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This paper introduces Deep4D a compact generative representation of shape and
appearance from captured 4D volumetric video sequences of people. 4D volumetric
video achieves highly realistic reproduction, replay and free-viewpoint rendering of actor
performance frommultiple view video acquisition systems. A deep generative network is
trained on 4D video sequences of an actor performing multiple motions to learn a
generative model of the dynamic shape and appearance. We demonstrate the
proposed generative model can provide a compact encoded representation capable
of high-quality synthesis of 4D volumetric video with two orders of magnitude
compression. A variational encoder-decoder network is employed to learn an
encoded latent space that maps from 3D skeletal pose to 4D shape and
appearance. This enables high-quality 4D volumetric video synthesis to be driven by
skeletal motion, including skeletal motion capture data. This encoded latent space
supports the representation of multiple sequences with dynamic interpolation to
transition between motions. Therefore we introduce Deep4D motion graphs, a direct
application of the proposed generative representation. Deep4D motion graphs allow
real-tiome interactive character animation whilst preserving the plausible realism of
movement and appearance from the captured volumetric video. Deep4Dmotion graphs
implicitly combine multiple captured motions from a unified representation for character
animation from volumetric video, allowing novel character movements to be generated
with dynamic shape and appearance detail.
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1 INTRODUCTION

Volumetric video is an emerging media that allows free-viewpoint rendering and replay of
dynamic scenes with the visual quality approaching that of the of captured video. This has the
potential to allow highly-realistic content production for immersive virtual and augmented
reality experiences. Volumetric video is produced from multiple camera performance capture
studios that generally consist of synchronised cameras that simultaneously record a performance
(Collet et al., 2015; Starck and Hilton, 2007; de Aguiar et al., 2008; Carranza et al., 2003). The
generated content usually consists of 4D dynamic mesh and texture sequences that represent the
visual features of the scene, for example, shape, motion and appearance. This allows replay of the
performance from any viewpoint and moment in time, although it requires a huge
computational effort to process and store. Volumetric video capture is currently limited to
replay of the captured performance and does not support animation to modify, combine or
generate novel movement sequences. Previous work has introduced methods for animation from
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volumetric video based on re-sampling and concatenation of
volumetric sequences (Huang et al., 2015; Prada et al., 2016).

Rendering realistic human appearance is a particularly
challenging problem. Humans are social animals that have
evolved to read emotions through body language and facial
expressions (Ekman, 1980). As a result, humans are extremely
sensitive to movement and rendering artefacts, which gives rise to
the well-known uncanny valley in photo-realistic rendering of
human appearance. Recently there has been significant progress
using deep generative models to synthesise highly realistic images
(Goodfellow et al., 2014; Kingma and Welling, 2013; Zhu et al.,
2017; Isola et al., 2016; Ulyanov et al., 2016; Ma et al., 2017;
Siarohin et al., 2017; Paier et al., 2020) and videos (Vondrick et al.,
2016; Tulyakov et al., 2017) of scenes, which is important for
applications such as image manipulation, video animation and
rendering of virtual environments. Human avatars are typically
rendered using detailed, explicit 3D models, which consist of
meshes and textures, and animated using tailored motion models
to simulate human behaviour and activity.

Recent work Holden et al. (2017) has shown that it is possible
to learn and animate natural human behaviour (e.g. walking,
jumping, etc.) from human skeletal motion capture data (MoCap)
of actor performance. On the other hand, designing a realistic 3D
model of a person is still a laborious process. Given the
tremendous success of deep generative models (Goodfellow
et al., 2014; Kingma and Welling, 2013; Zhu et al., 2016;
Karras et al., 2017; Isola et al., 2016), the question arises, why
not also learn to generate realistic rendering of a person? By
conditioning the image generation process of a generative model
on additional input data, mappings between different data
domains are learned (Zhu et al., 2017; Isola et al., 2016;
Johnson et al., 2016), which, for instance, allows for
controlling and manipulating object shape, turning sketches
into images and images into paintings. Generative methods
have improved recently on the resolution and quality of
images produced (Karras et al., 2017; Miyato et al., 2018
Brock et al., 2018). Yet generators continue to operate as black
boxes, and despite recent efforts, the understanding of various
aspects of the image synthesis process is unknown. The properties
of the latent space are also poorly understood, and the commonly
demonstrated latent space interpolation (Dosovitskiy et al., 2015;
Sainburg et al., 2018; Laine, 2018) provide no quantitative way to
compare different generators against each other. Motivated by
recent advances in generative networks (Karras et al., 2018;
Karras et al., 2017; Goodfellow et al., 2014) we propose an
architecture for learning to generate dynamic 4D shape and
high resolution appearance that exposes ways to control image
synthesis. Our appearance generator starts from a learned motion
space and adjusts the resolution of the image at each convolution
layer based on the latent motion code, therefore directly
controlling the strength of image features at different scales.

This work proposes Deep4D, a deep generative representation
of dynamic shape and appearance from 4D volumetric video of a
human character. The proposed approach learns an efficient
compressed latent space representation and generative model
from 4D volumetric video sequences of a person performing
multiple motions. Compact latent space representation is

achieved using a variational encoder-decoder to learn the
mapping from 3D skeletal motion to the corresponding full
4D volumetric shape, motion and appearance. The encoded
latent space supports interpolation of dynamic shape and
appearance to seamlessly transition between captured 4D
volumetric video sequences. This work presents Deep4D
motion graphs, which exploit generative representation of
multiple 4D volumetric video sequences in the learnt latent
space to enable interactive animation with optimal transition
between motions. The primary novel contributions of this
paper are:

• Deep4D, a generative shape and appearance representation
for 4D volumetric video that enables compact storage and
real-time interactive animation.

• Mapping of skeletal motion to 4D volumetric video to
synthesise dynamic shape and appearance.

• Deep4D motion graphs, an animation framework built on
top of the Deep4D representation that allows high-level of
4D characters enabling synthesis of novel motions and real-
time user interaction.

