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3D morphable models are widely used to describe the variation of human body shapes.
However, these models typically focus on the surface of the human body, since the
acquisition of the volumetric interiorwould require prohibitive medical imaging. In this paper
we present a novel approach for creating a volumetric body template and for fitting this
template to the surface scan of a person in a just a few seconds. The body model is
composed of three surface layers for bones, muscles, and skin, which enclose the
volumetric muscle and fat tissue in between them. Our approach includes a data-
driven method for estimating the amount of muscle mass and fat mass from a surface
scan, which provides more accurate fits to the variety of human body shapes compared to
previous approaches. We also show how to efficiently embed fine-scale anatomical
details, such as high resolution skeleton and muscle models, into the layered fit of a
person. Our model can be used for physical simulation, statistical analysis, and anatomical
visualization in computer animation and medical applications, which we demonstrate on
several examples.
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1 INTRODUCTION

Virtual humans are present in our everyday lives. They can be found in movies, computer games, and
commercials. In addition, they are employed in a rapidly growing number of applications in virtual
reality (VR) and augmented reality (AR), even ranging to computational medicine. All these
applications benefit from realistic virtual representations of human.

If we look at a human, its appearance is mostly determined by everything we can directly see (skin, hair,
cloth, etc.). Hence, it is not surprising that research has focused on capturing, analyzing, and animating
surface models of humans. Consequently, there is a vast amount of surface-based capturing approaches,
suitable for almost every level of detail and budget: From complex multi-camera photogrammetry setups
that capture finest-scale wrinkles of the human face (Riviere et al., 2020) over approaches that compute
ready-to-animate models from simple smart-phone videos (Wenninger et al., 2020) to machine learning
approaches that reconstruct a virtual model from a single image (Weng et al., 2019). For the purpose of
creating convincing animations of and interactions with those models, large amounts of 3D captured data
have been collected to build sophisticated surface-based models (Anguelov et al., 2005; Loper et al., 2015;
Bogo et al., 2017). Thosemodels compensate for the fact that humans are not empty hulls or homogeneous
solids by capturing and analyzingmore andmore data of that surface hull. Another way to approach this is
to model volumetric virtual humans by incorporating (discrete approximations of) their interior
anatomical structures. While surface-based models might be sufficient for many applications, for
others (e.g., surgery simulation) a volumetric model is an essential prerequisite.
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While detailed volumetric models of the human body exist
(Ackerman, 1998; Christ et al., 2009; Zygote, 2020), they can be
very tedious to work with. Since they usually consist of hundreds
of different bones and muscles, merely creating a volumetric
tetrahedral mesh for simulation purposes can be frustratingly
difficult. Moreover, those models represent average humans and
transferring their volumetric structure and anatomical details to a
specific human model (e.g., a scanned person) is not
straightforward. Although there are a couple of approaches for
transferring the interior anatomy from a volumetric template
model into a surface-based virtual human (Dicko et al., 2013;
Kadleček et al., 2016), these methods either deform bone
structures in a non-plausible manner (Dicko et al., 2013) or
require a complex numerical optimization (Kadleček et al., 2016).

In this paper we present a robust and efficient method for
transferring an interior anatomy template into a surface mesh in
just a couple of seconds. A key component is a simple decomposition
of the human body into three layers that are bounded by surfaces
sharing the same triangulation: the skin surface defines the outer shape
of the human, themuscle surface envelopes its individual muscles, and
the skeleton surface wraps the subject’s skeleton (see Figure 1
middle). The muscle layer is hence enclosed in between the
skeleton and muscle surface, and the subcutaneous fat tissue by
the muscle surface and skin surface. This layered template model is
derived from the Zygote body model (Zygote, 2020), which provides
an accurate representation of both themale and female anatomy.We

propose simple and fast methods for fitting the layered template to
surface scans of humans and for transferring the high-resolution
anatomical details (Zygote, 2020) into thesefitted layers (seeFigure 1
right). Ourmethod is robust, efficient, and fully automatic, which we
demonstrate on about 1,700 scans from the European CAESAR
dataset (Robinette et al., 2002).

Our approach enriches simple surface scans by plausible
anatomical details, which are suitable for educational
visualizations and volumetric simulations. We note, however, that
due to the lack of true volumetric information, it is not a replacement
of volumetric imaging techniques in a medical context. Our main
contributions are:

• A novel approach for creating a layered volumetric template
defined by skin, muscle, and bone surfaces, which all have
the same triangulation, thereby making volumetric
tessellation straightforward.

• A robust and efficient method for transferring the layered
volumetric template model into a given surface scan of a
human in just a couple of seconds.

• A regressor that extracts the amount of muscle and fat mass of
a subject from the skin surface only, thereby making manual
specification of muscle and fat distribution unnecessary.

• Our approach takes differences betweenmale and female anatomy
into account by deriving individual volumetric templates and
individual muscle/fat regressors for men and women.

FIGURE 1 | Starting from the surface of a human (left), we fit a three-layered model consisting of a skin, muscle, and skeleton layer (middle), which enables physical
simulations in a simple and intuitive way. terior structures, such as individual models of muscles and bones, can also be transferred using our layered model (right).
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2 RELATED WORK

Using a layered volumetric model of a virtual character has been
shown beneficial compared to a surface-only model in multiple
previous works. Deul and Bender (2013) compute a simple
layered model representing a bone, muscle, and fat layer,
which they use for a multi-layered skinning approach.
Simplistic layered models have also been used to extend the
SMPL surface model (Loper et al., 2015) in order to support
elastic effects in skinning animations (Kim et al., 2017; Romero
et al., 2020). Compared to these works, our three layers yield an
anatomically more accurate representation of the human body,
while still being simpler and more efficient than complex
irregular tetrahedralizations. Saito et al. (2015) show that a
layer that envelopes muscles yields more convincing muscle
growth simulations and reduces the number of tetrahedral
elements required in their computational model. They also
show how to simulate different variations of bone sizes,
muscle mass and fat mass for a virtual character.

When it comes to the generation of realistic personalized
anatomical structures from a given skin surface, most previous
works focus on the human head: Ichim et al. (2016) register a
template skull model to a surface-scan of the head in order to
build a combined animation model using both physics-based and
blendshape-based face animation. Ichim et al. (2017) also
incorporate facial muscles and a muscle activation model to
allow more advanced face animation effects. Gietzen et al.
(2019), Achenbach et al. (2018) use volumetric CT head scans
and surface-based head scans in order to learn a combined
statistical model of the head surface, the skull surface, and the
enclosed soft tissue, which allows them to estimate the head
surface from the skull shape and vice versa. Regarding the other
parts of the body, Zhu et al. (2015) propose an anatomical model
of the upper and lower limbs that can be fit to surface scans and is
able to reconstruct motions of the limbs.

To our knowledge, there are just two former approaches for
generating an anatomical model of the complete core human body
(torso, arms, legs) from a given skin surface. In their pioneering
work, Dicko et al. (2013) transfer the anatomic details from a
template model to various humanoid target models, ranging from
realistic body shapes to stylized non-human characters. They
transfer the template’s anatomy through a harmonic space warp
and per-bone affine transformations, which, however, might
distort muscles and bones in an implausible way. Different
distributions of subcutaneous fat can be (and have to be)
painted manually into a special fat texture. The work of
Kadleček et al. (2016) is most closely related to our approach.
They build an anatomically plausible volumetric model from a set
of 3D scans of a person in different poses. An inverse physics
simulation is used to fit a volumetric anatomical template model
to the set of surface scans, where custom constraints prevent
muscles and bones from deforming in an unnatural manner. We
discuss the main differences of our approach and Dicko et al.
(2013), Kadleček et al. (2016) in Section 4.

Estimating the body composition from surface measures or 3D
surface scans (like we do in Section 3.3) has been tackled before.
There are numerous formulas for computing body fat percentage

(BF), or body composition in general, from certain
circumferences, skinfold thicknesses, age, gender, height,
weight, and density measurements. Prominent examples are
the skinfold equations, or the Siri- and Brozek formulas
(Siri, 1956; Brožek et al., 1963; Jackson and Pollock, 1985).
These formulas, however, either rely on anthropometric
measurements that have to be taken by skilled personnel or on
measuring the precise body density via expensive devices, such as
BOD PODs (Fields et al., 2002). Ng et al. (2016) compute BF
based on a 3D body scan of the subject, but their formula is
tailored toward body scans and measurements taken with the
Fit3D Scanner (Fit3D, 2021). Even with the help of the authors we
could not successfully apply their formulas to scans taken with
different systems, since we could always find examples resulting
in obviously wrong (or even negative) BF. Recently, Maalin et al.
(2020) showed that modeling body composition through body fat
alone is an inferior measure for defining the shape of a person
compared to a combined model of fat mass and muscle mass. We
therefore adapt their data to estimate fat mass and muscle mass
from surface scans alone (Section 3.3). Incorporating these
estimations into the volumetric fitting process allows us to
determine how much of the soft tissue layer is described by
muscle tissue more plausibly than Kadleček et al. (2016).

