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For an accurate estimation of land surface state variables through remote sensing

data assimilation, it is important to estimate the forecast and observation biases as

well. This study focuses on the evaluation of a methodology to estimate land surface

state variables, together with model forecast and observation biases. Two conceptual

rainfall-runoff models (HBV and GRKAL) are used for this purpose. Soil moisture data,

retrieved by the Soil Moisture Ocean Salinity (SMOS) mission, are assimilated into these

models for 59 unregulated sub-basins of the Murray-Darling basin in Australia. When

both models simulate similar soil moisture values, the methodology results in similar

forecast and observation bias estimates for both models. The same behavior is obtained

when the temporal evolution of the soil moisture simulations is different, but with a

similar long-term mean climatology. However, when the long-term mean climatology of

both models is different, but with a similar temporal evolution, the bias estimates from

both models have a different climatology as well, but with a high temporal correlation.

The overall conclusion from this paper is that observation bias estimation is of key

importance when updating internal state variables in a conceptual rainfall-runoff system

that is calibrated to produce realistic discharge output for possibly biased internal state

variables, and that the relative partitioning of bias into forecast and observation bias

remains a model-dependent challenge.

Keywords: ensemble Kalman filter, bias, hydrology, discharge, SMOS

1. INTRODUCTION

Soil moisture is a key variable in the hydrologic cycle, through its crucial role in the partitioning
of the available radiation into latent and sensible heat fluxes, and the partitioning of rainfall
into surface runoff and infiltration. Through these mechanisms, forecasted precipitation is highly
sensitive to the land surface wetness conditions (Betts et al., 1996). Given the importance of
soil moisture, the hydrological community has devoted significant efforts to the estimation of
the surface soil moisture state at large spatial scales, and has identified a number of microwave
missions that can be used for soil moisture estimation. Recent examples are the Sentinel-1 (Attema
et al., 2007), the Advanced Scatterometer (ASCAT) (Figa-Saldana et al., 2002), the Soil Moisture
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Ocean Salinity (SMOS) (Kerr et al., 2010), the Soil Moisture
Active Passive (SMAP) (Entekhabi et al., 2010), and the Global
Change Observation Mission (GCOM) (Imaoka et al., 2010)
missions. The major drawback of satellite soil moisture retrievals
is the relatively large interval between overpasses, which can
vary from a few days to multiple weeks (Li et al., 2016). The
large spatial scale makes the use of these products for watershed
management problematic. Furthermore, because of observation
noise and errors in the inversion algorithm, remotely sensed soil
moisture values will always be prone to a certain level of error. For
these reasons, it has been suggested that the best way to estimate
soil moisture values is the merging of satellite remote sensing
and hydrologic modeling (Kostov and Jackson, 1993), which is
commonly referred to as soil moisture data assimilation. Since the
pilot study of Entekhabi et al. (1994), a large number of studies
have put soil moisture data assimilation into practice.

Over the last few years, a number of studies have focused on
the assimilation of SMOS data into hydrologic models. These
studies can be classified into studies that focused on SMOS soil
moisture data assimilation with the objective to obtain improved
soil moisture values (Brocca et al., 2013; Dumedah and Walker,
2014b; Dumedah et al., 2014, 2015; Ridler et al., 2014; Zhao et al.,
2014; Xu et al., 2015; Blankenship et al., 2016), soil moisture
assimilation to improve discharge predictions (Wanders et al.,
2014; Alvarez-Garreton et al., 2015; Lievens et al., 2015b), crop
yields (Chakrabart et al., 2015), evapotranspiration estimates
(Martens et al., 2015), atmospheric CO2 simulations (Scholze
et al., 2016), and model parameters (Dumedah and Walker,
2014a; Han et al., 2014; Lee et al., 2014). Furthermore, other
studies have focused on brightness temperature assimilation
(De Lannoy and Reichle, 2016b), and a comparison of brightness
temperature to soil moisture assimilation (De Lannoy and
Reichle, 2016a; Lievens et al., 2016). One of the outstanding issues
with the assimilation of SMOS data into hydrologic models is
the partitioning of biases into forecast and observation biases
(Kornelsen et al., 2016).