2 RELATED WORK

4DVolumetric Video: has been an active area of research (Starck
and Hilton, 2007; Collet et al., 2015; Carranza et al., 2003; de
Aguiar et al., 2008), that has emerged to address the increasing
demand for realistic content of human performance. Recently,
Collet et al. (2015) presented a full pipeline to capture, reconstruct
and replay high-quality volumetric video. The system uses
approximately 100 synchronised cameras that simultaneously
capture the volume from multiple viewpoints. Volumetric
video captures the dynamic surface geometry and photo-
realistic appearance of a subject. This unlocks enormous
creative potential for highly realistic animated content
production based on the captured performance. Recent
research provides frameworks to ease the manipulation of this
content (Huang et al., 2015; Prada et al., 2016; Tejera and Hilton,
2013; Budd et al., 2013; Cagniart et al., 2010; Vlasic et al., 2008;
Regateiro et al., 2018; Casas et al., 2014), allowing an artist to
perform manual adjustments on 4D dynamic geometry and
combine multiple sequences in a motion graph. However, use
of 4D volumetric video in content production remains limited
due to the challenge of manipulation, animation and rendering of
shape sequences whilst maintaining the realism of appearance
and clothing dynamics.

Learnt Mesh Sequence Representations: Tejera and Hilton
(2013) proposed a part-based spatio-temporal mesh sequence
editing technique that learns surface deformation models in
Laplacian coordinates. This approach constrains the mesh
deformation to plausible surface shapes learnt from a set of
examples. Part-based learning of surface deformation allows
local manipulation of the mesh and achieves greater animation
flexibility, allowing the generation of novel posed meshes. Tan
et al. (2018) use a variational autoencoder (VAE) to learn a
representation of parameterised dynamic shapes. Their network
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trains on a pre-processed feature space of the training data,
demonstrating very low reconstruction error for the ground
truth shapes. Lombardi et al. (2018) proposed a learnt model
of shape and appearance conditioned on viewpoint allowing
recovery of view-dependent texture detail. This network
demonstrates the ability to learn 3D dynamic shapes from
vertices, avoiding the need to pre-process information. This
demonstrates the real-time capabilities of VAEs, being able to
decode shape and appearance in less than 5 milliseconds.
Recently, Regateiro et al. (2019) demonstrated the capabilities
of learning 3D dynamic shapes to produce realistic animation
using a VAE to learn the geometric space of a human character
and re-use the decoder in real-time to synthesise 3D geometry.

Learnt Representation of Appearance: Recently, Esser et al.
(2019) presented an approach towards a holistic learning
framework for rendering human behaviour trained from
skeletal motion capture data for realistic control and
rendering. They learn a mapping from an abstract pose
representation to target images conditioned on a latent
representation of a VAE for appearance. Karras et al. (2017)
propose a novel training methodology for generative networks.
that progressively grows both the generator and discriminator,
starting from a low image resolution and ending at the original
image resolution. They demonstrate that the model increasingly
learns fine details as the training progresses, hence improving
training speed and stability, and producing high-quality images.
Although photorealism is a hard problem to solve, this approach
is a step towards recreating high quality images that are
indistinguishable from real images. More recently, Karras et al.
(2018) redefine the architecture of generative networks for style-
based transfer. Using a similar approach to Karras et al., 2017,
they have demonstrated high quality images results, for example,
the ability to learn the exact placement of hair, stubble, freckles, or
skin pores. This demonstrates the potential to synthesise high
resolution images of humans, whilst preserving natural details
that are essential for perception of realism.

4D Volumetric Video Animation: Motion graphs for
character animation from skeletal motion capture sequences
(Arikan et al., 2003; Kovar et al., 2002; Tanco and Hilton,
2000) use a structured graph representation to enable
interactive control. The skeletal motion graphs are constructed
using a frame-to-frame similarity metric which identifies similar
poses and motion. The concept of motion graphs has been
applied to volumetric video using both unstructured meshes
(Starck et al., 2005; Huang et al., 2009; Hunag et al., 2015;
Prada et al., 2016) and temporally consistent structured
meshes (Casas et al., 2014; Boukhayma and Boyer, 2017;
Hilsmann et al., 2020). Initial approaches (Starck et al., 2005;
Huang et al., 2009) concatenate unstructured dynamic mesh
sequences without temporal consistency of the mesh
connectivity based on shape and motion similarity. Prada
et al. (2016) instead performs mesh and texture alignment at
defined transitions points to ensure smooth blending. This
overcomes the challenging problem of global mesh alignment
and only considers alignment of geometry and texture where
necessary. In contrast, Boukhayma and Boyer (2017) and Casas
et al. (2014) leverage global alignment of the mesh sequence to

obtain temporally consistent mesh connectivity from the
volumetric video. This allows 4D motion graphs with mesh
blending for high-level parametric control of the motion and
smooth transitions between motions.

In this paper we introduce Deep4D, a learnt generative
representation of volumetric video sequences, presented in
Section 3. Deep4D provides compact representation, which
overcomes the memory and computation requirement of
previous approaches to explicitly represent all captured
sequences at run-time through the learnt parameters of the
network. In Section 4 we present Deep4D motion graphs, a
direct application of the proposed generative network to produce
seamless animations of both dynamic shape and appearance
between learnt captured motion sequences. Finally, Section 5
presents a quantitative and qualitative evaluation of the proposed
method.

3 DEEP4D REPRESENTATION

The work presents a step forward to allow control and synthesis
of 4D volumetric video, while preserving the realism of dynamic
shape and appearance. This section introduces the use of a
generative network to represent 4D volumetric video content
from performance capture data efficiently. Pre-processing of the
captured volumetric video into a form suitable for neural
networks is first presented. The generative network for the
learning of 4D shape from captured volumetric sequences is
described, together with the use of a variational encoder-
decoder to ensure a compact latent space representation
mapping from 3D skeletal pose to corresponding 4D
dynamic shape. Finally, we present a generative network for
4D video appearance that learns to synthesise high-resolution
dynamic texture appearance from the compact latent space
representation, Figure 1. Enforcing a compact latent space
representation enables interpolation between skeletal poses to
generate plausible intermediate mesh shape and appearance.
These sections individually describe the contribution of the
generative network, illustrated in Figure 1. Deep4D
generative representation enables the generation of realistic
renderings of human characters, with the ability to re-target
new skeletal motion information.

3.1 Volumetric Video Pre-processing
In the context of this work, 4D volumetric video represents 4D
mesh sequences Ms

t , 2D textures Ts
t and 3D skeletal motion ps

t
computed from multiple view video capture. A 4D volumetric
video dataset consists of NS sequences s � [1 . . . NS] and each
sequence consists of Ns

T frames at a time instance t � [1 . . .Ns
T].