3 METHODS

Our approach consists of three main contributions: First, the
generation of the volumetric three-layer template, described in
Section 3.2, where we derive the skin, muscle, and skeleton layers
from the male and female Zygote model (Zygote, 2020). Second,
an efficient method for fitting this layered model (including all
contained anatomical details) (in)to a given human surface scan
(Section 3.4). Third, the estimation of a person’s body
composition, i.e., how much of the person’s soft tissue is
described by muscles and fat (Section 3.3). By adapting the
BeyondBMI dataset (Maalin et al., 2020) to our template, we
derive this information from the surface scan alone and use it to
inform the volumetric template fitting. Figure 2 shows an
overview of the whole process, starting from the different
input data sets, the template model and the muscle/fat
regressor, to the final personalized anatomical fit.

3.1 Data Preparation
In our approach we make use of several publicly or commercially
available datasets formodel generation,model learning, and evaluation:

• Zygote: The Zygote model (Zygote, 2020) provides high-
resolution models for the male and female anatomy. We use
their skin, muscle, and skeleton models for building our
layered template.

• BeyondBMI: Maalin et al. (2020) scanned about 400 people
and additionally measured their fat mass (FM), muscle mass
(MM), and body mass index (BMI) using a medical-grade
eight-electrode bioelectrical impedance analysis. They
provide annotated (synthetic) scans of 100 men and 100
women, each computed by averaging shape and annotations
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of two randomly chosen subjects. From this data we learn a
regressor that estimates fat and muscle mass from the skin
surface.

• Hasler: The dataset of Hasler et al. (2009) contains scans of
114 subjects in 35 different poses, captured by a 3D laser
scanner. The scans are annotated with fat and muscle mass
percentage as measured by a consumer-grade impedance
spectroscopy body fat scale. We use this dataset to evaluate
the regressor learned from the BeyondBMI data.

• CAESAR: The European subset of the CAESAR scan
database (Robinette et al., 2002) consists of 3D scans
(with about 70 selected landmarks) equipped with
annotations (e.g., weight, height, BMI) of about 1,700
subjects in a standing pose. We use this data to evaluate
our overall fitting procedure.

All these data sources use different model representations,
i.e., either different mesh tessellations or even just point clouds. In
a preprocessing step we therefore re-topologize the skin surfaces
of these datasets to a common triangulation by fitting a surface
template using the non-rigid surface-based registration of
Achenbach et al. (2017).

This approach is based on an animation-ready, fully rigged,
statistical template model. Its mesh tessellation (about 21k
vertices), animation skeleton, and skinning weights come
from the Autodesk Character Generator (Autodesk, 2014). It
uses a 10-dimensional PCA model representing the human
body shape variation and we will call it the surface template in
the following. In a preprocessing step we fit the surface template

to all input surface scans to achieve a common triangulation
and thereby establish dense correspondence. This fitting
process is guided by a set of landmarks, which are either
specified manually or provided by the dataset. A nonlinear
optimization then determines alignment (scaling, rotation,
translation), body shape (PCA parameters), and pose
(inverse kinematics on joint angles) in order to minimize
squared distances of user-selected landmarks and
automatically determined closest point correspondences in a
non-rigid ICP manner (Bouaziz et al., 2014b). Once the model
parameters are optimized, a fine-scale out-of-model
deformation improves the matching accuracy and results in
the final template fit. For more details we refer to (Achenbach
et al., 2017).

3.2 Generating the Volumetric Template
We use the male and female Zygote body model (Zygote, 2020) as
a starting point for our volumetric model. Our volumetric
template is defined by the skeleton surface B (for bones), the
muscle surface M, and the skin surface S. The skeleton is
enveloped by the skeleton surface, the muscle layer is enclosed
between the skeleton surface and the muscle surface, and the
(subcutaneous) fat layer is enclosed by the muscle surface and the
skin surface. The soft-tissue layer is the union of the fat and
muscle layers. In our layered model we exclude the head, hands,
and toes. These regions will be identical to the skin surface in all
layers. See Figure 3 for a visualization of the layered template.

The three surfaces B, M, and S will be constructed to share
the same triangulation, providing a straightforward one-to-one

FIGURE 2 | Overview of our volumetric template fitting approach. From the Zygote model (Zygote, 2020), we build layered volumetric templates for the male and
female anatomy. By adapting the BeyondBMI dataset (Maalin et al., 2020) we learn a model for estimating fat and muscle mass from a surface model. Given a person’s
surface scan, we then estimate its fat/muscle mass and use this information to fit the volumetric template (in)to the surface scan, which yields the personalized
anatomical model.
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correspondence between the ith vertices on each surface, which
we denote by xBi , xMi , and xSi , respectively. Each two
corresponding triangles (xSi , xSj , xSk ) on S and (xMi , xMj , xMk )
on M span a volumetric element of the fat layer. Similarly,
the volumetric elements of the muscle layer are spanned by pairs
of triangles (xMi , xMj , xMk ) on M and (xBi , xBj , xBk ) on B. We call
these elements, built from six vertices of two triangles, prisms, and
will either use them directly in a simulation or (trivially) split
them into three tetrahedra each, resulting in a simple conforming
volumetric tessellation.

The following two sections describe how to generate the
skeleton surface B (Section 3.2.1) and the muscle surface M
(Section 3.2.2). The skin surface S is generated by fitting the
surface-based template of Achenbach et al. (2017) to the skin of
the anatomical model (Zygote, 2020), as described in
Section 3.1.

3.2.1 The Skeleton Surface
The skeleton surface B should enclose all the bones of the
detailed skeleton model, as shown in Figure 3, center. We
achieve this by shrink-wrapping the skin surface S onto the
skeletal bones. To avoid problems caused by gaps between
bones (e.g., rib-cage, tibia/fibula), we first generate a skeleton
wrap W, a watertight genus-0 surface that encapsulates the
bones, and then shrink-wrap the skin surface to W instead.
The wrap surface W can easily be generated by a few

iterations of shrink-wrapping, remeshing, and smoothing
of a bounding sphere in a 3D modeling software like
Blender or Maya. This results in a smooth, watertight, and
two-manifold surface W that excludes regions like the
interior of the rib-cage and small holes like in the pelvis
or between ulna and radius.

We generate the skeleton surface B by starting from the skin
surface S, i.e., setting X � S, and then minimizing a nonlinear
least squares energy that is composed of a fitting term, which
attracts the surface X to the bone wrap W, and a regularization
term, which prevents X from deforming in a physically
implausible manner from its initial state �X � S:

B � argmin
X

wfitEfit(X ,W) + wregEreg(X , �X). (1)

The regularization is formulated as a discrete bending energy that
penalizes the change of mean curvature, measured as the change
of length of the Laplacian:

Ereg(X , �X) � ∑
xi∈X

Ai ||Δxi − RiΔxi||2, (2)

where xi and xi denote the vertex positions of the deformed
surface X and the initial surface �X , respectively. The matrix
Ri ∈ SO(3) denotes the optimal rotation aligning the vertex
Laplacians Δxi and Δxi, which are discretized using the
cotangent weights and the Voronoi areas Ai (Botsch et al., 2010).

FIGURE 3 | Our layered template for both male (top) and female (bottom): the skin surface (A), the skeleton surface enveloping the skeleton (B), and the muscle
surface enveloping both muscles and skeleton (C). For (B) and (C) the left half shows the enveloping surface, the right half the enveloped anatomical details.

Frontiers in Virtual Reality | www.frontiersin.org July 2021 | Volume 2 | Article 6942445

Komaritzan et al. Inside Humans

https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


The fitting term penalizes the squared distance of vertices
xi ∈ X from their target positions ti ∈ W:

Efit(X ,W) � ∑
xi∈X

wiAi ‖xi − ti‖2. (3)

The target positions ti are points (not necessarily vertices) on the
skeleton wrap W of either one of three types: closest point
correspondences, fixed correspondences, or collision targets.
The weight wi is determined solely by the type of target
position ti (0.1 for closest point correspondences, 1 for fixed
correspondences, 100 for collision targets). We define just one
target ti for each vertex xi. The default is a closest point
correspondence per vertex, which can be overridden by a fixed
correspondence, and both of them will be overridden by the
collision target in case of a detected collision. Below we explain
the three target types.

Closest point correspondences are updated in each iteration of
the minimization to the closest position on W to the vertex
xi ∈ X , i.e., ti � argminy∈W

����xi − y
����.

Near complicated regions, like the armpit or the rib-cage,
the skin has to stretch considerably to deform toward the
skeleton wrap. As a consequence, corresponding triangles
(xSi , xSj , xSk ) on the skin surface S and (xBi , xBj , xBk ) on the
eventual skeleton surface B will not be approximately on
top of each other, but instead be tangentially shifted. These
two triangles span a volumetric element that we call a prism.
Misaligned triangles will lead to heavily sheared prisms, which
can cause artifacts in physical simulations.