The question of how to best deal with the bias between
model forecasts and satellite observations has received significant
attention. One practical approach consists of rescaling the
observations so their distribution matches the distribution of
the model state variables, a method commonly referred to
as Cumulative Distribution Function (CDF)-matching. This
was first introduced by Reichle and Koster (2004). A number
of problems have been found with this approach. First, as
demonstrated by Kumar et al. (2015), this approach could lead
to the exclusion of unmodeled processes in the analysis results.
Further, Pauwels and De Lannoy (2015) showed that CDF-
matching removes the bias between observations and forecasts,
but it does not correct the absolute value of the analyses or
forecasts. The logical consequence is that CDF-matching may
not be sufficient for coupled models, when the prediction of e.g.,
discharge depends on the absolute value of a model variable.
Finally, a historical time series is not always available at the
beginning of a new mission and data reprocessing or updates to
the retrieval algorithm requires an update to the CDF-matching.

A second approach consists of a separate estimation of
the model state variables and the forecast bias through the
assimilation algorithm, which was first suggested by Friedland

(1969). A number of studies have since then focused on separate
state and forecast bias estimation, either through the inclusion
of the forecast bias in the state vector (state augmentation)
(Drécourt et al., 2006; Kollat et al., 2011) or the use of a dual
filter (Dee and Da Silva, 1998; Dee and Todling, 2000; Dee, 2005;
De Lannoy et al., 2007). Both state augmentation and the dual
filter approach were compared by Drécourt et al. (2006), leading
to the conclusion that both approaches lead to better model
performance than when the bias is not taken into account. A
number of studies have also attempted to estimate observation
biases and the model state variables through the assimilation
algorithm (Derber and Wu, 1998; Auligné et al., 2007; Dee and
Uppsala, 2009; Montzka et al., 2013; Draper et al., 2015). Pauwels
et al. (2013) developed a framework to estimate both observation
and forecast biases, in addition to the model state variables, using
the ensemble Kalman filter.

The question of how to best deal with biases between the
model state variables and the observations for the assimilation of
SMOS retrieval data remains unanswered. Most studies focusing
on SMOS retrieval data assimilation removed bias through
rescaling of the observations. Lievens et al. (2015b) compared
a number of prior rescaling methods, and concluded that only
matching the first moment of the soil moisture led to the
strongest improvement in the modeled discharge. The objective
of this study is to assess the results of a dual bias and state
estimation algorithm for two different conceptual rainfall-runoff
models. The study focuses on one-dimensional soil moisture
data assimilation, using SMOS data from 2010 to 2016, across
all unregulated subcatchments of the Murray-Darling basin
in Australia.

2. STUDY SITE AND DATA DESCRIPTION

The study is performed on theMurray-Darling basin in Australia,
which is discussed in detail in Lievens et al. (2015a). Figure 1
shows the location of the test site and the modeled sub-
basins. The basin has a drainage area of ∼1 million km2, and
has been the subject of regular flooding over the last years.
It is one of the nation’s most important agricultural areas,
accounting for roughly 40% of Australia’s food production.
Generally the catchment receives low precipitation amounts, but
isolated heavy rainfall events do lead to significant flooding.
Rainfall amounts vary very strongly throughout the basin. For
example, in 2013 the Southern areas received ∼1,200 mm,
while the Western parts received <200 mm. This variability
in rainfall amounts, both spatially and temporally, combined
with the availability of data, make this basin both an ideal and
challenging test bed for this study. Daily streamflow records
have been collected for 169 gauge stations, which are mainly
located along the East boundary of the basin. The drainage area
for the available stations ranges between 50 and 52,000 km2,
with an average of 3,400 km2. Daily streamflow measurements
are available from 2009 to 2016 from the Water Data Online
project of the Bureau of Meteorology (http://www.bom.gov.
au/waterdata/). Rainfall and potential evapotranspiration were
available, with a spatial resolution of 0.05◦, from the Bureau
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FIGURE 1 | Location of the Murray-Darling basin in Australia. The thin lines indicate the SMOS grids. The modeled subcatchments are indicated in grayscale colors

and are located in the eastern part of the basin.

of Meteorology Australian Water Availability Project (AWAP,
http://www.bom.gov.au/jsp/awap/).

