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The solutions to many computer vision problems, including that of 6D object pose

estimation, are dominated nowadays by the explosion of the learning-based paradigm.

In this paper, we investigate 6D object pose estimation in a practical, real-word setting

in which a mobile device (smartphone/tablet) needs to be localized in front of a museum

exhibit, in support of an augmented-reality application scenario. In view of the constraints

and the priorities set by this particular setting, we consider an appropriately tailored

classical as well as a learning-based method. Moreover, we develop a hybrid method

that consists of both classical and learning based components. All three methods are

evaluated quantitatively on a standard, benchmark dataset, but also on a new dataset

that is specific to the museum guidance scenario of interest.

Keywords: 3D object pose estimation, monocular RGB, templates, CNN, hybrid, method evaluation

1. INTRODUCTION

Object identification and 3D pose estimation is a hot subject in the computer vision research
community. A large number of methods have appeared over the past decades that achieve good
performance. In practice, however, real world limitations (sensor modality, training requirements,
computational cost, scalability issues) render most methods inadequate or impractical for
deployment in production systems.

In this work, we deal with a real-world scenario that involves people visiting a modern museum
and using their mobile devices in order to receive location and user-aware information for the
exhibits. A mobile application on the device uses the built-in RGB camera to identify the exhibit
of interest and the pose of the exhibit relative to the camera. Then, the visitor receives customized
information regarding the exhibit on the device screen, in the form of augmented reality (AR)
visualizations. The information is updated as she/he moves through the museum from exhibit to
exhibit. There are several requirements that an object detection and pose estimation method must
meet to be used in such a scenario:

• Conventional camera input: Operation should rely on RGB cameras that are found on most
mobile phones.

• High scalability: The method should be able to cope with a large and possibly extensible number
of objects/exhibits.

• High inference speed: The computational requirements of the method should be aligned with the
computational power of common mobile devices.
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TABLE 1 | The three evaluated methods for 6D object pose estimation from RGB

input and their experimentally determined traits.

Posest+ YOLO-6D CNN-Posest+

Trait ↓ Method → (templates) (CNNs) (hybrid, proposed)

Inference speed X X

Scalability X X

Accuracy X X

Robustness X

Simple to train X

The “X” mark denotes that the method (column) has the trait (row).

• Pose estimation robustness: Pose estimation must perform
consistently under real world conditions and with a variety of
objects.

• Pose estimation accuracy: Accurate pose estimation is critical
in AR applications.

• Easy/cost effective installation: There is a need for easy/cost-
effective installation to a new exhibition and for easy
incorporation of new exhibits. This prohibits methods that
require sophisticated 3D object modeling or large, annotated
training sets.

Given the above criteria, we compare the performance of three
methods for monocular RGB object detection and 6 DoF pose
estimation in the context of the studied, real-world application
scenario. The evaluated methods are (a) Posest+, a template
matching method using hand crafted features which is a variant
of the Posest method proposed in Lourakis and Zabulis (2013),
(b) YOLO-6D, a single stage CNN-based method (Tekin et al.,
2018) and (c) a hybrid method consisting of a CNN module to
detect objects (Ren et al., 2017) coupled with the pose estimation
step of Posest (Lourakis and Zabulis, 2013). The evaluation
is based on a standard benchmark dataset reshaped to fit the
scenario requirements (YCB92) and on a use-case-specific dataset
(Muselearn) compiled particularly for the goals of this study1.

The methods used in our comparison were selected with
the basis of being (a) SOTA in their category, (b) extensively
evaluated with respect to other methods of the same class and
(c) open source and publicly available. These criteria enable us
to extrapolate the results of our experimental evaluation to other
methods beyond the ones that were actually tested.

The results of this experimental evaluation are briefly
summarized in Table 1. The overall conclusion is that the
method to be selected depends on which of the criteria are
considered more important in a particular application domain.
In the case of our application that targets AR services by mobile
devices in museum settings and entails performant, scalable
solutions of great accuracy, the proposed hybrid approach is the
preferred one.

2. RELATED WORK

Before the explosion of the DNN based techniques, the 6-DoF
object pose estimation literature was dominated by feature and

1The Muselearn and YCB92 datasets will become publicly available.

template matching methods. More recently, the paradigm shifted
to learning based methods and specifically to DNNs. In this
section, we focus on methods that use monocular RGB input
to perform instance-level 6-DoF object pose estimation. For a
deeper analysis and comparison of methods using different input
modalities the reader is referred to extensive reviews on the
problem (Hodaň et al., 2016; Hodan et al., 2018; Sahin et al.,
2020).