We define a per-vertex score penalizing misalignment of
corresponding vertices xSi ∈ S and xWi ∈ W w.r.t. their
common averaged normal nS

i + nW
i :

Ealign(xSi , xWi ) �
∣∣∣∣∣∣∣∣
(nS

i + nW
i ) · (xSi − xWi )����nS

i + nW
i

���� · ∣∣∣∣∣∣∣∣xSi − xWi
∣∣∣∣∣∣∣∣ − 1

∣∣∣∣∣∣∣∣. (4)

A 2D example of this is shown on the right, where the closest
correspondence of xSi is xWi . The position that maximizes the
minimal angle at both vertices is x*, where the connecting line

(dotted red) aligns with the average
normal.

Fixed correspondences are responsible for reducing these
tangential shifts and thereby improving the prism shapes. We
determine them for some vertices at the beginning of the fit as
explained in the following and keep them fixed throughout the
optimization. Since the alignment error increases faster if the
distance between skin surface and skeleton wrap is small, we
specify fixed correspondences for vertices on S that have a
distance <3 cm toW. For each such vertex we randomly sample
points in the geodesic neighborhood of xWi and select the one
that minimizes Eq. 4 as fixed alignment constraint, where we
generate normal vectors of sample points using barycentric
Phong interpolation. To avoid interference of spatially close
fixed correspondences, we add them in order of increasing
distance to the skeleton, but only if their distance to all
previously selected points is larger than 5 cm. In that way,
we get a well distributed set of fixed correspondences,
favoring those with a small skin-to-skeleton distance.
Figure 4, center, shows that this already reduces the
alignment error by a large amount.

Closest point correspondences can also drag vertices to locations
with high alignment error. In each iteration of the nonrigid ICP, we
compute Ealign(xSi , xi) for each vertex on S and its counterpart on
the current state of X . If this error exceeds a limit of 0.01, which
corresponds to an angle deviation of 8° from the optimal angle, we
sample the one-ring neighborhood of vertex xi onX and set xi to the
sample with minimal alignment error and update its closest point
correspondence on W. This strategy reduces the alignment error
even further, as shown in Figure 4, right.

FIGURE 4 | Standard nonrigid registration from skin to skeleton (left) results in a bad tangential alignment of corresponding triangles, causing sheared prisms,
which we visualize by color-coding the alignment error (Eq. 4). Using fixed correspondences reduces this error (center). Also shifting closest point correspondences
with bad alignment reduces the error even further (right).
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In the process of moving the surface X toward W, these two
meshes might intersect each other, violating our goal that in the
converged state the surface X [i.e., B, due to (Eq. 1)] should fully
enclose W. We therefore detect these collisions during the
optimization and resolve them through collision targets. We
use the exact continuous collision detection of Brochu et al.
(2012) to detect collisions. In case of a collision, we back-track
the triangles’ linear path from the currentX to the initial S to find
the non-colliding state closest to X . This state defines collision
targets ti for colliding vertices xi, which override the other types of
target positions. In case of multiple collision targets ti for the same
vertex xi, we determine all non-colliding states separately and
choose the one that is closest to the initial skin surface S.
Minimizing (Eq. 1) leads to the final skeleton surface B
(Figure 3B). See Appendix for more details about the
optimization strategy.

3.2.2 The Muscle Surface
We generate the muscle surface M by minimizing the same
energy as in Eq. 1, but using a different method for finding the
correspondences ti in Eq. 3, which exploits that we already
established correspondence between skin surface S and
skeleton surface B. We do not employ closest point
correspondences, but instead set for each vertex xi a fixed
correspondence ti to the first intersection of the line from skin
vertex xSi to skeleton vertex xBi with the high-resolution muscle
model (Zygote, 2020). If there is no intersection (e.g., at the knee),
we set ti � xBi and assign a lower weight wi. When the
minimization converges and we decrease wreg, we project the
vertices of the current muscle surface xMi to their corresponding
skin-to-skeleton line from xSi to x

B
i . Due to the collision handling,

the resulting muscle surface M will enclose the high-resolution
muscle model. To ensure that our volumetric elements always
have a non-zero volume, even in regions where there is no muscle
between skin and bone, we ensure a minimal offset of 1 mm from
to the skeleton mesh. The resulting muscle surface M is
visualized in Figure 3C. Note that the muscle layer does not
exclusively contain muscles: Especially in the abdominal region, a
large amount of the muscle layer is filled by organs. We therefore
define a muscle thickness map that for each vertex i stores the
accumulated length of the segments of the line (xSi , x

B
i ) that are

covered by muscles. This map will be used later in Section 3.4.3.

3.3 Estimating Fat Mass and Muscle Mass
Having generated the volumetric layered template, we want to
be able to fit it to a given surface scan of a person. To regularize
this under-determined problem, we first have to estimate how
much of the person’s soft tissue is explained by fat mass (FM)
and muscle mass (MM), respectively. This is a challenging
problem since we want to capture a single surface scan of the
person only and therefore cannot rely on information
provided by additional hardware, such as a DXA scanner or
a body fat scale. Kadleček et al. (2016) handle this problem by
describing the person’s shape primarily through muscles,
i.e., by growing muscles as much as possible and defining
the remaining soft tissue volume as fat. This strategy results in
adipose persons having considerably more muscle mass than

leaner people. Although there is a certain correlation between
total body mass (and also BMI) and muscle mass – because the
higher weight has a training effect especially on the muscles of
the lower limbs (Tomlinson et al., 2016) – this general trend is
not sufficient to define the body composition of people.

Maalin et al. (2020) measured both FM and MM using a
medical-grade eight-electrode bio-electrical impedance analysis
and acquired a 3D surface scan. From this data, they built a model
that can vary the shape of a person based on specified muscle or
fat variation, similar to Piryankova et al. (2014). Our model
should perform the inverse operation, i.e., estimate FM and MM
from a given surface scan. We train our model on their
BeyondBMI dataset (Section 3.1), which consists of scans of
100 men and 100 women captured in an approximate A-pose (see
Figure 5), each annotated with FM, MM, and BMI.

By applying the surface fitting described in Section 3.1 to the
BeyondBMI dataset, we make their scans compatible to our
template and un-pose their scans to a common T-pose, thereby
making any subsequent statistical analysis pose-invariant. After re-
excluding the head, hands, and feet of our surface template, we are
left with N � 100 meshes per sex that consist of V � 7665 vertices
xi. We denote the jth training mesh by a 3V-dimensional vector of
stacked vertex coordinates

Xj � [(xj1)T, . . . , (xjV)T]
T

∈ R3V

and perform PCA on the data matrix
X � (X1, . . . ,XN ) ∈ R3V×N . Let P ∈ R3V×k be the basis of the
subspace spanned by the first k principal components and μ the
mean of the training data. Since the data is now pose-
normalized, the dimensionality reduction can focus solely
on differences in human body shape. As a result, our model
only needs k � 12 PCA components to explain 99.5% of the
data variance, while the original BeyondBMI dataset needs k �
24 components to cover the same percentage due to noticeable
variations in pose during the scanning process (see Figure 5).
We then perform linear regression to estimate FM and MM
from PCA weights, as proposed by Hasler et al. (2009).

For a first evaluation of this model, we perform a leave-one-
out test on the BeyondBMI dataset, i.e., excluding each scan once,
building the regressors as described above from the remaining
N − 1 scans, and measuring the mean absolute error of the
predictions. We again use k � 12 PCA components, as this
covers almost all the variance present in the dataset and
gives the linear regression enough degrees of freedom. The
leave-one-out evaluation yields a mean absolute error (MAE)
ofMAEFM � 1.20 kg (± 0.93) andMAEMM � 1.01 kg (± 0.79) for
the female dataset, where the fat mass lies in the range
6.27–34.71 kg and the muscle mass in the range
21.59–31.63 kg. The linear regression shows an average R2

score of 0.84, confirming that there is indeed a linear
relationship between PCA coordinates and the FM/MM
measurements. Performing the leave-one-out test on the male
dataset shows similar values: MAEFM � 1.37 kg (± 1.00) and
MAEMM � 1.46 kg (± 1.11), fat mass in the range
3.91–27.83 kg, muscle mass in the range 31.51–51.20 kg, and
an average R2 score of 0.88.
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We compared the linear model to a support vector regression
(using scikit-learn (Pedregosa et al., 2011) with default
parameters and RBF kernels), but in contrast to Hasler et al.
(2009) we found that for the BeyondBMI dataset this approach
performs considerably worse: MAEFM � 2.98 kg (± 2.85) and
MAEMM � 1.24 kg (± 1.02) with an average R2 score of 0.64
for the female dataset, and MAEFM � 2.63 kg (± 2.60) and
MAEMM � 2.48 kg (± 1.82) with an average R2 score of 0.58
for the male dataset. We therefore keep the simpler and
better-performing linear regression model.

Whenever we fit the volumetric model to a given body scan, as
explained in the next section, we first use the proposed linear
regressors to estimate the person’s fat mass and muscle mass and
use this information to generate the muscle and fat layers in
Section 3.4.3.