The SMOS SMUDP2 v620 retrieval data were mapped onto a
36 km EASEv2 grid and conservatively screened for the impact of
open water, radio frequency interference, retrieval accuracy, etc.,
as detailed in Koster et al. (2016). The bottom panel of Figure 1
shows the overlay of the SMOS grid on the study area.

For each subcatchment, spatially averaged soil moisture
observations and meteorological forcings were used in the study.
These were calculated by summing the SMOS observations (or
the AWAP data) for all SMOS (or AWAP) grids located inside
the subcatchment, and dividing by the number of grids inside
the subcatchment.

SMOS data from June 2010 to December 2016 were
used. The number of available SMOS observations varied
strongly between the studied catchments. In order to
draw reliable conclusions, only the catchments with
at least 100 soil moisture observations throughout the
simulation period were retained. Based on this criterion,
the results for 59 subcatchments of the Murray Darling basin
were analyzed.

3. MODEL DESCRIPTION

To study the relative effect of various biases in various rainfall-
runoff models, and to check the robustness of the assimilation
system, two models with a different representation of soil
moisture are used in this study.

3.1. The HBV Model
One model used in this study is the Hydrologiska Byråns
Vattenbalansavdelning (HBV) model, that was originally
developed by Linström et al. (1997), and is described in
detail in Pauwels et al. (2013). In its original formulation,
the model uses observed precipitation (Rtot) and potential
evapotranspiration (ETP) as input. The catchment is divided
into a soil reservoir (with storage S), a slow reservoir
(with storage S1), and a fast reservoir (with storage S2).
The state vector in the assimilation procedure consists of
these three variables, and for each of these variables the
forecast bias is calculated. Table 1 lists the model parameters
and their minimum and maximum value for the model
parameter estimation.

The modeled discharge is routed to the catchment outlet
using a triangular unit hydrograph. The amount of time steps
in the unit hydrograph is referred to as the base time, and the
value of the unit hydrograph increases linearly from zero at time
zero to the maximum at half the base time. After this, the unit
hydrograph decreases linearly from the maximum value at half
the base time to zero at the base time. The unit hydrograph value
at half the base time is calculated so that the integral of the unit
hydrograph is equal to one. The base time of the unit hydrograph
is a calibrated parameter as well.

3.2. The GRKAL Model
The second model is the Génie Rural Kalman model (GRKAL),
as described in Francois et al. (2003). This is based on
the daily conceptual model GR4 (Loumagne et al., 1996).
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TABLE 1 | Calibrated model parameters and their minimum and maximum values in the parameter estimation.