Feature/Template Matching Methods: These methods use
hand-crafted features and descriptors and template matching.
Generally, they operate in two phases: (i) In the training phase,
features are extracted from the training images and a database of
templates is generated offline, (ii) in the inference phase, features
from an input image are extracted and a template matching
method is used to identify objects and compute pose. The Posest
method of Lourakis and Zabulis (2013) creates a sparse 3Dmodel
of each learned object during an offline step using robust local
features (Lowe, 1999; Bay et al., 2006; Rublee et al., 2011). These
sparse object models are used as a database to retrieve and refine
the actual object pose. Payet et al. (Payet and Todorovic, 2011)
introduced a Bag of Boundaries representation for their learned
objects database, while Tjaden (Tjaden et al., 2017) proposed the
use of temporally consistent local color (TCLC) histograms and
demonstrated robust results. RAPID-LR (Muñoz et al., 2016) is
using a combination of edge matching and HOG descriptors for
template matching. Template matching methods do not scale
well as the number of objects and their complexity increases.
To solve this problem Konishi et al. (2016) proposed the use
of hierarchical pose trees (HPT) in their work focusing on pose
estimation of texture-less and reflective objects.

Learning Based Methods: These techniques automatically
learn the statistics of the objects in a training set. The trained
system predicts an intermediate representation that is post-
processed to recover the object pose.

Brachmann et al. (2016) proposes a joint classification-
regression random forest that predicts object labels and 3D
coordinates. In subsequent stages, these predictions are refined
using RANSAC and PnP.

CDPN (Li et al., 2019) uses a detector as a first stage
to detect the object in the image. On the second stage
the proposed Coordinates-based Disentangled Pose Network
splits the computation into two paths: The first regresses
the object translation, the second regresses 3D coordinates
for all object pixels and uses PnP to compute the object
rotation. Pix2Pose (Park et al., 2019) also uses a multi stage
architecture with a detector in the first stage. Once the object
class and 2D bounding box is found, the image crop is
fed into a network trained to regress 3D coordinates for
each object pixel. The method uses one such network for
each class. The full 6D pose is recovered using PnP in a
RANSAC scheme.

BB8 (Rad and Lepetit, 2017) uses a CNN based on VGG
to segment the object in the image. Subsequently, it feeds
the cropped region to another CNN that predicts the 2D
coordinates of the object’s 3D bounding box corners. The end
pose is recovered by applying the PnP algorithm to the 2D-3D
correspondences of the corners. PoseCNN (Xiang et al., 2017)
also uses a VGG derived DNN to simultaneously detect the
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center of an object in 2D, its distance from the camera and the
rotation of the object in a quaternion representation. The 2D
object center is recovered through aHough voting scheme.While
the method can achieve good accuracy, the size of the DNN
used and the Hough voting step take a toll on its performance.
Oberweger et al. (2018) employs a CNN to generate heatmaps
for the location of the 3D bounding box corner projections.
The full pose is recovered using a RANSAC scheme on the
predicted 2D points. PVNet (Hu et al., 2019; Peng et al., 2019)
and DPOD (Zakharov et al., 2019) also take a probabilistic
approach. PVNet learns vectors that point to the projections of
pre-selected object anchor points. These vectors are generated for
each object pixel in the image. The object pose is subsequently
recovered using EPnP and the Levenberg-Marquardt algorithm.
Hu et al. (2019) segments the object and computes a sparse set
of anchor point guesses. Then, the segmentation map is used to
filter guesses that belong to the object before applying EPnP to
solve for the full object pose. DPOD uses a CNN to compute
dense 2D-3D correspondences for each object pixel as well as
a segmentation mask. The pose is recovered in post-processing
using RANSAC and PnP. CorNet (Pitteri et al., 2019) proposes
an oriented corner detector for estimating the pose of industrial
objects. A FasterRCNN (Ren et al., 2017) network is used as
the corner detector. On the second stage the corners in the
image are used along side CAD object models in a RANSAC
scheme to identify object classes and object poses. SSD-6D (Kehl
et al., 2017) adopts a classification approach for guessing camera
viewpoint and in-plane rotation while it is also regressing for
2D bounding box. In the post-processing step, ICP is used to
recover the full object pose. Tekin et al. (2018) proposes a more
lightweight approach. Using a modified YOLO (Redmon and
Farhadi, 2017) detector it regresses to the projected bounding
box corners in a single stage architecture. The final pose is
recovered using PnP. The method achieves high accuracy and
high inference speed.