3.4 Fitting the Volumetric Template to
Surface Scans
Given a surface scan, we transfer the template anatomy into it
through the following steps: First, we fit our surface template to
the scan, which establishes one-to-one correspondence with
the volumetric template and puts the scan into the same
T-pose as the template (Section 3.1). After this pre-
processing, we deform the volumetric template to match the
scanned subject. To this end, we adjust global scaling and per-
bone local scaling, such that body height and limb lengths of
template and scan match (Section 3.4.1). This is followed by a
quasi-static deformation of the volumetric template that
considers the skin surface S as hard constraint and yields
the skeleton surface B through energy minimization (Section
3.4.2). Given the skin surface S, the bone surface B, and the
estimated fat mass and muscle mass from Section 3.3, the
muscle surface M is determined (Section 3.4.3). Having
transferred all three layer surfaces to the scan we finally
warp the detailed anatomical model to the target
(Section 3.4.4).

3.4.1 Global and Local Scaling
Fitting the surface template to the scanner data puts the latter into
the same alignment (rotation, translation) and the same pose as
the volumetric template. The next step is to correct the mismatch
in scale by adjusting body height and limb lengths of the
volumetric template.

This scaling does influence all three of the template’s
surfaces. Since the shape of the skeleton surface B will be
constrained to the result after scaling, we have to scale in a
way that keeps bone lengths and bone diameters within a
plausible range. The length of prominent bones, like the upper
arm or the upper leg (humerus and femur), can be well
approximated by measures on the surface of the model.
But finding the correct bone diameters is impossible
without measurements of the subject’s interior. In
particular for corpulent or adipose subjects, the
subcutaneous fat layer dominates the appearance of the
skin surface, preventing us from precisely determining the
bone diameters from the surface scan. It has been shown that
there is a moderate correlation of bone length and bone
diameter (Ziylan and Murshid, 2002; Aydin Kabakci et al.,
2017) and (obviously) a strong correlation of body height and
bone length (Dayal et al., 2008). We therefore perform a
global isotropic scaling depending on body height (affecting
bone lengths and diameters) as well as local anisotropic
scaling depending on limb lengths (affecting bone lengths
only).

The global scaling is determined from the height difference of
scan and template and is applied to all vertices of the template
model. It therefore scales all bone lengths and bone diameters
uniformly. Directly scaling with the height ratio of scan
and template, however, can result in bones too thin or too
thick for extreme target heights. Thus, we damp the height
ratio r � hscan/htemplate by r←0.5(r − 1) + 1, which means that
a person that is 20% taller than the template will have 10% thicker
bones than the template. This heuristic results in visually
plausible bone diameters for all our scanned subjects.

FIGURE 5 | Examples for the BeyondBMI dataset provided by Maalin et al. (2020) consisting of scans of 100 men and 100 women, annotated with fat mass,
muscle mass, and BMI. The scans lack geometric data for head, hands, and feet and are captured in approximate A-pose (with noticeable variation in pose).
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After the global scaling, the local scaling further adjusts the
limb lengths of the template to match those of the scan. The (fully
rigged) surface-based template has been fit to both the scan
(Section 3.1) and the template (Section 3.2). This fit provides
a simple skeleton graph (used for skinning animation) for both
models. We use the length mismatch of the respective skeleton
graph segments to determine the required scaling for upper and
lower arms, upper and lower legs, feet, and torso. We scale these
limbs in their corresponding bone directions (or the spine
direction for the torso) using the bone stretching of Kadleček
et al. (2016). As mentioned before, this changes the limb lengths
but not the bone diameters.

This two-step scaling process is visualized in Figure 6. As a
result, the scaled template matches the scan with respect to
alignment, pose, body height, and limb lengths. Its layer
surfaces, which we denote by S, M, and B, provide a good
initialization for the optimization-based fitting described in the
following.

3.4.2 Skeleton Fitting
Given the coarse registration of the previous step, we now fit the
skin surface S and skeleton surfaceB byminimizing a quasi-static
deformation energy. Since the template’s skin surface S should
match the (skin) surface of the scan and since both meshes have
the same triangulation, we can simply copy the skin vertex
positions from the scan to the template and consider them as
hard Dirichlet constraints. It therefore remains to determine the
vertex positions of the skeleton surface B, such that the soft tissue
enclosed between skin surface S and skeleton surface B (fat +
muscles, which we call flesh) deforms in a physically plausible
manner. This is achieved by minimizing a quasi-static energy
consisting of three terms:

E(B) � wregEreg(B,B) + wfleshEflesh(B,S) + wcollEcoll(B,S). (5)

The first term is responsible for keeping the skeleton surface
(approximately) rigid and uses the same formulation as Eq. 2,
with B and B denoting the skeleton surface before and after the
deformation, respectively. We employ a soft constraint with high

weight wreg instead of deforming bones in a strictly rigid manner
(Kadleček et al., 2016), since we noticed that for very thin subjects
the skeleton surface might otherwise protrude the skin surface
and therefore a certain amount of bone deformation is required.
We also do not penalize deviation from rigid or affine
transformations as Dicko et al. (2013) since this penalizes
smooth shape deformation in the same way as locally flipped
triangles, which we observed to cause artifacts in the skeleton
surface. The discrete bending energy of Eq. 2, with a suitably high
regularization weight wreg, allows for moderate smooth
deformations and gave better results in our experiment.

The second term prevents strong deformations of the prism
elements p ∈ P, spanned by corresponding triangles (xSi , xSj , xSk )
on the skin surface and (xBi , xBj , xBk ) on the skeleton surface.
While we penalize deformation of the top/bottom triangles, we
allow changes of prism heights, i.e., anisotropic scaling in the
direction from surface to bone, since otherwise the fat layer
cannot grow to bridge the gap from the skeleton surface to the
skin surface. This behavior is modeled by the anisotropic strain
limiting energy

Eflesh(B,S) � 1
2
∑
p ∈ P

�����Fp − RpBp
~SpB

T
p

�����2
F
, (6)

where Fp ∈ R3×3 is the deformation gradient of the element
p, i.e., the linear part of the best affine transformation
that maps the un-deformed prism p to the deformed
prim p in the least squares sense. If Dp ∈ R3×5 denotes the
edge direction matrix of the prism p and Dp the respective
matrix of p, then Fp � arg minF

∣∣∣∣∣∣∣∣Dp − FDp

∣∣∣∣∣∣∣∣2F . Polar
decomposition (Shoemake and Duff, 1992) Fp � RpSp
decomposes Fp into a rotation Rp and scale/shear Sp. Bp is
a rotation matrix that aligns the z-axis with the surface
normal of the prism’s corresponding skin triangle, i.e., the
direction in which we allow stretching. The matrix ~Sp
represents the anisotropic scaling diag(1, 1, α), where
α ∈ [αmin, αmax] allows to tune the amount of stretching in
normal direction that should be allowed. We use αmin � 0.2
and αmax � 5.0 to allow stretching and compression of the

FIGURE 6 | Scaling the template (opaque) to match the scan (semi-transparent): The pre-processing aligns the scan with the template and puts it into the same
pose (left). Body height and limb lengths of the template are then adjusted by a global uniform scaling (center), followed by local scaling for limbs and spine (right).
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element by a factor of five before the energy of this element
increases.

Third, we detect all collisions C, defined as vertices of the
skeleton surface B that are outside of the skin surface S. For these
colliding vertices we add a collision penalty term

Ecoll(B,S) � 1
2
∑
xi∈C

wi ||xi − πS(xi)||2, (7)

where πS(xi) is the projection of the colliding vertex xi to a
position 2 mm beneath the closest triangle on the skin surface S.
The weight wi is defined per vertex, is set to 1 the first time a
vertex is colliding, and is increased by 1 each time the
minimization was not able to resolve the collision. The
iterative minimization of (Eq. 5) as well as the computation
of the individual elements of (Eq. 6) is further detailed in
Appendix.

3.4.3 Muscle Fitting
Having determined the skin surface S and skeleton surface B, we
now fit the muscle surface M in between S and B, such that the
ratio of fat mass (FM) and muscle mass (MM) resembles the
values estimated by our regressors (Section 3.3). We proceed in
three steps: First, we transfer the template’s muscle distribution to
the fitted skin and skeleton surfaces, which we call average muscle
layer in the following. Second, we grow and shrink the muscles as
much as anatomically and physically plausible, yielding the
minimum and maximum muscle layers. Third, we find a linear
interpolation between these two extremes that matches the
predicted fat mass and muscle mass as good as possible.