Parameter Explanation Units Minimum Maximum

HBV

λ Evapotranspiration parameter – 0.1 10

b Infiltration parameter – 1 20

α Surface runoff parameter – 0.01 5

P Percolation parameter ms−1 10−8 10−5

β Percolation parameter – 0.01 5

γ Surface runoff parameter – 0.1 5

S2,max Maximum storage fast reservoir m 0.01 10

κ2 Surface runoff parameter m3s−1 10−9 10−5

κ1 Baseflow parameter m2s−1 0 10−5

GRKAL

w1,max Maximum surface soil moisture – 0.4 0.5

w2,max Maximum root-zone soil moisture – 0.4 0.5

d Water exchange coefficient mm −100 100

b One day ahead routing store capacity mm 1 660

tp Time base of the unit Hydrograph – 1 240

hp2 Depth of root-zone layer mm 200 10,000

zprop Proportion of flow routed by fast routing – 0 1

aa Parameter for soil evaporation – 1 1,000

bb Parameter for soil evaporation – 1 1,000

w1,min Minimum surface soil moisture – 0 0.05

w2,min Minimum bulk soil moisture – 0 0.05

Wwilt Wilting point – 0 0.2

v Aridity coefficient – 0 100

peveg Proportion coefficient of vegetation transpiration – 0 1

for a fully vegetated area

prs Proportion coefficient of root in surface layer – 0 1

α1 Parameter for runoff ratio calculation – 0 100

α2 Parameter for runoff ratio calculation – 0 5

d1 Parameter for hydraulic flux between surface and root-zone layers – 0 1

d2 Parameter for hydraulic flux between surface and root-zone layers – 0 1

pdrain Proportion of root-zone water used for drainage – 0 1

The rainfall is partitioned into infiltration into the soil
column and a subterranean layer. The soil column consists
of a thin upper layer and a deeper lower layer. The state
vector in the assimilation algorithm consists of the water
content of this thin layer, the deeper lower layer, and the
subterranean layer. Again, for each of these storages the
forecast bias is calculated. The root fraction of these two
layers determines the partitioning of the evapotranspiration
between the layers. Diffusive exchange of water between the
two layers is modeled based on their water contents. A one-
parameter baseflow formulation is used. The baseflow is then
added to the subterranean layer. The overland flow is then
routed to the outlet through a triangular unit hydrograph,
and the baseflow is routed using a linear reservoir. The sum
of the routed baseflow and surface runoff is the catchment
discharge. For a detailed model description we refer to
Francois et al. (2003). Table 1 lists the model parameters
and their minimum and maximum value for the model
parameter estimation.

4. MODEL PARAMETER ESTIMATION

Prior to the assimilation of SMOS soil moisture retrievals, both
models are calibrated to ensure that bothmodels simulate similar,
realistic, levels of discharge.

4.1. The Parameter Estimation Algorithm
The parameter estimation algorithm used in this paper, Particle
Swarm Optimization, PSO (Kennedy and Eberhart, 1995),
is based on the complex, collective behavior of individuals
in decentralized, self-organizing systems. These systems are
created through a population of individuals that interact locally
with each other and with the community. These interactions
lead to global behavior, which can result in the achievement
of certain objectives. Examples of such systems in nature
are abundant: ant colonies, swarms of birds, and schools of
fish. For a complete description of the algorithm we refer
to Scheerlinck et al. (2009).
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4.2. Application
For each of the 59 modeled sub-basins of the Murray-Darling
basin, the model was applied from January 1, 2009, to December
31, 2016, using a daily time step. The Root Mean Square
Error (RMSE) between model simulations and observations of
discharge (Qo and Qs, respectively, in m3s−1) was calculated
as follows:

RMSE =
1

Nq

N
∑

i= 1

(

Qo(i)− Qs(i)
)2

(1)

Nq is the amount of discharge observations. The model
parameters listed in Table 1 were estimated, as well as the base
time of the unit hydrograph of the HBV model.

Two different calibration strategies have been applied. First,
the model was calibrated using discharge data from the entire
simulation period. The results of the SMOS data assimilation
algorithms will then be evaluated during the calibration
period. Second, the model was calibrated using the discharge
observations from 2009 to 2013. The data assimilation algorithms
will then be validated using data from the validation period
(2014–2016). In the second calibration strategy, SMOS data were
assimilated only during 2014–2016, while in the first SMOS
data from 2010 onwards were used. This strategy allowed an
understanding of the robustness of the methodology, by applying
the model to a time period that was used to estimate the model
parameters, and a second time period that was not used in the
model calibration. Unless noted otherwise, the remainder of the
paper will mainly refer to the results from the first strategy.

5. ASSIMILATION OF SMOS DATA

5.1. Short Description of the Assimilation
Algorithm
In this study, the dual observation/forecast bias and state variable
estimation algorithm described in Pauwels et al. (2013) was used.
This algorithm consists of an ensemble Kalman filter, estimating
the system state variables, and two discrete Kalman filters, one for
the observation and forecast biases, respectively. Figure 2 shows
an overview of the methodology. The biased system state vector
x̃k is propagated as follows:

x̃k = fk,k−1

(

x̃k−1, uk,wk

)

(2)

k is the time step, fk,k−1 the non-linear model propagating the
state from time step k − 1 to time step k, x̃k is the biased state
vector, uk the model forcings, and wk the model error. For the
remainder of the paper, variables indicated with a [̃.] indicate
biased variables, with biased a priori forecast error covariance P̃−.
The unbiased state vector xk is:

xk = x̃k − b
f

k
(3)

with unbiased a priori forecast error covariance P−. b
f

k
is the

forecast bias. The system is observed as follows:

ỹk = Hkxk + bok + vk (4)

Hk is the observation operator (assumed linear), ỹk is the vector
with the biased observations, and vk the observation noise. vk
is Gaussianly distributed with mean zero and variance Rk. The
unbiased observations are:

yk = ỹk − bok (5)

bo
k
is the observation bias. The forecast and observation biases are

propagated as follows:

{

b
f

k
= b

f

k−1
bo
k
= bo

k−1

(6)

with a priori forecast bias error covariance P
f−

k
and a priori

observation bias error covariance Po−
k

. b
f

k−1
consists of the

forecast bias estimate for the three model variables for both
models, while bo

k−1
consists of the estimate of the bias in the

observed soil moisture. Pauwels et al. (2013) describe in detail
the state and bias update equations. For these updates, the biased
and unbiased background error covariances, and the observation
and forecast bias error covariances are needed. The biased a
priori background error covariance P̃−

k
can be diagnosed from

ensemble forecast integration (Reichle et al., 2002), based upon
which the unbiased background error covariance P−

k
and the

forecast bias error covariance P
f−

k
can be calculated as:

{

P̃−
k

= γfP
−

k

P
f−

k
= (1− γf )P

−

k

(7)

The superscript − indicates a prior value, before the updating.
γf is a filter parameter, between zero and one, which determines
the amount of update to the state and the bias, and which can be
obtained through calibration. Note that the forecast bias errors
are thus assumed to be correlated in the same way as the forecast
state errors, allowing an estimation of the bias in unobserved
variables. The observation bias error covariance is calculated as:

Po−
k

= κoHkP̃
−

k
HT

k (8)

The matrix HkP̃
−

k
HT

k
is the error covariance of the observation

predictions, and can be calculated in a computationally efficient
way using the ensemble statistics, as described in Pauwels and
De Lannoy (2009). κo is a filter parameter and can be estimated
through calibration as well.

5.2. Terminology
For the remainder of the paper, the following consistent
terminology is used.

The term “biased observations” refers to SMOS soil moisture
retrievals, without bias removal. On the other hand, “unbiased
observations” refers to the SMOS soil moisture observations,
from which the estimated observation bias has been removed.
“Observation bias” is the bias in the SMOS soil moisture
observations, but it can also refer to the more general bias
between SMOS observations and observations predictions. In
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FIGURE 2 | Schematic of the methodology of the assimilation algorithm. N is

the ensemble size, and i indicates the ensemble member number.

other words, the observation bias includes both soil moisture
retrieval bias and representativeness bias.

For the model results, a similar terminology is used. “Biased
simulations” and “biased results” refer to the modeled soil
moisture (from either GRKAL or HBV), again without bias
removal. “Unbiased simulations” and “unbiased results” are the
soil moisture simulations, from which the estimated forecast bias
has been removed. “Forecast bias” means the bias in the modeled
(GRKAL or HBV) soil moisture.

“Baseline simulations” or “baseline results” refer to the model
simulations without SMOS retrieval assimilation. “Assimilation
run” refers to model simulations with the assimilation of SMOS
soil moisture data.

In the sections below, all evaluations are based on ensemble
mean forecasts and analyses.

5.3. Filter Application
The filter parameters, γf and κo, are calibrated through
examining the Gaussianity of the innovations. These parameters
are assumed constant throughout the entire simulation, and
are determined through minimizing an objective function.
More specifically, the normalized innovations for the bias and
state updates need to be Gaussianly distributed. When one
observation is assimilated, these requirements for the bias and
state innovations can be respectively written as:

yk − b̂o−
k

−Hk

(

ˆ̃xi−
k

− b̂
f−

k

)

i= 1,...,N
√

Hk

(

P̃−
k
+ P

f−

k

)

HT
k
+ Po−

k
+ Rk

∼ N(0, 1),

yk − b̂o+
k

−

(

Hk

(

ˆ̃xi−
k

))

i= 1,...,N
√

HkP̃
−

k
HT

k
+ Po+

k
+ Rk

∼ N(., 1)

(9)

[̂.] indicates an estimate of the state or bias vector, i is the
ensemble member number, N is the ensemble size, and the
overline refers to ensemble means. The superscript + indicates
a posterior value, after the updating, and the error covariance
matrices effectively collapse to scalar error variances.