Assessment of the State-of-the-Art: Template-based
methods achieve good accuracy but in most cases require
detailed 3D object models to work, they can be sensitive to
artifacts and illumination and can have performance issues
when dealing with large number of classes. Learning-based
methods can be trained end-to-end to perform object detection
and 6D pose estimation. In general, learning based methods
scale better to multiple objects but are more computationally
intensive and require large annotated training datasets and in
most cases detailed 3D object models. One can also think of
the alternative of designing a hybrid method. More specifically,
template matching methods share a common bottleneck on
the object detection phase. As the number of templates in
the database increases, the performance drops. The number
of templates increases with the number and the complexity
of the objects. Thus, a hybrid method could combine a
learning-based object detection component and a template-
based pose estimation one. In this paper we explore this
alternative by defining such a method and by evaluating
it comparatively to a purely template based and a purely
learning-based method.

3. METHODS

We present the methods used in our experiments focusing on
the reasons they were selected with respect to the requirements
described in section 1.

3.1. Posest+
As a representative of the class of template matching methods
we consider Posest+, a modified version of the Posest method2

proposed by Lourakis and Zabulis (2013). Similar to other
template based pose estimation methods, Posest achieves good
accuracy and requires very limited computational resources to
operate. Posest+ was selected for this comparison for its relaxed
learning phase requirements and its capability to achieve good
performance on an Intel i7 CPU. Additionally, Posest+ uses
local features augmented with depth information for its template
representation and does not require a precise CAD model of the
target objects.

Posest adopts a Structure from Motion (SfM) technique for
acquiring the object models. Instead, Posest+ uses a simpler
approach that is compatible to the motivation of this work and
which is presented below.

Training: Creating the features and reference poses database
is a critical step for the correct operation of the pose estimation
pipeline. In order to capture reference RGB images of the objects
as well as 3D data for computing the pose, we employed RGB and
depth sensors (Smisek et al., 2013).

Training sequence acquisition: For each object we capture an
RGB-D video sequence. For optimal results a 360 degree view of
the object is needed.

Feature and pose extraction: For each sequence we apply
SLAM to extract keyframes and camera poses. There is a number
of state of the art methods that can be utilized for this process.
For our reference implementation we chose ORBSlam2 (Mur-
Artal and Tardós, 2017) and ORB features (Rublee et al.,
2011). ORBSlam2 achieves robust camera tracking using
features extracted from RGB and depth information. More
importantly, the algorithm can fallback to RGB-only features
when depth information is missing. This robustness to
missing depth is very useful in real world applications, since
commonly found reflective or translucent materials make depth
acquisition difficult.

Annotation: For each class, a reference camera pose and
3D object boundaries (generated from 2D bounding boxes in
reference frames) are supplied by a human annotator. The 3D
boundaries are used in order to identify features of background
objects.

Detection of the object in each frame of a sequence: For each
frame in a training sequence ORBSlam2 provides a camera pose.
Using the manually annotated reference pose, all the camera
poses are transferred to the reference coordinate system of the
object. We extract the ORB features from each frame and use the
corresponding depth to compute the 3D point of each feature.
Features whose 3D location cannot be computed (i.e., no depth

2Posest source available in https://users.ics.forth.gr/\simlourakis/posest/.
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value) are discarded. Finally, we filter the 3D points that lie
outside the annotated bounding volume of the object.

Keyframes: We select a number of frames in the sequence
where the object is fully visible. Posest uses a Bag of Words
(BoW) representation of the ORB features extracted from these
“keyframes.” The BoW representations are used to create the
object database. The number of keyframes used is a tunable
parameter. As a rule of thumb, more keyframes yield better
identification and pose estimation results. This also means that
larger training sets will yield better results during inference.
However, as the experimental results demonstrate, the method
performs reasonably well with very few (i.e., less than 10)
keyframes.