State-of-the-art volumetric performance capture of people
with loose clothing and hair (Collet et al., 2015) results in
high resolution reconstructed shape and texture appearance.
Raw volumetric video typically results in an unstructured
mesh sequence where both the mesh shape and connectivity
changes from frame-to-frame (Prada et al., 2016). Several
approaches have been introduced for temporal alignment over
short subsequences to compress the storage requirements (Collet
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et al., 2015) or global alignment across complete sequences
(Huang et al., 2011; Cagniart et al., 2010; Regateiro et al., 2018).

In this work we employ the skeleton-driven volumetric surface
alignment framework (Regateiro et al., 2018) to pre-process
captured 4D volumetric video of people to obtain a temporally
coherent mesh structure across multiple sequences. This
framework receives as input synchronised multiple view video
from calibrated cameras and returns 3D skeletal joints and
temporally consistent 3D meshes with the same mesh
connectivity at every frame. The texture appearance is
retrieved by re-mapping the original multiple view camera
images onto the temporally consistent 3D meshes providing a
dynamic texture map with consistent coordinates for all captured
frames. The input to the deep network presented in the following
sections consists of centred 4D temporally consistent mesh
sequences with the corresponding 2D texture maps and 3D
skeletal joint locations.

3.2 Deep4D: Pose2Shape Network
Variational networks have become a popular approach to learn a
compact latent space representation which can integrate with
deep neural networks. In this section, we employ a variational
encoder-decoder to learn a compact latent space mapping

between 3D skeletal pose and the corresponding 4D shape,
illustrated in Figure 2. The generative network architecture
maximises the probability distribution of the 3D skeletal joint

positions p � {{ps
t}N

s
T

t�1}
NS

s�1, encoded in the latent space

z � {{zst}N
s
T

t�1}
NS

s�1, and learns the generative mapping of the
decoder to the corresponding 4D mesh ~M

s
t . While we define

input p as 3D skeletal joint positions, it can be replaced with other
pose representations consisting of 3D landmarks, e.g. facial
keypoints.

Generative networks learn dependencies from the input
data and capture them in a low-dimensional latent vector zst ,
creating compact representations zst ∈ Rd, where d is the latent
space dimension (128 dimensions throughout this work). The
probability density function P(p) for the skeletal pose is given by:

P(p) � ∫P(p | z) P(z)dz (1)

The distribution P(p|z) denotes the maximum likelihood
estimation of dependencies of p over the latent vector z, and P
(z) is the prior probability distribution of a latent vector z. To
ensure a compact representation P(p|z) is modelled as a Gaussian
distribution with mean μ(z) and diagonal co-variance σ(z)

FIGURE 1 | The generative network is driven from 3D skeletal motion to synthesise 4D volumetric video interactively.

FIGURE 2 | Pose2Shape network overview. The input and the output of the encoder and decoder is 3D skeletal motion and 4D shape respectively.
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multiplied by the identity I, which implicitly assumes
independence between the dimensions of z.

P(p | z) � N(p | μ(z), σ(z)2 ∗ I) (2)

The Pose2Shape network architecture is composed of an
encoder, which receives 3D skeletal joint positions as input,
and a decoder, see supplementary material network details,
that generates high resolution 3D meshes. The encoder is
trained to map the posterior distribution of data samples p to
the latent space z, meanwhile forcing the latent variables z to
comply with the prior distribution of P(z). However, both the
posterior distribution P(z|p) and P(p) are unknown. Therefore,
variational networks give the solution that the posterior
distribution is a variational distribution Q(zst| ~Ms

t). In order to
make Q(zst| ~Ms

t) consistent with the distribution P(z), we use the
Kullback-Leiber (KL) divergence (Kingma and Welling, 2013):

KL(Q(zst | ~M
s

t) ‖ P(zst)) (3)

The decoder is trained to regress from any latent vector zst in
the learnt space z to a 4Dmesh representation ~M

s
t . Eq. (4) defines

the loss function minimised by the network to achieve a compact
latent space representation and generative network output.

L � (Q(P(ps
t | zst) | ~M

s

t) −Ms
t) + ωKL(Q(zst | ~M

s

t) ‖ P(zst))
(4)

This is an optimal approximation of the true samples Ms
t ,

where ω weighs the importance of the KL divergence, and Ms
t is

the ground truth 4D mesh for the 3D skeletal pose ps
t of sequence

s at time t.

3.2.1 Training Details
The network architecture used to regress 3D skeletal pose to 4D
mesh shape is summarised in Figure 2. The network was
empirically found to learn a good latent space distribution
with accurate 4D shape generation using a training cycle of
104 epochs, which is optimised through validation data to
avoid over-fitting with a learning rate of 0.001. The datasets
are split by randomly selecting frames from each motion
sequence with ≈80% used for training and ≈20% used for
validation. We set the prior probability over latent variables to
be a Gaussian distribution with zero mean and unit standard
variation, p (z) � N (z; 0, I). We use Adam optimisation (Kingma
and Welling, 2013) with a momentum of 0.9 to optimise Eq. (4)
between the reconstructed and ground truth mesh vertices, and
simultaneously the KL divergence of the 3D skeletal pose
distribution. Evaluation of the performance of the network for
shape representation from skeletal pose is given in Section 5.

3.3 Deep4D: Pose2Appearance Network
In this section, we propose the use of a Pose2Appearance network
for the synthesis of high-resolution dynamic mesh texture maps
from the encoded skeletal pose latent space representation. A
similar approach described as the progressive growing of GANs
was first introduced by Karras et al. (2017) to improve image
synthesis quality and training stability of Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014).

A GAN consists of two networks, a generator and a
discriminator. The generator produces images from a latent
code, and the distribution of these images should be
indistinguishable from the training distribution. The
discriminator evaluates the quality of the images produced by
the generator, forcing the generator to learn how to produce high-
quality images so that the discriminator cannot tell the difference.
A progressive generator generally consists of a network where the
training begins with a low-resolution image and progressively
increases the resolution until it reaches a target resolution. This
incremental multi-resolution approach allows the training first to
discover the large-scale structure of the distribution of the images
and then shifts the attention to finer-scale details, whereas in
traditional GAN architectures, all scales are learned
simultaneously.

In this section, we adapt the generator from the progressive
growing of GANs (Karras et al., 2017) to learn how to synthesise
high-resolution texture appearance from the latent probability
distribution learned from 3D skeletal motion, Section 3.2. The
proposed Pose2Appearance for high-resolution texture map
synthesis from the latent space vector is illustrated in Figure 3.