The average muscle surface is transferred from the scaled
template �M (Section 3.4.1; Figure 6) by minimizing an energy
consisting of two objectives:

E(M) � wregEreg(M, �M) + wlineEline(M,B,S). (8)

The first term tries to preserve the shape of the scaled template’s
muscle surface �M and is modeled using the regularization energy
of Eq. 2. The second term preserves the template’s property that
each muscle vertex xMi resides on the line segment from its
corresponding skeleton vertex xBi to its skin vertex xSi , by
penalizing the squared distance from that line:

Eline(M,B,S) � 1
2
∑
xi∈M

����xi − π(xi, xBi , xSi )
����2, (9)

where π(xi, xBi , xSi ) is the projection of xi onto the line
(1 − α)xBi + αxSi , α ∈ [0, 1]. Minimizing 8) leads to flat
abdominal muscles like in the template model, which is
unrealistic for corpulent or adipose subjects, because the
majority of body fat resides in two different fat tissues: the
subcutaneous fat, which resides between skin and muscle
surface, and the visceral fat, which accumulates in the
abdominal cavity, i.e., under the muscle layer. Since the
bulging of the abdomen due to visceral fat causes a bulging of
the belly, we inversely want the abdominal muscles in M to
slightly bulge out in case of a belly bulge in the skin surface S. The
latter is a combined effect of visceral and subcutaneous fat in

the abdominal region. We model this effect by adjusting Eline for
each vertex xi in the abdominal region. Instead of using the
full interval α ∈ [0, 1], we adjust the lower boundary to
αmin �

∣∣∣∣∣∣∣∣xMi − xBi
∣∣∣∣∣∣∣∣/∣∣∣∣∣∣∣∣xSi − xBi

∣∣∣∣∣∣∣∣, i.e., the parameter α where for
the (scaled) template the muscle surface intersects the line.
The iterative minimization of (Eq. 8) is further detailed in
Appendix.

Having transferred the average muscle surface, we next grow/
shrink muscles as much as possible in order to define the
maximum/minimum muscle surfaces. Since certain muscle
groups might be better developed than others, we perform the
muscle growth/shrinkage separately for the major muscle groups,
namely upper legs (including buttocks), lower legs, upper arms,
lower arms, chest, abdominal muscles, shoulders, and back.
Muscles are built from fibers and grow perpendicular to the
fiber direction. In all cases relevant for us, the fibers are
approximately perpendicular to the direction from M to S,
thus muscle growth/shrinkage will move vertices xMi along the
line from xBi to xSi . The amount of vertex movement along these
directions is proportional to the muscle thickness map of the
template (computed in Section 3.2.2). We determine how much
we can grow amuscle before it collides with the skin surface in the
thicker parts of the muscle (instead of close to its endpoints where
it connects to the bone). Figure 7 shows an example, where the
leftmost muscle vertex is already close to the skin and would
prevent any growth if we took endpoint regions into account. For
each muscle group, we also define an upper limit for muscle
growth that prevents the muscles from increasing further even if
the skin distance is large (e.g., for adipose subjects). For
determining the minimal muscle surface, we repeat the process
in the opposite direction (toward the skeleton surface). To
prevent distortions of the muscle surface, we do not set the
new vertex positions directly, but instead use them as target
positions ti (using Eq. 3) and regularize with Eq. 8. Figure 7
(right) shows an example of minimum/maximum muscle
surfaces computed by this procedure.

We determine the final muscle surface M by linear
interpolation between the minimum and maximum muscle
surfaces, such that the resulting fat mass FM and muscle mass
MM match the values predicted by the regressors (denoted by
FM* and MM*) as good as possible. To this end we have to
compute FM and MM from an interpolated muscle surface M.
We can compute the volume VFL of the fat layer (between S and
M) and the volume VML of the muscle layer (betweenM and B)
and convert these to massesmFL andmML by multiplying with the
(approximate) fat and muscle densities ρF � 0.9 kg/l and
ρM � 1.1 kg/l, respectively.

The resulting masses require some corrections though:
First, we have to add the visceral fat (VAT), which is not part
of our fat layer but resides in the abdominal cavity. We
estimate the VAT mass mVAT by computing the difference
of the cavity volumes of the scaled template and of the final fit,
thereby assuming a negligible amount of VAT in the
template. Second, we subtract the skin mass mskin from the
fat layer mass. We assume an average skin thickness of 2 mm,
multiply this by the skin’s surface area and the density ρF.
Third, our fat layer includes the complete reproductive
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apparatus in the crotch region. This volume is even larger due
to the underwear that was worn during scanning and
incorrectly increases the fat layer mass by mcrotch. Our
corrected fat mass is then

FM � mFL +mVAT −mskin −mcrotch. (10)

We correct the muscle mass by subtracting the mass mabd of the
abdominal cavity, which is incorrectly included in the muscle
layer. The remaining muscle mass is always too small even when
using the maximum muscle surface, due to all muscles not
considered in the muscle layer, such as heart, face, and hand
muscles or the diaphragm. It is known that the lean body mass
roughly scales with the squared body height (Heymsfield et al.,
2011), which is the basis of the well known body and muscle mass
indices. We analogously assume the missing muscle mass to be
proportional to the squared height h of the subject, i.e.,mh � kh2,
with a constant k to be determined later. The corrected muscle
mass is therefore

MM � mML −mabd +mh. (11)

There are other terms like the fat of head, hands, and toes, which
could be added, or the volume of blood vessels and tendons,
which could be subtracted. We assume those terms to be
negligible.

Since the total volume of the soft tissue layer VST � VML + VFL

is constant, the muscle layer mass mML is coupled to the fat layer
massmFL viamML � (VST − VFL)ρM. We want to compute the fat
layer mass such that the resulting FM andMMminimize the least
squares error to the values predicted by the regressor:
E � (FM − FM*)2 + (MM −MM*)2. Inserting (Eqs 10, 11) into
E, rewriting mML in terms of mFL, and setting the derivative
dE/dmFL � 0 yields the optimal fat layer mass

mFL � FM* −mVAT +mskin +mcrotch + ρ(VST ρM −mabd +mh −MM*)
1 + ρ2

, (12)

with the density ratio ρ � ρM/ρF

The minimum/maximum muscle surface yields a maximum/
minimum fat layer mass. The optimized fat layer mass is clamped
to meet this range, thereby defining the final fat layer mass. We
then choose the linear interpolant between the minimum and
maximum muscle surface that matches this fat mass, which we
find through bisection search.

We did this for the scans of 100 men and 100 women from
the BeyondBMI dataset (Maalin et al., 2020), where we know
the true values for FM and MM from measurements, and
optimized the value of k for this dataset, yielding kmale � 1.5
and kfemale � 1.0. This is plausible since women in general have
a lower muscle mass. For instance, the average muscle mass
of the male subjects in the dataset is indeed 50% higher
than the average MM for the female subjects. The mean
absolute errors (MAE) for the BeyondBMI dataset are
MAEMM � 0.37 kg (±0.31), MAEFM � 0.46 kg (±0.38) for the
female subjects and MAEMM � 0.46 kg (±0.39), MAEFM �
0.57 kg (±0.48) for the male subjects. Figure 8 shows how
well our model can adjust to the target values of muscle and fat
mass. All values are inside or at least close to the predicted
possible range of minima and maxima. Moreover, in most
cases the muscle/fat mass values for the same person split the
two ranges at about an inverse point (e.g., close to maximum
muscle and close to minimum fat), which leads to the low
errors stated above.

3.4.4 Transferring Original Anatomical Data
After fitting the skin surface S to the scan and transferring the
skeleton surface B and the muscle surfaceM into the scan, the
final step is to transform the high-resolution anatomical details
(Zygote’s bone and muscle models in our case) from the
volumetric template to the scanned subject. We implement
this in an efficient and robust manner as a mesh-independent
space warp d : R3 →R3 that maps the original template’s skin
surface Ŝ, muscle surface M̂, and skeleton surface B̂ (all
marked with a hat) to the scanned subject’s layer surfaces
S, M, and B, respectively. All geometry that is embedded in

FIGURE 7 | Left. When computing the maximum muscle surface, we move muscle vertices toward the skin by an amount proportional to their muscle potential,
which for each vertex is the length of the dotted line intersected with the muscle. The vertex with the black dotted line defines the maximum allowed stretch in this
example. Right: An example of our minimum and maximum muscle layers for the same target. These two surfaces define the lower and upper limit for the muscle mass
and vice versa for the fat mass.
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between these surfaces will smoothly be warped from template
to scan.

Dicko et al. (2013) also employ a space warp for their, which
they discretized by interpolating values dijk on a regular 3D
grid constructed around the object. Their space warp is
computed by interpolating the skin deformation Ŝ1S on
the boundary and being harmonic in the interior (i.e., Δd � 0),
which requires the solution of a large sparse Poisson system for
the coefficients dijk.

We follow the same idea, but use a space warp based on
triharmonic radial basis functions (RBFs) (Botsch and Kobbelt,
2005), which have been shown to yield higher quality
deformations with lower geometric distortion than many other
warps (including FEM-based harmonic warps) (Sieger et al.,
2013). The RBF warp is defined as a sum of n RBF kernels
and a linear polynomial:

d(x) � ∑
n

j�1
wjφj(x) + aTx + b, (13)

where wj ∈ R3 is the coefficient of the jth radial basis function
φj(x) � φ(����x − cj

����), which is centered at cj ∈ R3. As kernel
function we use φ(r) � r3, leading to highly smooth
triharmonic warps (Δ3d � 0). The term aTx + b is a linear
polynomial ensuring linear precision of the warp.

