Rosskamp, Meißenhelter, Weller, Rüdel, Ganser and Zachmann.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Virtual Reality | www.frontiersin.org 14 April 2021 | Volume 2 | Article 640470

https://doi.org/10.1145/311535.311600
https://doi.org/10.1109/VR.2011.5759451
https://doi.org/10.1109/MCG.2008.61
https://www.microsoft.com/en-us/research/publication/haptic-battle-pong-high-degree-freedom-haptics-multiplayer-gaming-environment-2/
https://www.microsoft.com/en-us/research/publication/haptic-battle-pong-high-degree-freedom-haptics-multiplayer-gaming-environment-2/
https://www.microsoft.com/en-us/research/publication/haptic-battle-pong-high-degree-freedom-haptics-multiplayer-gaming-environment-2/
https://doi.org/10.1145/3027063.3053173
https://doi.org/10.1007/978-3-030-01790-3_8
https://doi.org/10.1145/1180495.1180559
https://doi.org/10.1007/s13218-015-0364-1
https://www.youtube.com/watch?v=nmrviXro65g
https://www.youtube.com/watch?v=nmrviXro65g
https://github.com/ZeonmkII/OmniPlugin
https://github.com/ZeonmkII/OmniPlugin
https://doi.org/10.1109/VR.2018.8447555
https://doi.org/10.1145/1889863.1889874
https://doi.org/10.1145/1581073.1581097
https://doi.org/10.1109/VRAIS.1998.658428
https://doi.org/10.1145/585740.585761
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

	UnrealHaptics: Plugins for Advanced VR Interactions in Modern Game Engines
	1. Introduction
	2. Related Work
	3. UnrealHaptics
	3.1. Unreal Engine Recap
	3.2. Design of the Plugin Communication
	3.2.1. Our Light Delegate System

	3.3. Devio Plugin—Device Interface
	3.4. Collette—Collision Detection Plugin
	3.5. ForceComp Plugin
	3.6. Controlling Data Flow via Events

	4. Applications
	4.1. Haptic Rendering
	4.1.1. Device Communication via CHAI3D
	4.1.2. Collision Detection With CollDet
	4.1.3. Force Calculation
	4.1.4. Performance

	4.2. Grasping
	4.2.1. Device Communication
	4.2.2. Collision Detection With CollDet
	4.2.3. Force Calculation and Heat Maps
	4.2.4. Performance

	5. Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