The Pose2Appearance initially starts with a small feed-
forward network, see supplementary for details, which consists
of four fully-connected layers, where the input consists of learnt
latent vector zst of dimension 128, which corresponds to the
dimensions of the latent space learned from the Pose2Shape
network, and the output dimension of the fourth layer is 512,
to match the input size requirements of the first convolutional
layer, as illustrated in Figure 3. The convolutional layers consist
of nine blocks, where each block represents a different resolution,
and its output is a high-resolution texture ~T

s
t .

We also experimented with a VAE network for appearance
synthesis. This experiment was found to result in significant blur
and loss of detail. The VAE assumes the same input and output,
hence not being a suitable architecture for the problem. For this
reason, a more sophisticated network approach is required,
Section 5.3 for comparison with state-of-the-art methods.

3.3.1 Training Details
The Pose2Appearance training starts with a 4 × 4 resolution and
progressively grows the network layers until it reaches 1,024 ×
1,024 resolution. The network progresses through the training by
adding new layers with double the size. There are two stages for
training the growing process (Figure 4), the first stage is when a
new layer is added a fading stage begins where the new layer will
be smoothly added to the network. This new layer will operate as
a residual block, whose weight τ increases linearly from 0 to 1.
When the fading stage is over the second stage is initiated, the
stabilising stage, where the new layer is fully integrated with the
network, and it iterates over another training cycle. This training
pattern repeats until it reaches the full resolution of 1,024 × 1,024.
For every stage, we gradually decrease the minibatch size, vary the
stabiliser number of training iterations and vary the convergence
tolerance. These parameters are necessary to avoid exceeding the
available memory budget and decrease the training time.

The generator network is trained using Adam (Kingma and
Welling, 2013), with a constant learning rate of 0.001 across the
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full training.We use leaky ReLU (Tan et al., 2018) with a leakiness
value of 0.2, equalised learning rate for all layers, except the last
layer that uses linear activation, and pixel normalisation of the
feature vector after each Conv 3 × 3 layer. All weights of the
convolutional, fully-connected and affine transform layers are
initialised using a Gaussian distribution with zero mean and unit
standard variation, p (z) � N (z; 0, I). Stochastic gradient descent
with a momentum of 0.9 is used to minimise the mean squared
error (MSE) loss between reconstructed image ~T

s
t and the ground

truth samples Ts
t .

3.4 4D Volumetric Video Synthesis
The latent space of the learnt motion allows the pre-trained generators
for shape Q(zst| ~Ms

t) and texture A(zst|~Ts
t) to interpolate between the

captured 4D volumetric video shape and appearance sequences.
Because the variational encoder-decoder produces a compact latent
space it is possible to generate novel content by sampling from the
learned space or interpolation of sampled latent vectors. Sampling of
the latent space allows reproduction of the original 4Dvolumetric video
sequences with a low reconstruction error. The sampling can be
performed in two ways: random walk in the latent space that fits in
the Gaussian distribution learned; or through 3D joint positions given
as input to the networks. In this work, sampling is performed
through 3D joint position as input. Interpolation in the learnt
latent space allows transitions between observed sequences to
create plausible novel motions. Interpolating the latent space is

only possible because of the compact space representation
produced by the generative network. This is performed,
firstly, by sampling latent vectors using 3D joint position as
input to the network. Once the latent vector is computed for two
motion frames then interpolation is performed according
to Eq. 5.

zi � (1 − α)zs1t1 + αzs2t2 (5)

where zi is the interpolated latent vector, α defines a normalised
weighting [0‥1] between latent vectors zs1t1 and zs2t2 . Intermediate
4D shape and texture frames are synthesised to qualitatively
evaluate how well the network is representing the 4D shape
and appearance, Section 5.2.

4 DEEP4D MOTION GRAPHS

The following section introduces Deep4D motion graphs, a novel
approach to generate motion graphs (Casas et al., 2012; Casas et al.,
2013; Boukhayma and Boyer, 2015; Boukhayma and Boyer, 2019)
from the Deep4D representation introduced in Section 3. The
motion graphs, animation and rendering blocks presented in
Figure 5 are discussed in detail to demonstrate the steps taken
to generate motion graphs capable of animating learnt characters
from 4D volumetric video datasets. The goal is to merge the
popular deep learning research field with traditional animation

FIGURE 4 | Progressive appearance training overview. Convolutional layers training stages, Stabilising stage with 16 × 16 resolution, and Fading stage to the next
32 × 32 resolution layer.

FIGURE 3 | Progressive appearance network overview. The input is learnt latent vectors from 3D skeletal motion, and the output is a high-resolution 2D texture
appearance.
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pipelines to begin a new era for computer graphics, creating novel
mechanisms to produce realistic human animations.

Firstly, we discuss the input data to the animation framework
along with the pre-requisites for initialisation. Secondly, the
generation of motion graphs for learnt 4D volumetric video is
presented along with a discussion of the metrics chosen to evaluate
similarity and transition costs between motion frames. Finally, a
real-time motion synthesis approach to generate 4D video
sequences with interactive animation control by concatenating
and blending between the captured motion sequences is presented.

4.1 Input Data
The framework receives as input, skeletal motion data from 4D
volumetric video estimated using a Skeleton Driven Surface
Registration (SDSR) framework (Regateiro et al., 2018) and latent
vectors zst of each motion sequenceMs

t learned in Section 3 for 4D
shape and appearance learnt from a skeletal pose.

In the context of this section, a sequence of motion frames

{{Fs
t}N

s
T

t�1}
NS

a�1 refers to collections of frames which contain
representative latent vectors, and skeletal structures given by
the SDSR framework as follows, Fs

t � {zst, Sst}, where Sst is a
skeletal structure from a motion sequence, which contains Ns

T

number of frames t � [1 . . .Ns
T], representative of the original

motion dataset. Lastly, it is necessary to utilise the pre-trained
mesh generator Q(zst| ~Ms

t) and the appearance generator
A(zst|~Ts

t) from Section 3 to interpret each latent vectors zst
stored as a motion frame in latent motion sequence Fs

t .
The generative networks synthesise ~M

s
t meshes and ~T

s
t texture

maps for every zst ∈ Fs
t , which represents a temporally consistent

4Dmesh and appearance, i.e. the topology, vertex connectivity and
texture coordinates are constant across all frames and sequences.
The construction of a motion graph is independent of the learnt
model, allowing the framework to generalise its application to other
types of models. A motion graph is interpreted as a directed
weighted graph structure built from captured 4D volumetric
video sequences, where graph nodes represent frames that
contain latent vectors which hold information about shape,
motion and appearance, and edges link nodes together to
represent motion pathways between frames.