Sections 3.1 and 3.2 describe the three state variables ˆ̃x.
Consequently, the state and forecast bias vectors consist of
three entries. Since the water content of the upper layer
in each model can be directly compared to the SMOS soil
moisture observations, and because only one observation is
assimilated at each assimilation time step (leading to observation
and observation bias vectors with one entry), the observation
operator can be written as:

Hk =





1
0
0



 (10)

An ensemble of 32 members was selected for the study, to

dynamically estimate P̃−
k

(and to derive P−
k
, P

f−

k
, and Po−

k
,

following Equations 7 and 8). Pauwels et al. (2013) and Pauwels
and De Lannoy (2015) have shown that this is a sufficiently
large ensemble for data assimilation studies with the HBVmodel.
A Gaussian random number with mean zero and standard
deviation of 10% of the parameter or forcing input value is added
to eachmodel parameter for the first model time step, and to each
forcing variable (precipitation and potential evapotranspiration)
at each time step. This is the same strategy as was applied in
Pauwels and De Lannoy (2015). A lower and upper bound was
set for all parameters and forcing variables, in order to avoid
physically unrealistic values. For the model parameters, these
bounds are the values in Table 1. For the precipitation, a lower
bound of 0 was used.
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6. RESULTS

6.1. Estimation of the Model Parameter
The left hand side panel of Figure 3 shows the distribution of the
Nash-Sutcliffe Efficiency (NSE) obtained using the optimalmodel
parameter set for the 59 sub-basins of the Murray-Darling basin,
for the model calibration over the entire simulation period. This
efficiency is calculated as:

NSE = 1−
MSE

σ 2
o

(11)

σ 2
0 is the variance of the observed discharge values. MSE is the

mean square error, which is the square of the value calculated in
Equation (1). The average NSE for all 59 catchments is roughly
similar for the two models.

Figure 4 shows the comparison of the modeled discharge to
the observations for the smallest modeled catchment in the basin
(401015, 781 km2), the catchment with the median drainage area
in the basin (410048, 1,406 km2), and the largest catchment in
the basin (422201E, 81,250 km2). The NSE values for these three
catchments are within one standard deviation of the average,
and can thus be considered as values typically obtained for the
59 catchments.

The right hand side panel of Figure 3 shows the distribution
of the Nash-Sutcliffe Efficiency (NSE), for the validation period
(2014–2016), when calibrating the model using data from 2009
to 2013. As can be expected, these NSE values are lower than the
results without a separate validation.

For a number of subcatchments a relatively low NSE has
been obtained. This can be explained by a number of issues.
First, there is the rainfall forcings, which will inevitably have
a relatively large uncertainty for this very large area with
a relatively coarse coverage of stations. The catchments are
also characterized by extreme changes between dry and wet
conditions and agricultural water management practices, which
are very difficult to model. Overall, the models perform relatively
well, but there are catchments where the performance is low.

The model performance can be assumed, for some
catchments, to be too weak for operational flood management
purposes. However, to assess the impact of soil moisture
assimilation on the bias and state variable estimates of the
models from a methodological point of view, these results can be
assumed to be sufficiently accurate.

6.2. Estimation of the Filter Parameters
The filter parameters γf and κo were estimated in order to fulfill
Equation (9). The objective function (OF) that was minimized for
each river basin individually is:

OF = (Ss − 1)2 +M2
b + (Sb − 1)2 (12)

Ss is the standard deviation of the normalized state update
innovations (bottom part of Equation 9), Mb the mean of the
normalized bias update innovations (top part of Equation 9),
and Sb the standard deviation of the normalized bias update
innovations (top part of Equation 9). For γf , relatively consistent
estimates were obtained across all basins, with an average and

standard deviation of 0.051 and 0.008, respectively, for the
HBV model. For the GRKAL model, the average and standard
deviation were 0.05 and 0.004. However, for κo, more variable
results were obtained. For the HBV model the average was 556.9
with a standard deviation of 421.5. For GRKAL the average and
standard deviation were 33.8 and 39.7, respectively. This can
be explained by the way the models simulate soil moisture. In
other words, the variable soil moisture for the HBV model does
not have the same physical meaning as for the GRKAL model.
However, the same observation is used for bothmodels, and it has
again a different physical meaning. It can thus expected that the
parameters used to estimate the observation bias will be different
for both models.