In order to warp the high-resolution bone model from the
template to the scan, we setup the RBF warp to reproduce the
deformation B̂1B. To this end, we select 5,000 vertices x̂i ∈ B̂
from the template’s skeleton surface by farthest point sampling.
The corresponding vertices on the scan’s skeleton surface are
denoted by xi ∈ B. At these vertices x̂i the deformation function
d(x̂i) should interpolate the displacements di � xi − x̂i. These
constraints lead to a dense, symmetric, but indefinite (n + 4) ×
(n + 4) linear system, which we solve for the coefficients
w1, . . . ,wn, a, b using the LU factorization of Eigen
(Guennebaud and Jacob, 2018); see (Sieger et al., 2013) for

details. The resulting RBF warp d then transforms each vertex
x of the high-resolution bone model as x← x + d(x). Note that
this process can trivially be parallelized over all model vertices,
which we implement using OpenMP. For warping the high-
resolutionmuscle modelwe follow the same procedure, but collect
7,000 constraints from the vertices x̂i ∈ S ∪M of the skeleton
and muscle surfaces, since these enclose the muscle layer.

4 RESULTS AND APPLICATIONS

Generating a personalized anatomical model for a given surface
scan of a person consists of the following steps: First, the surface
template is registered to the scanner data (triangle mesh or point
cloud) as described in Section 3.1 and Achenbach et al. (2017).
After manually selecting 10–20 landmarks, this process takes
about 50 s. Fitting the surface template establishes dense
correspondence with the surface of the volumetric template
and puts the scan into the same T-pose as the volumetric
template. Fitting the volumetric template by transferring the
three layer surfaces (Sections 3.4.1; 3.4.2; 3.4.3) takes about
15 s. Transferring the high-resolution anatomical models of
bones and muscles (145k vertices) takes about 4.5 s for solving
the linear system (which is an offline pre-processing) and 0.5 s for
transforming the vertices (Section 3.4.4). Timings were
measured on a desktop workstation, equipped with an Intel
Core i9 10850K CPU and a Nvidia RTX 3070 GPU.

Dicko et al. (2013), Kadleček et al. (2016) are the two
approaches most closely related to ours. Dicko et al. (2013)
also use a space warp for transferring anatomical details, but
since they only use the skin surface as constraint, the interior
geometry can be strongly distorted. To prevent this, they restrict
bones to affine transformations, which, however, might still
contain unnatural shearing modes and implausible scaling.
Our space warp yields a higher smoothness due to the use of
C∞ RBF kernels instead of C0 trilinear interpolation and reduces
unnatural distortion of bones and muscles by using three layer

FIGURE 8 | True muscle and fat masses for the female andmale subjects of the BeyondBMI dataset, plotted on top of the possible ranges defined by our minimum
and maximum muscle surfaces. Note that our minimal fat mass is coupled to the maximal muscle mass and vice versa.
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surfaces as constraints instead of the skin surface only and by
optimizing these layers w.r.t. anatomical distortion. In Figure 9
we compare the result of warping the anatomical structures using
a harmonic basis and 7,000 centers from only the skin surface to
our three-layered, triharmonic warp result. The former does show
drastic and unrealistic deformations of both muscles and bones
while our approach solves those issues. Note that additionally
restricting the bones to affine transformations like Dicko et al.
(2013) would still produce unnaturally thick bones (e.g., the
upper leg bone) and muscles.

Compared to Kadleček et al. (2016), we require a single input
scan only, since we infer (initial guesses for) joint positions and
limb lengths from the full-body PCA of Achenbach et al. (2017).
Putting the scan into T-pose prevents us from having to solve bone
geometry and joint angles simultaneously, which makes our
approach much faster than theirs (15 s vs. 30 min). Moreover,
our layered model yields a conforming volumetric tessellation with
constant and homogeneous per-layer materials, which more
effectively prevents bones from penetrating skin or muscles. In
their approach the rib cage often intersects themuscle layer for thin
subjects as mentioned by Kadleček et al. (2016) in the limitations
and shown in Figure 12 (bottom row) of their work. Furthermore,
we automatically derive the muscle/fat body composition from the
surface scan, which yields more plausible results than growing
muscles as much as possible (Kadleček et al., 2016), since the latter
leads to more corpulent people always having more muscles. Our
model extracts the amount of muscle and fat using data of real
humans and can therefore adopt to the variety of human shapes
(low FM and high MM, high FM and low MM, and everything in
between). Finally, we support both male and female subjects by
employing individual anatomical templates and muscle/fat
regressors for men and women.

4.1 Evaluation on Hasler Dataset
In order to further evaluate the generalization abilities of the
linear FM/MM models (Section 3.3) to other data sources, we
estimate FM and MM for a subset of registered scans from the
Hasler dataset (Hasler et al., 2009) and measure the prediction
error. We selected scans of 10 men and 10 women, making sure to

cover the extremes of the weight, height, fat, and muscle
percentage distribution present in the data.

For the female sample, the predictions show amean absolute error
of MAEFM � 0.65 kg (± 0.44) and MAEMM � 4.39 kg (± 1.71).
For the male sample, the model shows a similar error for the
MM prediction, but performs worse at predicting FM: MAEFM �
3.32 kg (± 1.98) and MAEMM � 4.14 kg (± 2.74). Compared to
the leave-one-out tests on the BeyondBMI data, the average error
increases noticeably, which can partly be explained by differences
in the measurement procedure between the two datasets: While
Hasler et al. (2009) used a consumer-grade body fat scale, Maalin
et al. (2020) used a medical-grade scale, which should lead to
more accurate measurements. Nevertheless, these results show
that our regressor generalizes well to other data sources,
providing a simple and sufficiently accurate method for
estimating FM and MM from body scans.

Given the FM andMM values of a target from our regressor, we
choose the optimal muscle surface between the minimal and
maximal muscle surface as explained in Section 3.4.3.
Comparing the final FM and MM of the volumetric model to
the ground truth measurements of the Hasler dataset we get end-
to-end errors of MAEFM � 0.70 kg (± 0.52), MAEMM �
4.19 kg (± 1.39) (female) and MAEFM � 3.49 kg (± 2.02),
MAEMM � 3.81 kg (± 2.56) (male). This evaluation shows that
the additional error induced by fitting the muscle layer is very low.

4.2 Evaluation on CAESAR Dataset
In order to demonstrate the flexibility and robustness of our
method, we evaluate it by generating anatomicalmodels for all scans of
the European Caesar data set (Robinette et al., 2002), consisting of 919
scans of women and 777 scan of men, with height range 131–218 cm
for men and from 144 to 195 cm for women (we restricted to scans
with complete annotation and taken in standing pose). A few examples
for men and women can be seen in Figures 1, 10, 11.

For the about 1,700 CAESAR scans, our muscle and fat mass
regressors yield just one slightly negative value for the fat mass
of the thinnest male (body weight 48 kg, height 1.72 m, BMI
16.14 kg/m2). For all other subjects, we get values ranging from
3.5 to 38.9% body fat (mean 20.3%) for male subjects and 8-

FIGURE 9 | Result of transferring the anatomy by using just the skin layer and a harmonic basis (left). Here, both muscles and bones deform too much to fit
overweight targets. We use the additional muscle and skeleton layer and a triharmonic basis (right) to prevent unnatural deformations.
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FIGURE 10 | Some examples for various male body shape types. For each input surface the transferred muscles and skeleton are shown in front and side view.
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FIGURE 11 | Some examples for various female body shape types. For each input surface the transferred muscles and skeleton are shown in front and side view.
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45.3% (mean 28.9%) for female subjects. The range of predicted
muscle masses is 24.9–57.8 kg (men) and 20.1-37.7 kg (women).
When determining the optimal interpolation between the
minimum and maximum muscle layer (Section 3.4.3) we
meet the estimated target values up to mean errors MAEFM �

1.08 kg (± 0.9) (male), MAEFM � 1.41 kg (± 1.35) (female) and
MAEMM � 0.88 kg (± 0.74) (male), MAEMM � 1.15 kg (± 1.11)
(female). Note that even the scan with predicted negative FM
can be reconstructed robustly. In this case the muscle surface
will be the maximum muscle surface, which in general is a
suitable estimate for very skinny subjects.