4.2 Pre-processing
The data is required to be pre-processed; this offline process starts
with training the generative networks described in Section 3 for a

skeletonmotion sequences of a human character. Once training is
complete the generators Q(zst| ~Ms

t) and A(zst|~Ts
t) are used to

recover the 3Dmeshes and 2D textures represented by each latent
vector zst , to allow the pre-processing step to be automated. The
first step in the pre-processing stage is to connect frames within
the same sequences automatically, and if possible create loops for
cyclic motions, consequently a sequence can infinitely repeat
itself. Loops are generated via searching on a similarity matrix
SIMT(Fi

tu
, Fj

tv) for all pairs of frames in the same sequence to
automatically choose the minimum cost, Section 4.3 and Section
4.4. Transitions within the same sequence should produce the
most natural motion; hence the shape and motion cost should
be small.

The next step is to fully connect the graph by adding all
possible transition combinations between sequences to allow
better path estimations to be found for all frames. This step
will generate a fully connected graph with appropriated edge
weights using shape, motion and dynamic time warping metrics,
as detailed in the following sections. Lastly, the graph is optimised
using Dijkstra’s algorithm to minimise the number of transition
in the final motion graph, as detailed in Section 4.5.

4.3 Shape Similarity Metric
Similarity is computed for every pair of frames in the input 4D
volumetric video sequences SIMT(Fi

tu
, Fj

tv), where Fi
tu
is a frame

tu from the ith sequence Fi
tu
� {Mi

tu
, Ti

tu
}, comprising meshesMi

tu

and textures Ti
tu
, where i � [1 . . . NS]. For a given latent vector zst

the decoder Q(zst| ~Ms
t) reconstructs temporally consistent

geometry, and the appearance generator A(zst|~Ts
t) reconstructs

the 2D texture appearance of generated frame. The shape, motion
and appearance similarity is computed for every pair of source Fi

tu

and target Fj
tv frames, having tu ∈ [1, Ns

T] and tv ∈ [1, NT] frames
for all sequences i, j ∈ [1, NS].

SIMT(Fi
tu
, Fj

tv ) � θSIMM(Mi
tu
,Mj

tv ) + (1 − θ)SIMA(Ti
tu
, Tj

tv )
(6)

Where θ weights the relative importance of shape and appearance
similarity, giving a complete similarity matrix SIMT(Fi

tu
, Fj

tv) for
all frames generated by the learnt 4D volumetric video
representation. To measure shape similarity we use the
Euclidean distances and velocities between mesh vertices as
illustrated in Eq. 7.

FIGURE 5 | Animation framework pipeline. The image illustrates the online block that generates high-resolution 4D volumetric video. The 4DMotion Graph contains
the learnt motion representation allowing the decoders in real-time to synthesise 4D volumetric video sequences consisting of 4D mesh, 2D texture appearance.

Frontiers in Virtual Reality | www.frontiersin.org November 2021 | Volume 2 | Article 7390107

Regateiro et al. Deep4D

https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


SIMM(Mi
tu
,Mj

tv ) �
1
NV

(‖xi
tu
− xj

tv‖ + ‖vitu − vjtv‖) (7)

Where vertex velocity vitu � (xi
tu
− xi

tu−1 ), and NV is the number of
vertices. The appearance similarity uses the average absolute
difference of the 2D texture appearance between two frames as
illustrated in Eq. 8.

SIMA(Ti
tu
, Tj

tv ) �
1
NX

‖Ti
tu
− Tj

tv‖ (8)

WhereNX is the number of pixels. The similarities are normalised
to the range (0,1) as follows:

SIMQ(Fi
tu
, Fj

tv ) �
SIMQ(Fi

tu
, Fj

tv ) −min(SIMQ(Fi
tu
, Fj

tv ))
max(SIMQ(Fi

tu
, Fj

tv )) −min(SIMQ(Fi
tu
, Fj

tv ))
(9)

Where SIMQ (·) is either SIMM (·) or SIMA (·) similarity metrics
for shape and appearance. The pre-computed similarity matrix
SIMT(Fi

tu
, Fj

tv ) for all frames allows to evaluate in real-time the
similarity cost between any source and target meshes.

4.4 Transition Edge Cost
An edge in a motion graph represents a transition between two
frames, where for clarity frames will be described as nodes. For
every edge, we associate a weight to represent the similarity of
shape transitions between nodes quantitatively. Realistic
transitions should require little change in shape and
appearance corresponding to a small similarity score. Hence
the metric used takes into account the optimal surface
interpolation cost between any pair of nodes (Boukhayma and
Boyer, 2017). The cost of transitioning is the sum of intermediate
poses between source node u and destination node v weighted by
the similarity score for each intermediate frame.

In order to smoothly blend source node u from a 3D mesh
sequence to destination node v from another sequence, it is
necessary to consider a blend window of length b. This
window represents a successive number of nodes bu, on the
source sequence it begins at node u and ends at node u + bu − 1,
in the destination sequence a window bv ending at node v and
starting at node v − bv + 1. Once, the window frame is initialised
between source and destination sequence, it is necessary to
extrapolate the nodes that gradually blend both sequences,
generating smooth realistic transitions. To extract the
optimal nodes from source and destination sequences we use
a variant of dynamic time warping (DTW) (Muller, 2007;
Witkin and Popovic, 1995 Wang and Bodenheimer, 2008;
Casas et al., 2013) to estimate the best temporal warps wu

and wv respectively with respect to the similarity metric
defined in Eq. (6). DTW was first introduced by Sakoe and
Chiba (1990) for signal time alignment, it was used in
conjunction with dynamic programming techniques for the
recognition of isolated words and it had been widely used
since then mainly for recognition tasks. The transition
duration varies within a third of a second and 2 s (Wang and
Bodenheimer, 2008), hence we allow the length bu and bv to vary

between boundaries bmin and bmax. The optimal transitions with
minimal total similarity cost D(u, v) through the path generated
from the DTW algorithm.