This further implies that the estimated forecast bias
uncertainty (∼0.95/0.05 P̃−

k
, Equation 7) tends to be relatively

much smaller than the observation uncertainty (up until ∼1,000
P̃−
k
, Equation 8), and both are larger than the a priori forecast

state error covariance. The larger spread in the observation bias
errors is a strong indicator that the observation bias will be the
most updated in the following results.

6.3. Analysis of the Filter Parameters
In order to analyze the impact of the filter parameters, a
sensitivity analysis was performed. Figure 5 shows, for both
hydrologic models, the results of a sensitivity analysis for the
filter parameters for one example river basin. Similar results
were obtained for all other sub-basins. More specifically, the
NSE is calculated between the observation biases obtained using
predefined filter parameters, and the observation biases obtained
by varying filter parameters, as follows:

NSE = 1−

Nb
∑

i= 1

(bv,i − bc,i)
2

Nb
∑

i= 1

(bc,i − bc)
2

(13)

Nb is the number of time steps with bias estimates (2,182), and
bv,i and bc,i are the bias estimates with variable and predefined
filter parameters, respectively. These predefined filter parameters
were assigned rather high values, more specifically 0.3 for γf , and
500 and 150 for κo for the HBV and GRKALmodels, respectively.
A strongly varying NSE with respect to the parameter values thus
indicates a high sensitivity of the filter results to the parameter
values. A similar analysis has also been performed for the forecast
bias. An examination of Figure 5 leads to the conclusion that
the biases are sensitive to the value of γf only for relatively low
values of κo. For higher values of κo the obtained biases are no
longer sensitive to the value of γf . Further, as can be expected,
the forecast bias is more sensitive to the value of γf than the
observation bias.

Figure 6 shows the statistics of the innovations for the first
selected sub-basin. Following Equation (9), the mean of the bias
innovations has to be equal to zero, and the standard deviation
of the state and bias innovations has to be equal to one. These
optimum values are obtained for high values of κo. Again, similar
results were obtained for the remaining sub-basins. The statistics
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FIGURE 3 | Distribution of the HBV and GRKAL Nash-Sutcliffe efficiencies over the 59 modeled sub-basins of the Murray-Darling basin. Left hand side panel: Results

for the calibration over the entire simulation period. Right hand side panel: Results for the separate validation period (2014-2016).

are sensitive to the value of γf only for small values of κo.
Furthermore, good innovation statistics are only obtained for
relatively large values of κo.

6.4. Assimilation of the SMOS Soil Moisture
Data
6.4.1. Analysis of the Bias Estimates for a Selected

Sub-Basin
Figure 7 compares the bias and the soil moisture estimates for
the second selected sub-basin for bothmodels. TheNash-Sutcliffe
Efficiency (NSE) values in the plots are calculated as follows:

NSE = 1−

Ns
∑

i=1

(Gi −Hi)
2

Ns
∑

i=1

(Hi −H)2

(14)

Ns is the number of time steps with soil moisture observations,
and Gi and Hi are the results for the GRKAL and HBV models,
respectively. The top and middle panel show the observation
and forecast bias estimates, respectively. From these plots it
can be seen that the observation bias estimates are an order
of magnitude larger than the estimates of the forecast bias.
Furthermore, there is a stronger agreement in absolute terms
between the observation bias estimates for both models than

between the forecast bias estimates, even though the correlations
are similar. This can be expected, as the observation bias depends
in the first place on the remotely sensed observations, and
secondly on the models. Representativeness error, meaning that
each model has a different definition of soil moisture, also
contributes to the observation bias. The forecast biases for the
two models are very different, as indicated by the very low NSE.
This can be explained by the different soil moisture dynamics
of the two models, which is demonstrated in the bottom panel
of Figure 7. Even though the models show very different soil
moisture estimates, the forecast bias estimates do not compensate
for this large difference and the bias-corrected forecasts are very
different and each approaching a different “truth.” This is because
each model is calibrated to produce the right discharge with
each a different soil moisture climatology. The conclusion that
can be drawn from Figure 7 is that the agreement between the
observation bias estimates for both models is relatively high
and dominated by retrieval bias, whereas the forecast bias and
modeled soil moisture estimates are strongly different.