Inference: The first step in the inference pipeline is to
compute the 2D ORB features in the image. From these, a bag
of words (BoW) representation is created. We compute the
similarity score between the BoW of the query image and all
the keyframes in the exhibits database. The set of keyframes that
have a similarity score above a threshold constitute the initial
“coarse” estimations. The actual pose estimation is achieved with
refinement step over this “coarse” estimations. Using the ORB
descriptors and matching described in Rublee et al. (2011), we
find the best correspondences between the query ORB features
of each keyframe. Posest (Lourakis and Zabulis, 2013) is applied
to all matches. Posest uses a RANSAC scheme to iteratively
select a subset of matches and compute the rigid transformation
that best explains the camera motion with respect to a given
keyframe pose. The quality of the transformation is measured
using the reprojection error of the matched orb features from
the query frame to the keyframe. The pose with the best score
is selected.

3.2. YOLO-6D
From the broad range of recent 6 DoF pose estimation methods
using DNNs, the work by Tekin et al. (2018) was selected for this
comparison. This is a single-shot approach for simultaneously
detecting an object in an RGB image and predicting its 6D pose.
The network proposed by Tekin et al. is based on the popular
YOLOv2 (Redmon and Farhadi, 2017) detector. The network
learns to predict the location of the 3D bounding box corners
of the object as they would appear projected on the image.
Subsequently, 6-DoF pose is computed using the PnP algorithm.

In contrast to many probabilistic methods, this method does
not require a detailed 3D model of each object for training. This
makes the creation and annotation of training sets much simpler.
The method achieves state of the art accuracy in common
benchmarks. Additionally, the very fast backbone network and
the simple post-processing step contribute to a high inference
speed (the authors claim 50 fps on a Titan X GPU). In our
experiments we used the code provided by the authors3 after
adapting it to our multiclass datasets.

We followed the training procedure of Tekin et al. (2018)
using SGD with momentum and batch size 8. The same data
augmentation parameters were used for jitter, hue, saturation,
exposure, crop and scale. No background augmentation was

3https://github.com/microsoft/singleshotpose.

used. The input resolution was set to 416×416 pixels which offers
the best trade off between accuracy and performance (Tekin et al.,
2018). We train the network for a total of 35 epochs using a
learning rate of 1e− 5 dropping by a factor of 10 after 30 epochs.

3.3. CNN-Posest+ (Proposed)
In order to circumvent the scalability issue, of the template-based
methods, we replaced the detection step of the Posest+ pipeline
with a Faster-RCNN (Ren et al., 2017) based detector using a
Resnet18 (He et al., 2016) backbone. The detector4 can perform
inference in near realtime even on a mid-range GPU and can be
trained to identify hundreds of object classes with high precision
and recall at a constant computational cost.

Figure 1 outlines the CNN-Posest+ pipeline. CNN-Posest+
uses the Posest+ for the pose estimation step, thus it still requires
the creation of an object database as described in section 3.1.
The annotated sequences used for the database generation are
also used for training the detector. For this training, we kept the
same hyper-parameters as the torchvision implementation, using
SGD with momentum and a batch size of 16. Data augmentation
with random crop and scale was applied to each training image
following the same data augmentation strategy and parameters
used in the reference torchvision implementation. We train the
detector for a total of 13 epochs using a learning rate of 2e − 2
dropping by a factor of 10 after 8 and 11 epochs.

4. DATASETS

We evaluate the three methods on two datasets that are described
below.

The YCB92 Dataset: This dataset is derived from the “YCB
Video dataset”. YCB Video is a large scale dataset containing 92
video sequences of 21 objects with a total of 133,827 frames. It
was created using the objects from the YCB Benchmarks Objects
and Models set (Xiang et al., 2017). In each of the 92 video
sequences a subset of the 21 objects are placed in a random
arrangement on a surface. The surface and background scene
change for each sequence. The ground truth provided with the
dataset, includes the 6D pose for each object in each frame
relative to the camera. Additionally, the models of the objects and
the intrinsic parameters of the cameras used are made available.

The default train/validation split of the YCB video dataset has
12 sequences (seq 48-59) reserved for validation and the rest are
assigned for training. In the default split the number of objects in
the dataset is 21.