D(u, v) � min
bu,bv,wu,wv,Dl,Dl

∑
t∈[0,Dl]

SIMT(Fi
tu
, Fj

tv ) (10)

where SIMT(Fi
tu
, Fj

tv) is the shape similarity cost defined in
Section 4.3, and Dl is the length of the path found by the
DTW algorithm considered as the transition duration, see
supplementary material for illustration. The optimisation
above finds the following optimal parameters (bu, bv, wu, wv,
Dl, Dl), which are considered later for motions synthesis. Similar
to Section 4.3, we define the edge weight between nodes to be the
surface deformation cost D (u, v) and its interpolated duration
cost Dl(u, v). Eq. (11) summarises the definition for the edge cost
between nodes u and v.

D′(u, v) � min[α(v − u), D(u, v) + α Dl(u, v)] (11)

For the case nodes u and v are from the same sequence the
surface deformation should be minimal. To control the tolerance
between surface deformation and transition duration we add
weight α.

This process will create a fully connected digraph where edges
are weighted for the shape similarity and transition cost between
nodes, in the following Section 4.5 we will discuss how to prune
and optimise the connectivity of the complete digraph.

4.5 Motion Graph Optimisation
The last stage in the framework aims to find a globally optimal
solution to minimise the number of transitions between nodes.
Plausible transitions can be achieved by selecting the minimum
cost transition from the similarity matrix between sequences, to
generate a motion graph. A fully connected digraph was
generated from Section 4.4, which connects every pair of
nodes for all existing motion sequences. Therefore selecting
the minimum cost transition for every node would maintain
dense connectivity in the graph.

We have implemented a globally optimal strategy that extracts
and maintains only the best paths between every pair of nodes
(Huang et al., 2009) Casas et al., 2011; Casas et al., 2013;
Boukhayma and Boyer, 2015; Boukhayma and Boyer, 2017).
This strategy corresponds to extracting the essential sub-graph
from the complete digraph induced from the input sequences
(Bordino et al., 2008). This method ensures the existence of at
least one transition between any two nodes in the graph, which
potentially yields a better use of the original data with less dead
ends. Given the fully connected digraph, we use the Dijkstra
algorithm on every pair of nodes to extract the shortest paths
between source and target nodes. Once this process is
completed, we remove all edges that do not belong to the
new generated paths, giving a connected digraph that
contains only the necessary least cost transitions. The
resulting structure is also referred to as the union of
shortest-path trees rooted at every graph node. This solution
will guarantee the minimal difference when transitioning from
frames of different sequences.
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4.6 4D Volumetric Video Animation
This section demonstrates generation of 4D volumetric video
using the Deep4D motion graphs. To generate a continuous
stream of animation between motion sequences it is necessary
to calculate the least costly transition path between a source frame
Fi
tu
and a target frame Fj

tv from different motion sequences. As
discussed previously, the least costly transition should be a
transition within the same motion sequence, consequently if
the animation remains unchanged by the user the framework
will play the same motion in a loop. If the user requests the
character change to a newmotion state, the animation framework
computes the minimum transition cost D(Fi

tu
, Fj

tv) from the
current motion frame Fi

tu
to the selected motion sequence Fj

tv ,
and returns the following parameters (bu, bv, wu, wv, Dl), Section
4.4. These parameters allow interpolation of the intermediate
frames between frame u and v with a transition length of Dl,
creating a seamless transition in real-time between different
motion sequences. The approach presented in Section 4.4
finds the corresponding pair of frames by computing the
shortest path on the warps (wu, wv). The following sub-
sections discuss how to synthesise 4D volumetric video and
how intermediate frames are generated using generative
networks.

4.6.1 4D Motion Synthesis
For every node in the motion graph we store the latent vector
zst that corresponds to a particular frame of a motion
sequence. This allows for the pre-trained generator
Q(zst| ~Ms

t) and A(zst|~Ts
t) from the generative networks to

reconstruct 3D mesh and 2D texture appearance for any
given latent vector. At run-time the framework provides a
latent vector zst of the current frame and generates the
corresponding dynamic mesh shape and texture appearance
to synthesise the 4D volumetric video. Figure 6 illustrates

synthesised 4D volumetric video sequences. The motion
graph representation generates seamless transitions to
enable interactive character animation. The world
coordinates of each frame are given by the root of the
original 3D skeletal motion information which is used to
transform the 3D mesh content given by the generators,
allowing it to reproduce the original physical motion
translations.

4.6.2 Motion Frames Interpolation
Edges in the motion graph represent transitions between
frames take into account the shape, motion and appearance
similarity. It is necessary to create intermediate blend frames
to smoothly transition between different sequences. As seen in
Section 3.4, the generative network allows synthesis of frames
via interpolation of the latent vectors. Therefore, we perform a
linear interpolation of the latent vectors for the given
transition parameters, see Section 4.4, to create smooth
human character animation. Figure 7, Figure 8 illustrate
interpolation between distinct body and face poses
generating plausible intermediate mesh and texture.

5 RESULTS AND EVALUATION

This section presents results and evaluation for the proposed
Pose2Shape network, the Pose2Appearance network from
motion, and their applicability using Deep4D motion graphs
to generated realistic animations, introduced in Section 3.2 and
Section 3.3. To evaluate the 4D animation framework we use
publicly available volumetric video datasets for whole body and
facial performance. The SurfCap dataset, JP and Roxanne
characters, and Dan character (Casas et al., 2014) are
reconstructed using multi-view stereo (Starck and Hilton,

FIGURE 6 | Latent space interpolation, two frames with distinct motions are selected, on the left surrounded with a green box is the source, on the right surrounded
with a red box is the target, in between is the interpolated results for 4D shape and appearance.
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2007) and temporally aligned with SDSR (Regateiro et al., 2018)
which allows for surface pose manipulation. Martin dataset
(Klaudiny and Hilton, 2012) consists of one sequence of
temporally aligned geometry and texture appearance of a

human face, and 3D facial key-points given by OpenPose (Cao
et al., 2021). Thomas dataset (Boukhayma and Boyer, 2015)
consists of four sequences of temporally aligned meshes and
texture appearance. An overview of dataset properties is shown in

FIGURE 7 | Thomas appearance synthesis qualitative evaluation of Lombardi et al. (2018).