The CAESAR dataset does not include ground truth data for fat
and muscle mass of the scanned individuals. Thus, in order to
further evaluate the plausibility of our estimated body composition,
we compare it to known body fat percentiles. Percentiles are used as
guidelines in medicine and provide statistical reference values one
can compare individual measurements to. For instance, a 10th

percentile of 20.8% body fat means that 10% of the examined
population have a body fat percentage <20.8%. Assuming that the
European CAESAR dataset is a representative sample of the
population, the percentiles we get from our reconstructions of
the CAESAR scans should match the percentiles of the
European population. We compared the values produced by
our fat and muscle mass regressors (Section 3.3) to Kyle et al.
(2001), who measured body fat using 4-electrode bio-electrical
impedance analysis from 2,735 male and 2,490 female western
European adults. Our body fat percentiles on the CAESAR
dataset are very well in agreement with their results, as
shown in the following table:

4.3 Physics-Based Character Animation
One application of our model is simulation-based character
animation (Deul and Bender, 2013; Komaritzan and Botsch,
2018; Komaritzan and Botsch, 2019), where the transferred
volumetric layers can improve the anatomical plausibility. We
demonstrate the potential by extending the Fast Projective
Skinning (FPS) of Komaritzan and Botsch (2019). FPS already
uses a simplified volumetric skeleton built from spheres and
cylinders, a skeleton surface wrapping this simple skeleton, and
one layer of volumetric prism elements spanned between skin
and skeleton surface. Whenever the skeleton is posed, the vertices
of the skeleton surface are moved, and a projective dynamics
simulation of the soft tissue layer updates the skin surface.

We replace their synthetic skeleton by our more realistic version
and split their soft tissue layer into our separate muscle and fat

FIGURE 13 |Given a reconstructed model (left), the pressure-based fat
growth of Saito et al. (2015) leads to a more uniform increases in fat volume
(center), while our volume-based fat growth increases the initial fat
distribution.

FIGURE 12 |Our layered anatomical model can be animated using an extension of Fast Projective Skinning (FPS), as shown in (A). When the character performs a
jump to the left (B), our realistic skeleton correctly restricts the dynamic jiggling to the belly region (B-Left), while the original FPS deforms the complete torso (B-Right).
For a static twist of the torso (C), the rib-cage of our layered model keeps the chest region rather rigid and concentrates the deformation to the belly (C-left). Without a
proper anatomical model, the deformation of FPS is distributed over the complete torso (C-right).
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layers. This enables us to use different stiffness values for the fat and
muscle layers (the latter being three times larger). Moreover, our
skeleton features a realistic rib-cage, whereas FPS only uses a
simplified spine in the torso region. As a result, our extended
version of FPS yields more realistic results in particular in the torso
and belly region, as shown in Figure 12.

4.4 Simulation of Fat Growth
Our anatomical model can also be used to simulate an increase of
body fat, where its volumetric nature provides advantages over
existing surface-based methods.

In their computational bodybuilding approach, Saito et al.
(2015) also propose a method for growing fat. They, however,
employ a purely surface-based approach that conceptually
mimics blowing up a rubber balloon. This is modeled by a
pressure potential that drives skin vertices outwards in normal
direction, regularized by a co-rotated triangle strain energy. The
user can (and should) specify a scalar field that defines where
and how strong the skin surface should be “blown up”, which is
used to modulate the per-vertex pressure forces. Despite the
regularization we sometimes noticed artifacts at the boundary of
the fat growing region and therefore add another regularization
through Eq. 2. This approach allows the user to tune the amount
of subcutaneous fat, but unless a carefully designed growth field
is specified, the fat growth looks rather uniform and balloon-like
(see Figures 10, 11 in Saito et al., 2015).

Every person has an individual fat distribution and gaining
weight typically intensifies these initial fat depots. We model this
behavior by scaling up the local prism volumes of our fat layer.
Each fat prism can be split into three tetrahedra, which define
volumetric elements tj ∈ T with initial volumes �Vj. A simple
uniform scaling s · �Vj achieves the desired effect that fat increases

more in fat-intense regions. The growth simulation is
implemented by minimizing the energy

Egrow(S) � wvolEvol(S) + wregEreg(S, �S) + wrestErest(S, �S) (14)

with the Laplacian regularization of Eq. 2, the displacement
regularization

Erest(S, �S) � ∑
xi∈S

Ai ||xi − xi||2 (15)

and the volume fitting term

Evol(S) � ∑
tj∈T

�V[vol(tj) − s · �Vj]2, (16)

whereS andS denote the skin surface before/after the fat growth and s is
the global fat scaling factor. Saito et al. (2015) argued thatanisotropically
scaling fat tetrahedra in one direction does not produce
plausible results. However, isotropically scaling the volume
leaves the minimization more freedom and yields convincing
results. Figure 13 compares the pressure-based and volumetric
fat growth simulations. Figure 14 shows some more examples
produced by combining both methods.

Our volume-based fat growth has another advantage: If we want
to grow fat on a very skinny person, the initial (negligible) fat
distribution does not provide enough information onwhere to grow
fat, such that both approaches would do a poor job. But since we can

FIGURE 14 | Examples of our fat growth simulation, with input models shown in the top row and their weight-gained version in the bottom row.

Percentile 5th 10th 25th 50th 75th 90th 95th

Male Our estimate 10.2 12.3 16.0 20.3 24.6 28.1 30.7
Kyle et al. (2001) 10.9 12.6 15.7 19.2 23.5 27.0 29.2

Female Our estimate 18.6 21.1 24.7 28.5 33.7 37.4 39.3
Kyle et al. (2001) 18.5 20.8 23.8 28.1 32.6 37.5 40.5
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easily fit the volumetric template to several subjects, we can “copy”
the distribution of fat prism volumes from another person and
“paste” it onto the skinny target, which simply replaces the target
volumes in (Eq. 16). This enables to fat transfer between different
subjects, which is shown in Figure 15.

5 CONCLUSION

We created a simple layered volumetric template of the
human anatomy and presented an approach for fitting it to
surface scans of men and women of various body shapes and
sizes. Our method generates plausible muscle and fat layers by
estimating realistic muscle and fat masses from the surface
scan alone. In addition to the layered template, we also showed
how to transfer internal anatomical structures, such as bones
and muscles, using a high-quality space warp. Compared to
previous work, our method is fully automatic and considerably
faster, enabling the simple generation of personalized
anatomical models from surface body scans. Besides
educational visualization, we demonstrated the potential of
our model for physics-based character animation and
anatomically plausible fat growth simulation.

Our approach has some limitations: First, we do not generate
individual layers for head, hands and toes, where in particular the
head would require special treatment. Combining our layered
body model with the multi-linear head model of Achenbach et al.
(2018) is therefore a promising direction for future work. Second,
our regressors for fat and muscle mass could be further optimized
by training on more body scans with known body composition.
Given more and more accurate training data, as for instance
provided by DXA scans, we could extend the fat/
muscle estimations to individual body parts. Third, we do not
model tendons and veins. Those would have to be included in all

layers and could be transferred in the same way as high-resolution
muscle and bone models. Fourth, the fact that the three layers of
our model share the same topology/connectivity can also be
considered a limitation, since we cannot use different, adaptive
mesh resolutions in different layers. A promising direction for
future work is the use of our anatomical model for generating
synthetic training data for statistical analysis and machine
learning applications, where the simple structure of our
layered model can be beneficial.
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Reconstructing Personalized Anatomical Models for Physics-Based
Body Animation. ACM Trans. Graphics 35, 1–13. doi:10.1145/
2980179.2982438

Kim, M., Pons-Moll, G., Pujades, S., Bang, S., Kim, J., Black, M. J., et al. (2017).
Data-driven Physics for Human Soft Tissue Animation. ACM Trans. Graphics
36 (541–54), 12. doi:10.1145/3072959.3073685

Komaritzan, M., and Botsch, M. (2018). Projective Skinning. Proc. ACM Comput.
Graphics Interactive Tech. 1, 27. doi:10.1145/3203203

Komaritzan, M., and Botsch, M. (2019). Fast Projective Skinning. Proc. ACM
Motion, Interaction Games 22 (1–22), 10. doi:10.1145/3359566.3360073

Kyle, U. G., Genton, L., Slosman, D. O., and Pichard, C. (2001). Fat-free and Fat
Mass Percentiles in 5225 Healthy Subjects Aged 15 to 98 Years. Nutrition 17,
534–541. doi:10.1016/s0899-9007(01)00555-x

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., and Black, M. J. (2015).
SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graphics 34, 1–16.
doi:10.1145/2816795.2818013

Maalin, N., Mohamed, S., Kramer, R. S., Cornelissen, P. L., Martin, D., and
Tovée, M. J. (2020). Beyond BMI for Self-Estimates of Body Size and Shape:
A New Method for Developing Stimuli Correctly Calibrated for
Body Composition. Behav. Res. Methods 14, 121. doi:10.3758/s13428-020-
01494-1

Ng, B. K., Hinton, B. J., Fan, B., Kanaya, A. M., and Shepherd, J. A. (2016). Clinical
Anthropometrics and Body Composition from 3D Whole-Body Surface Scans.
Eur. J. Clin. Nutr. 70, 1265–1270. doi:10.1038/ejcn.2016.109

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine Learning in Python. J. Machine Learn. Res. 12,
2825–2830. doi:10.1002/9781119557500.ch5

Piryankova, I., Stefanucci, J., Romero, J., de la Rosa, S., Black, M., and Mohler, B.
(2014). Can I Recognize My Body’sWeight? the Influence of Shape and Texture
on the Perception of Self. ACM Trans. Appl. Perception 11, 1–18. doi:10.1145/
2628257.2656424

Riviere, J., Gotardo, P., Bradley, D., Ghosh, A., and Beeler, T. (2020). Single-shot
High-Quality Facial Geometry and Skin Appearance Capture. ACM Trans.
Graphics 39, 1–12. doi:10.1145/3386569.3392464

Robinette, K. M., Blackwell, S., Daanen, H., Boehmer, M., and Fleming, S. (2002).
Civilian American and European Surface Anthropometry Resource (CEASAR),
Final Report,” in Summary. Tech. Rep. 1. New York, NY: Sytronics Inc.