We resample the YCB video dataset in order to conform with
our real world requirements and the goals of our comparison.
Since each sequence in YCB video is shot with a random
arrangement of a subset of the objects and on different surfaces
and backdrops, we choose to assign each object arrangement (e.g
each sequence) as a unique class. This way, the dataset can be
thought of as consisting of 92 classes (one for each sequence).

4For our implementation, the pytorch-torchvision Faster-RCNN implementation
was used https://github.com/pytorch/vision.
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FIGURE 1 | The CNN-Posest+ pipeline: (a) Exhibit input image from the visitor’s mobile device, (b) CNN based object detector finds the 2D bbox and id of the exhibit,

(c) Exhibit keyframes are selected based on exhibit id, (d) images features are computed, (e) Posest Pose estimation step using (c,d), (f) Exhibit 3D pose is returned

to the mobile device.

FIGURE 2 | Image samples from the employed datasets. Each image corresponds to a single class. Top: Frames from the YCB92 dataset. All objects and the

surface they lay on, are considered as a single object. Bottom: Frames from the Muselearn dataset. Each frame shows a different museum exhibit.

We split the frames of each sequence into a training and a
validation set.

In order to evaluate the performance change of each method
as the number of classes changes, we train and evaluate on
four different sub-datasets of YCB92, containing an increasing
number of classes: 6, 20, 50, and 92. The selection of sequences
for the 6 classes sub-dataset was such that the YCB objects are as
diverse as possible (i.e., the sequences do not havemany objects in

common). This makes the classes differ as much as possible. This
special selection is not required for the 20 and 50 classes because
the distribution of the objects is more uniform.

For each of the above sub-datasets we created five different
train/validation splits in order to evaluate the robustness of the
methods with smaller training sets. A common train/validation
split in similar datasets (Hinterstoisser et al., 2013) is to use 20%
of the total frames for the training set. For YCB92 we use 1, 5, 10,
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and 20% of the frames for training and the rest for validation. In
these splits the training frames are selected uniformly over time
from each object sequence. Additionally, we created an extremely
restricted training set containing only 3 training frames. In this
special case the frames were selected to maximize the coverage of
the object. In total, the YCB92 dataset is split into 20 different
sub-datasets. The top row of Figure 2, shows three training
frames of YCB92.

The Muselearn Dataset: The Muselearn dataset consists of
two video sequences with a total of 6,212 frames. The dataset is
shot in a museum and represents a real world challenge for the
methods in our comparison as described in section 1. There is a
total of 6 classes in the dataset, each corresponding to a museum
exhibit. The dimensions of the exhibits range from 30cm to 2m.
The sequences are shot using an RGB-D sensor and the pseudo

ground truth is created using a combination of ORBSlam2 (Mur-
Artal and Tardós, 2017) andmanual exhibit annotation. From the
number of frames showing each exhibit we use 20% for training;
the rest become the validation set. For the experiments (training
and validation) we use only the RGB frames. The bottom row of
Figure 2 shows three frames from the Muselearn dataset.

5. EXPERIMENTAL EVALUATION

We quantify the effect of (a) increasing the number of object
classes and (b) varying the size of the available training set in
6-DoF object pose estimation. We evaluate the translation error
Et and the angular error Eθ (Drost et al., 2010) in 3D space and
compare the performance of the three methods. The standard

FIGURE 3 | YCB92 Accuracy A(2) for the three methods (the percentage of frames where the 6D pose estimation error is below 2 cm and 2◦. The training set size

increases on the x-axis. Each curve corresponds to experiments with the same number of classes: 6, 20, 50, and 92. Left: Posest+ vs. YOLO-6D, Right: Posest+ vs.

CNN-Posest+.

FIGURE 4 | YCB92 f1(t) score computed for different accuracy thresholds (less than tcm and t◦). Only the networks trained with the 20% train/validation split are

shown. Left: Posest+ vs. YOLO-6D, Right: Posest+ vs. CNN-Posest+.
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deviation of these errors give a measure of the robustness of each
approach. Accuracy A(t) is measured for different thresholds of
Et and Eθ . Specifically, accuracy of A(t) = pmeans that in p% of
the frames the translation error is less than tcm and the rotational
error is less than t degrees. Finally, we compute the F1-measure as

F1 =
2P(t)R(t)

P(t)+ R(t)
,

where P(t) and R(t) are the pose estimation precision and recall
for a given accuracy threshold t.