FIGURE 8 | Interpolation between two frames from the original motion sequence surrounded with a green and orange box. The top row represents the original
sequence composed of five consequent frames. Themiddle row is the result of interpolating the learnt latent vector of the proposed network. The bottom row is the result
of using linear blend skinning.
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Table 2. Examples of character animation using Deep4D motion
graphs are shown in Figures 9,6. Results demonstrate that the
proposed generative representation allows interactive character
animation with seamless transitions between sequences based on
interpolation of the latent space. The meshes are coloured to
illustrate different motion sequences and interpolation between
them when performing a blend transition. The learned generative
model for shape and appearance synthesises animation with a
quality similar to the input 4D video.

5.1 Quantitative Results
The variational encoder-decoder uses Eq. (4) as a metric to predict
plausible shape reconstructions from skeletal pose. The
Pose2Appearance network uses the mean squared error (MSE)
as loss function between generated images and ground truth as a

metric to predict plausible high resolution textures. The
comparison was performed between the training data, to ensure
minimum error when sampling the original sequences, and
validation data to guarantee a plausible result when generating
unseen mesh.

We compare generated 3D meshes with ground truth
geometry acquired from multiple view stereo reconstruction
(Starck and Hilton, 2007). 3D mesh evaluation is performed
using Hausdorff distance defined as dH(A, B) � max{ supa∈Ad(a,
B), supb∈Bd(b,A)}, where d(a, B) and d(b,A) is the distance from a
point a to a set B and from a point b to a set A, which has been
shown to be a good measurement between 3D meshes. The
comparison contains training and validation data for all
sequences, Table 1. The appearance is evaluated using three
metrics that are commonly used to assess image quality: mean

TABLE 1 |Comparison of error metrics used for evaluation of 3Dmesh and 2D texture appearance. The values represent the average error across the all motion sequence for
different datasets.

Dataset Mesh Appearance

RMSE (m) STDDV MSE SSIM PSNR

Dan Casas et al. (2014) 0.0158 0.0156 0.0008 0.8417 30.7327
JP Starck and Hilton (2007) 0.0266 0.0257 0.0007 0.9610 31.1675
Martin Klaudiny and Hilton (2012) 0.0027 0.0015 0.0001 0.9813 38.6342
Roxanne Starck and Hilton (2007) 0.0166 0.0161 0.0002 0.9804 36.0430
Thomas Boukhayma and Boyer (2015) 0.0125 0.0122 0.0002 0.9889 35.9946

FIGURE 9 | Dan and Roxanne characters performing several animations, top-left: transition from jump to walk to reach; top-right: from walk to stand; bottom-left:
from jump short to jump long; bottom-right: from jump short to jump high sequence. Mesh colours indicate motion sequences and the generated transitions.
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squared distance (MSE); multi-scaled structural similarity (MS-
SSIM); peak signal to noise ratio (PSNR), Table 1 for results.

5.2 Qualitative Evaluation
We compare our network generated results to rendered images of the
original textured model and synthesised 4D volumetric content,
Figure 10 and supplementary material for more results. Our
network is able to capture dynamic shape detail and high
frequency appearance details such as wrinkles and hair movement,
Figure 10. The network is also capable of interpolating the existing
data to generate novel geometry and appearance within the learned
space. To test the interpolation performance of the network, the mesh
and appearance of two encoded frameswere selected and intermediate
frames synthesised. Figures 7,8 shows amore challenging example for
two randomly selected frames with large differences in shape and
appearance, note that the method is able to produce a natural
transition between frames.

The proposed generative network maps 3D skeletal pose to 4D
volumetric video sequences consisting of shape and appearance. To

evaluate this capability we use existing public skeletal motion capture
sequences (CMU Graphics Lab, 2001) to synthesise novel 4D
animations. To drive the generative network, we use the 3D
skeletal joint positions ps

t to obtain the encoded latent vectors zst ,
sampling from the learnt distribution P (p|z). Figure 9 shows three
characters driven using a novel motion capture sequence This
demonstrates the potential to generate novel plausible 4D shape
and appearance sequences from MoCap input for similar motions.

5.3 Appearance Synthesis Evaluation
In this section, we evaluate the performance of the progressive
appearance generator against the state-of-the-art method
proposed by Lombardi et al. (2018) for facial image synthesis.
The variant network architecture was chosen to allow for
appearance synthesis only, as we intend to evaluate the texture
synthesis quality, see supplementary for network illustration.
Therefore we have removed the mesh and view-point
conditioning from the original network architecture. We
trained this network on 2D textures from the Thomas

FIGURE 11 | Latent space interpolation, two frames with distinct 3D motion landmarks are selected, on the left surrounded with a green box is the source, on the
right surrounded with a red box is the target, in between is the interpolated results for shape and appearance.

FIGURE 10 | The images represent the same motion frame, the top images were rendered using the original geometry and texture appearance, and the bottom
images were rendered using the generative networks. The error image is an error histogram between the original and resulted images. It is visible from the reconstructed
that it preserves original details such as, reflection on the eye ball, clothing patterns and wrinkles.
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(Boukhayma and Boyer, 2015) and Martin (Klaudiny and Hilton,
2012 datasets, where the training took approximately 10 days for
104 training cycles, with a mini-batch size of 64. This network
minimises the MSE error and the KL-divergence simultaneously,
similar to the proposed approach.

Figure 11 illustrates qualitative evaluation for this experiment.
We have chosen one random sample from the training dataset to
evaluate the quality of the texture synthesis given a seen example.
Figure 11A presents heat-map images to compare the
synthesised result against the ground-truth for the proposed
and Lombardi networks. It is visible that the proposed
network outperforms the Lombardi et al., 2018 approach, this
is more visible on the close-up Figure 11B, where the details on
the t-shirt have been lost when using the Lombardi et al., 2018
network. The proposed network is capable of preserving the
printed image on the t-shirt along with wrinkles present in the

original image. The lack of detail and the presence of blurred
results from state-of-the-art Lombardi et al., 2018 network has led
to the network presented in Section 3.3. The proposed approach
is a more sophisticated network, capable of preserving fine details
and complex structures, and achieves faster training given limited
computational hardware.