Romero, C., Otaduy, M. A., Casas, D., and Perez, J. (2020). Modeling and
Estimation of Nonlinear Skin Mechanics for Animated Avatars. Comput.
Graphics Forum 39, 77–88. doi:10.1111/cgf.13913

Frontiers in Virtual Reality | www.frontiersin.org July 2021 | Volume 2 | Article 69424419

Komaritzan et al. Inside Humans

https://openmoji.org
https://doi.org/10.1109/5.662875
https://doi.org/10.1145/1073204.1073207
https://charactergenerator.autodesk.com/
https://charactergenerator.autodesk.com/
https://doi.org/10.4067/s0717-95022017000100036
https://doi.org/10.1111/j.1467-8659.2005.00886.x
https://doi.org/10.1111/j.1467-8659.2005.00886.x
https://doi.org/10.1111/j.1467-8659.2012.03171.x
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1118/1.4830428
https://doi.org/10.1145/2185520.2185592
https://doi.org/10.1145/2185520.2185592
https://doi.org/10.1111/j.1749-6632.1963.tb17079.x
https://doi.org/10.1088/0031-9155/55/2/n01
https://doi.org/10.1520/jfs13760j
https://doi.org/10.1520/jfs13760j
https://doi.org/10.1007/978-3-319-24208-8_42
https://doi.org/10.1145/2508363.2508415
https://doi.org/10.1145/2508363.2508415
https://doi.org/10.1093/ajcn/75.3.453
https://fit3d.com/
https://doi.org/10.1371/journal.pone.0210257
https://doi.org/10.1371/journal.pone.0210257
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1111/j.1467-8659.2009.01373.x
https://doi.org/10.3945/ajcn.110.007161
https://doi.org/10.1145/3072959.3073664
https://doi.org/10.1145/3072959.3073664
https://doi.org/10.1080/00913847.1985.11708790
https://doi.org/10.1080/00913847.1985.11708790
https://doi.org/10.1145/2980179.2982438
https://doi.org/10.1145/2980179.2982438
https://doi.org/10.1145/3072959.3073685
https://doi.org/10.1145/3203203
https://doi.org/10.1145/3359566.3360073
https://doi.org/10.1016/s0899-9007(01)00555-x
https://doi.org/10.1145/2816795.2818013
https://doi.org/10.3758/s13428-020-01494-1
https://doi.org/10.3758/s13428-020-01494-1
https://doi.org/10.1038/ejcn.2016.109
https://doi.org/10.1002/9781119557500.ch5
https://doi.org/10.1145/2628257.2656424
https://doi.org/10.1145/2628257.2656424
https://doi.org/10.1145/3386569.3392464
https://doi.org/10.1111/cgf.13913
https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


Saito, S., Zhou, Z.-Y., and Kavan, L. (2015). Computational Bodybuilding:
Anatomically-Based Modeling of Human Bodies. ACM Trans. Graphics 34,
1–12. doi:10.1145/2766957

Shoemake, K., and Duff, T. (1992). “Matrix Animation and Polar Decomposition,”
in Proceedings of the Conference on Graphics Interface, Boca Raton: CRC
Press. 258–264.

Sieger, D., Menzel, S., and Botsch, M. (2013). “High Quality Mesh Morphing Using
Triharmonic Radial Basis Functions,” in Proceedings of the 21st International
Meshing Roundtable, Boca Raton: CRC Press. 1–15. doi:10.1007/978-3-642-
33573-0_1

Siri, W. E. (1956). “Body Composition from Fluid Spaces and Density: Analysis of
Methods,” in Tech. Rep. Ucrl-, 3349. New York, NY: Lawrence Berkeley
National Laboratory.

Tomlinson, D., Erskine, R., Morse, C., Winwood, K., and Onambélé-Pearson, G.
(2016). The Impact of Obesity on Skeletal Muscle Strength and Structure
through Adolescence to Old Age. Biogerontology 17, 467–483. doi:10.1007/
s10522-015-9626-4

Weng, C.-Y., Curless, B., and Kemelmacher-Shlizerman, I. (2019). “Photo Wake-
Up: 3D Character Animation from a Single Photo,” in Proc. of IEEE Conference
on Computer Vision and Pattern Recognition, Boca Raton: CRC Press. 1–15.

Wenninger, S., Achenbach, J., Bartl, A., Latoschik, M. E., and Botsch, M. (2020).
“Realistic Virtual Humans from Smartphone Videos,” in Proc. of ACM

Symposium on Virtual Reality Software and Technology. New York, NY:
Lawrence Berkeley National Laboratory, 1–11.

Zhu, L., Hu, X., and Kavan, L. (2015). Adaptable Anatomical Models for Realistic
Bone Motion Reconstruction. Comput. Graphics Forum 34, 459–471.
doi:10.1111/cgf.12575

Ziylan, T., and Murshid, K. A. (2002). An Analysis of Anatolian Human Femur
Anthropometry. Turkish J. Med. Sci. 32, 231–235. doi:10.1127/anthranz/64/
2006/389

Zygote (2020). Definitions. Available at: https://www.zygote.com (December 10,
2019).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Komaritzan, Wenninger and Botsch. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Virtual Reality | www.frontiersin.org July 2021 | Volume 2 | Article 69424420

Komaritzan et al. Inside Humans

https://doi.org/10.1145/2766957
https://doi.org/10.1007/978-3-642-33573-0_1
https://doi.org/10.1007/978-3-642-33573-0_1
https://doi.org/10.1007/s10522-015-9626-4
https://doi.org/10.1007/s10522-015-9626-4
https://doi.org/10.1111/cgf.12575
https://doi.org/10.1127/anthranz/64/2006/389
https://doi.org/10.1127/anthranz/64/2006/389
https://www.zygote.com
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


APPENDIX: IMPLEMENTATION DETAILS

For minimization of the energies (Eqs 1, 5, 8), we use the
projective framework of Bouaziz et al. (2012) and Bouaziz
et al. (2014a), implemented through an adapted local/global
solver from the ShapeOp library (Deuss et al., 2015). It has
the advantages of being unconditionally stable, easy-to-use and
flexible enough to handle a wide range of energies. Here we give
the weights for the different energy terms and give
implementation details.

We fit the skin surface S to the skeleton wrap W by
minimizing (Eq. 1), restated here:

B � arg min
X

wfitEfit(X ,W) + wregEreg(X , �X)

We first initialize X with S and set wreg � wfit � 1. When the
minimization converges, we update the initial Laplacians Δxi in
(Eq. 2) to the Laplacians Δxi of the current solution X and
decrease wreg by a factor of 0.1. This is repeated until wreg

reaches 10−7. In order to speed up the fitting process, we first
remove high frequency details of the skin surface (e.g.,
nipples and navels) by Laplacian smoothing (Botsch
et al., 2010) before computing the initial Laplacians Δxi.
Since we exclude head, hands, and toes from the layered
template, those regions are fixed throughout the whole
process.

For fitting the skeleton surface of the template to a surface
scan, we minimize Eq. 5

E(B) � wregEreg(B, �B) + wfleshEflesh(B,S) + wcollEcoll(B,S),

where Eflesh penalizes deformations of individual prisms but
allows some stretching in the direction from skeleton to skin.
In order to use this energy in the projective framework, we
have to determine the amount of stretching α for each prism in
~Sp � diag(1, 1, α). Given the polar decomposition Fp � RpSp of
a prism’s deformation gradient, the stretching is given by
α � (BT

pSpBp)3,3. This is clamped to the range [αmin, αmax].
We use αmin � 0.2 and αmax � 5.0 to allow stretching and
compression of the element by a factor of five before the
energy of this element increases. We set the weights
wreg � 0.1, wflesh � 0.01, and wcoll � 50. The minimization is
iterated until convergence, meaning that for a fixed set of
iterations the decrease of the energy falls below some
threshold. In the converged state, we detect collisions and
start the minimization again until convergence. This is
repeated until no collisions are found in a converged
solution. For all of our subjects, the minimization always
converged within <20 iterations.

In order to fit the templates muscle surface to the target, we
perform the minimization of (Eq. 8)

E(M) � wregEreg(M, �M) + wlineEline(M,B,S)
We initialize M with �M and set wreg � 0.01, wline � 1.0. When
the minimization converges, we update the Laplacians in Ereg to
those of the current solution and decrease wreg by a factor of 0.5.
This is iterated until the maximal distance of a vertex to its bone-
to-skin line [see (Eq. 9)] is <0.2 mm. Lastly, we project each
vertex onto its corresponding bone-to-skin line to get a perfect
alignment.
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