Dataset Balancing: There is a total of 21 datasets used in
our comparison, 20 sub-datasets of YCB92 and the Muselearn
dataset described in section 4. The number of training frames for
a specific class varies from as low as 3 (for the “3 frame” splits) to
almost 700 (for some classes in the 20% splits). In order to ensure
a fair comparison between all networks for the YOLO-6D and
the detector part of the CNN-Posest+ methods, we apply dataset
balancing with the following procedure.

In each epoch the network sees 700 images of each object
class. This means that for training sets containing less than 700
images of a class, we re-sample from the available images with
the class and complement the set up to 700 images through data
augmentation. This ensures that during training, all networks see
700 images for each class.

Accuracy as a Function of Number of Classes and Training

Set Size: In Figure 3, we compare the accuracy of Posest+,
CNN-Posest+, and YOLO-6D as a function of the number of
objects/classes and of the training set size. We increase the
size of the training set (x-axis: 3 frames, 1, 5, 10, and 20%)
and train with sub-datasets containing an increasing number
of classes (colored curves: 6, 20, 50, 92). The accuracy A(t) is
computed for a threshold t of 2cm and 2◦. The results of CNN-
Posest+ are virtually identical to the Posest+ results since the two
methods share the same pose estimation step. CNN-Posest+ only
slightly outperforms Posest+ in some cases where the CNN based
detection step is outperforming the template based detection. The

FIGURE 5 | Pose estimation error [Et and Eθ ] and standard deviations [D(Et ) and D(Eθ ] for the YCB92 datasets. The training set size increases on the x-axis. Each

curve corresponds to experiments with the same number of classes: 6, 20, 50, and 92. Posest+ outperforms the YOLO-6D consistently for the smallest training sets.

As the number of training samples increases the difference in the average errors becomes smaller. However, the standard deviation of Posest+ is much higher than

that of YOLO-6D.
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FIGURE 6 | Per-class accuracy A(2) on two YCB92 sub-datasets: For the 20% training ratio we compare the 6 and the 92 class cases. On the x-axis the 6 common

objects are shown together with their YCB-Video sequence id.

most interesting results come from the comparison of Posest+
with YOLO-6D. Posest+ achieves relatively high accuracy
even with the most restricted training sets. Additionally, is
does not show any degradation in accuracy as the number
of classes increases. YOLO-6D achieves competitive accuracy
only with larger training sets (≥ 5%). Additionally, the
accuracy of YOLO-6D slightly drops as the number of
classes increases.

For a closer examination of the results we focus on the
largest training set (20% split). Figure 4 shows the F1(t) score
for different accuracy thresholds t ∈ [1, 10]. YOLO-6D starts to
outperform Posest+ for t ≥ 3. Additionally Posest+ is under-
performing across the range for the 6 classes sub-datasets. This is
explained in detail in the section 5.3).

The better performance of YOLO-6D for higher thresholds
in Figure 4 is explained if we look at the average error and
standard deviation (on translation and rotation) for eachmethod.
In Figure 5, we examine these metrics for Posest+ and YOLO-
6D. For all methods the number of training samples affects
the pose estimation error. On the other hand, the increase
in the number of classes only affects the learning based
method. When training with large enough training sets, the
average error both in translation and rotation for the Posest+
method is just slightly lower compared to YOLO-6D. However,
Posest+ has a much higher standard deviation producing
more noisy results. YOLO-6D is more robust. Interestingly,
the deviation of Posest+ drops as the size of the training
set increases for all sub-datasets but it is consistently higher
than YOLO-6D.

Method Limitations: We analyze the limitations of
the benchmark methods as they emerge from the YCB92
experiments. Figure 6 shows the accuracy A(2) per-class for two
20% split experiments: The 6 and 92 class cases. In the figure we
show the classes that are common in both experiments. This way,
we compare the effect of learning more classes to the per-class

accuracy. On the x-axis we show a representative training image
from each of the 6 classes.

Template based methods are very sensitive to illumination
changes and object texture. While the specifics may vary for
different approaches, there are always scenarios that may confuse
the template matching pipeline and result to pose estimation
failure. Posest+ and CNN-Posest+ use local descriptors to build
a bag of words representation of each object. This means that
in low texture scenes (i.e., featureless surfaces) or in scenes
with repeating patterns the method performs poorly. Moreover,
slight changes in the selection of keyframes may result in big
differences in the pose estimation accuracy. Learning based
methods on the other hand learn features at different scales
and thus perform better with repeating textures and can handle
better the illumination changes. On the downside, the accuracy
of learning based methods decreases as the number of classes
increases.