5.4 Linear Blend Skinning Comparison
This section includes a comparison of the proposed
Pose2Shape network against linear blend skinning (LBS)
techniques demonstrating the benefits of using the proposed
network. LBS is a widely used approach in real-time character
animation for deforming a surface mesh according to an
underlying bone structure, where every bone contains a
transformation matrix that affects a group of vertices. This
relation is given by a weighting attribute that weights the

FIGURE 12 | The top row is a motion capture sequence which is used to synthesise the bottom rows. The bottom rows are 4D volumetric content of Roxanne. Dan
and Thomas datasets. It is visible that is able to generate 4D volumetric video from skeletal motion for different subjects.
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contribution of a bone transformation on a vertex. LBS is
computationally efficient and commonly used in animation
frameworks, allowing real-time character animation by
manipulation of surface geometry using a low-dimensional
skeletal structure. Although, it does not allow propagation of
non-linear surface deformation, and it can cause artefacts on
the mesh surface. To understand if the proposed Pose2Shape
model is capable of learning non-linear attributes from the
input data instead of only learning a linear mapping, we
compare the results against LBS. For this comparison, we
present two experiments; the first experiment evaluates the
interpolation performance against LBS. The second
experiment compares the synthesis of a mesh sequence
against using LBS to animate the same motion sequence,
please see supplementary material for second experiment.
To compare the meshes, we use the Hausdorff distance
metrics, discussed in Section 5.1.

Figure 12 illustrates the results for the first experiment
using the Thomas (Boukhayma and Boyer, 2015) dataset. The
top row represents the original sequence of walking motion,
the source and target frames surround by green and orange
boxes, respectively, represent the frames used for
interpolation. The middle row shows the results of
interpolating the latent vectors representative of the source
and target frames. Latent vectors were generated by encoding
the respective skeletons of the source and target frames. As a
consequence, we can synthesise intermediate poses following
Eq. (5). The bottom row shows the LBS results for source and
target frames. LBS is achieved using the animation capabilities
of the SDSR framework (Regateiro et al., 2018), which allows
mesh manipulation through skeletal animation. Therefore,
given the original skeletal motion frames, we map the
source frame onto the target frame whilst generating the
intermediate frames, as illustrated in the bottom row.

This experiments demonstrates the ability to generate a more
accurate reconstruction of the original mesh compared to LBS. To
support these figures, Table 1, shows quantitative evaluation for
all the datasets between LBS and the proposed results.

5.5 Compression
Table 2 demonstrates the proposed approach is capable of
compressing 4D volumetric video through a deep learnt
representation. The latent space representation achieves up
to two orders of magnitude reduction in the size of the
captured 4D volumetric video depending on sequence
length. The decoders have an approximate size 105MB with
the texture encoder size constant, 94MB, due to the fixed

texture image resolution and the mesh encoder dependent on
the mesh resolution, 10–18MB.

5.6 Performance
Presented results were generated using a desktop PC with an Intel
Core i7-6700K CPU, 64 GB of RAM and an Nvidia Geforce GTX
1080 GPU. Our training time is approximately 4 days on a single
GPU. The non-optimised animation framework performance
achieves ≈10 frames per second (fps) at full resolution. The
performance bottleneck is in the Pose2Appearance network
from Section 3.3 as a result of the high number of
convolutional layer and training parameters. The generative
networks from Section 3.2 is capable of achieving ≈35 frames
per second (fps). The characteristic of the Pose2Appearance
network allows for multi-scale texture resolution improving
rendering performance and memory usage, see supplementary
material for illustration. The generator is capable of
reconstructing multiple resolutions of the appearance,
increasing rendering performance and decreasing memory
usage, allowing the possibility to use on platforms with
memory constraints.

5.7 Limitations
Primary limitation is quality of the 4D volumetric video
sequences for training. The synthesis will reproduce artefacts
present in the input data such as shape error or appearance
misalignment. Currently this is limited by the publicly available 4D
video sequences but will improve as 4D volumetric video improves.
The current implementation is not optimised for texture rendering
due copy operations between CPU and GPU memory, with
optimisation this could achieve >30 fps for shape and appearance
synthesis. Motion capture data synthesis may create undesired
artefacts on the appearance and shape if the skeletal motion is
outside the space of observed 4D motions as this requires
extrapolation in the latent space. Currently the network is only
able to represent one character a time, an interesting extension for
future work would be to encode multiple characters in a single space,
or a single person wearing multiple types of clothing.

6 CONCLUSION

The proposed Deep4D representation enables interactive
animation through motion graphs to generate dynamic shape
and high-quality appearance. The 4D generative network
supports interpolation in the latent space to synthesise novel
intermediate motions allowing smooth transitions between

TABLE 2 | The table illustrates the total amount of disk space occupied in Megabytes (MB). The original column represents 3D mesh and 2D textures of the original dataset,
and the latent space and decoder columns represent the required memory to synthesise 3D meshes and 2D texture appearance.

Dataset Vertices Frames Original (MB) Latent space (MB) Decoder (MB)

Dan Casas et al. (2014) 2,667 1,447 768.2 2.6 104
JP Starck and Hilton (2007) 3,463 1788 1,272.7 4.7 106.8
Martin Klaudiny and Hilton (2012) 2,689 310 479.1 0.80 104
Roxanne Starck and Hilton (2007) 2,475 414 428.1 1.1 103.3
Thomas Boukhayma and Boyer (2015) 5,002 212 1,186.3 0.55 112.4
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captured sequences. The Pose2Appearance network synthesises
high resolution textures for the learnt motion space, whilst
preserving details of motion and realistic details. The proposed
network is capable of a compact representation of multiple 4D
volumetric video sequences achieving up-to two orders of
magnitude compression compared to the captured 4D volumetric
video. The generative network allows mapping of skeletal motion
capture data to generate novel 4D volumetric video sequences with
detailed dynamic shape and appearance. The approach achieves
efficient representation and real-time rendering of 4D volumetric
video in a motion graph for interactive animation. This overcomes
the limitations of previous approaches to animate 4D volumetric
video which require high storage and computational costs.
Generative network usually suffer from discontinuities in areas
where there is insufficient training data. This limitation is
overcome by enforcing transitions through the motion graph
which does not allow for extrapolation outside the space of
observed 4D volumetric video. The proposed method is able to
preserve shape details, motion and appearance as shown in the
evaluation. We demonstrated the integration of the proposed
generative network with traditional animation frameworks,
improving on interpolation between different motions, and
adding more information to the similarity metrics to improve
the quality of motion transitions. The animation framework is
independent of the network architecture, allowing for future
improvements in either of the frameworks. For instance, the
training performance of the neural network can be improved by
reducing the number of convolutional layers, which
consequently improves the run-time appearance rendering.
The animation framework can be extended to parameterised
motion, allowing increased interactivity and motion control.
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