In Figure 6, objects “0038” and “0011” are representative
difficult cases for the template based methods. The repeating
pattern of the chessboard (“0038”) and the low number of
features (“0011”) are the reasons for the low accuracy achieved
by Posest+ and CNN-Posest+. This type of cases in YCB92 is the
reason for the high standard deviation in translation and angular
errors shown in Figure 5. YOLO-6D on the other hand achieves
better accuracy in these cases. It is also clear that the per-class
accuracy of YOLO-6D drops as the number of classes increases.
This drop, however, is not uniform. This could complicate the
behavior prediction of a CNN based system as more classes
are added. The per-class accuracy of Posest+ and CNN-Posest+
remains constant as more classes are added.

Muselearn Experiments: The Muselearn dataset is closer to
our motivational use case with respect to the dataset acquisition
procedure as well as the type of classes. It is, however, limited
to only 6 museum exhibits. In the bottom row of Figure 2, we
show 3 representative frames from the dataset. Figure 7 shows
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FIGURE 7 | Accuracy A(t) as a function of different thresholds t ∈ [1, 10] on

the Muselearn dataset.

TABLE 2 | Average translation and angular error (and std dev) of the three

methods for the Muselearn dataset.

Metric →

Method ↓

Average

translation error (mm)

Average

angle error

Posest+ 46.5 (87.2) 2.1◦ (4.9◦)

YOLO-6D 44.9 (99.8) 1.68◦ (2.1◦)

CNN-Posest+ (proposed) 46.4 (87.1) 2.1◦ (4.9◦)

The Muselearn dataset is the most challenging in our experiments.

TABLE 3 | Inference times (in ms) for various numbers of classes (sub-datasets of

the YCB92).

Number of classes → 6 20 50 92

Method ↓

Posest+ (CPU) 88 97 117 144

YOLO-6D (CPU) 225 225 225 225

YOLO-6D (GPU) 26 26 26 26

CNN-Posest+ (GPU+CPU) 128 128 128 128

the accuracy A(t) for Posest+ and YOLO-6D. The curves follow
the same trend as in the YCB92 datasets. However, Muselearn
is more challenging, so the accuracy for both methods is lower.
This is also evident in the translation and angular errors shown
in Table 2.

Inference Time: Table 3 shows average inference times
in milliseconds per image for each method. All tests were
performed on the same mid-range workstation equipped with
a 6th generation Intel i7 CPU and an NVIDIA GTX970 GPU.
YOLO-6D and CNN-Posest+ feature constant times for different
numbers of classes. The inference cost for CNN-Posest+ breaks

down to 36ms for the detection step and 92ms for the pose
estimation step. For Posest+, inference time is almost linear with
the number of classes in the database. It can be approximated by
the equation Tinf = 84 + 0.65Ncl, where Ncl is the number of
classes. Note that Posest+ is a CPU only implementation. Even
for the 92 classes scenario, YOLO-6D CPU is almost 50% slower
than Posest+.

6. SUMMARY AND CONCLUSIONS

Driven by the requirements of a real-world application for 6-
DoF object pose estimation using a conventional RGB camera,
we considered existing approaches that span a broad spectrum of
design choices (template-based, learning-based) and we defined
a hybrid variant. We evaluated quantitatively these methods
based on standard/general and application-tailored datasets that
we compiled for this purpose. All three methods conform with
the requirements to some degree. According to the summary of
the obtained experimental results (see Table 1), the selection of
the method to be employed depends on what is considered the
most important/critical criterion and other factors, such as the
availability of a GPU, whether processing can be offloaded to
cloud based services, what are the exact robustness requirements,
the maximum number of classes, etc. In a scenario that requires
the same, constant accuracy on hundreds of objects with
minimum computational cost, Posest+ is the way to go. If
robustness is of higher priority and large NNs can be afforded
to keep accuracy high, then CNN based methods will deliver at a
higher computational cost. For a very large number of exhibits,
a good compromise could be the hybrid CNN-Posest+ method.
Although this is more complicated to train, computational cost
benefits are meaningful in real-world situations involving more
than 100 exhibits.
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