6.4.2. Analysis of the Bias Estimates
For the analysis of the bias estimates, three different stations
were selected. Figure 8 shows the comparison of the observation
and forecast bias estimates and the upper layer soil moisture
for these three selected sub-basins. It should be clarified
that these soil moisture estimates were obtained from the
baseline run. A first station (403241A), shows very similar
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FIGURE 4 | Comparison of the modeled to the observed discharge for the three selected sub-basins of the Murray-Darling basin.

upper layer soil moisture estimates for the two models. A
second station, 405246A, shows a very different upper layer
soil moisture climatology for the two stations, but a relatively
similar temporal evolution. Finally, a third station (405269A),
shows the opposite behavior: a relatively similar upper layer
soil moisture climatology, but a strongly different temporal
evolution. For station 403241A, the soil moisture estimates
from both models are very similar. Consequently, for station

403241A the observation and forecast biases are very similar
as well. For station 405246A the mean bias estimates for both
models are very different, but with a relatively similar temporal
evolution, which is indicated by the value of 0.61 and 0.53
for the correlation between the observation and forecast bias
estimates, respectively, for both models. For station 405269A
again relatively similar observation and forecast bias estimates are
obtained for the two models, even though the temporal evolution
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FIGURE 5 | Left hand side panels: NSE between the observation bias obtained with γf 0.35 and κo 500 for the HBV model and κo 150 for the GRKAL model, and

variable values for these parameters, for the first selected station. Right hand side panels: same for the forecast bias. The top panels show the results for the GRKAL

model, the bottom panels for the HBV model.

of the soil moisture estimates is very different, but with relatively
similar climatologies.

These examples represent the three extreme cases for
all the modeled sub-catchments. Either the soil moisture
estimates are very similar, in which case the biases are also
similar. In case the soil moisture estimates are completely
different, two different behaviors of the biases can be
observed. When the average soil moisture for the two
models is similar, similar biases are obtained. When the

means are different, different bias values result, but still with
a relatively high agreement in the temporal evolution of
the bias.

These results provide support to a framework in which both
observation bias and model forecast bias are estimated, but
the joint identifiability of both biases remains a topic to be
further explored in more studies. Its feasibility can be expected
to be strongly dependent on the types and amounts of available
observed data.
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FIGURE 6 | Statistics of the innovations obtained with variable values for γf and κo. The horizontal dashed black line indicates the optimal value. The top four panels

show the bias innovation statistics, the bottom four panels the state innovation statistics. The left hand side panels show the means of the innovations, the right hand

side panels the standard deviations.

Figure 9 shows the distribution of the NSE values, correlation
coefficients, and mean average difference between the soil
moisture values, and the observation and forecast biases,
estimated by both models, for all modeled sub-basins. For the
soil moisture values, the correlation coefficients tend to be rather
high, with relatively low NSE values, indicating that the middle

panel of Figure 8 is the most representative for the modeled
basins. This is supported by an analysis of the observation biases,
which show relatively high correlation coefficients as well, with
a relatively low NSE. The forecast biases also show relatively
high correlation coefficients (albeit not as high as the observation
bias), with very low NSE values. This can be explained by the
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FIGURE 7 | Comparison of the estimated observation bias (top), forecast bias (middle), and upper layer soil moisture values (bottom) for the HBV and GRKAL models,

for the second selected sub-basin. M stands for mean.

middle panel of Figure 7, which shows a more variable forecast
error for GRKAL than for the HBV model. As the NSE is
calculated as one minus the RMSE divided by the variance, this
low standard deviation will lead to very low NSE values. The
conclusion from Figure 9 is that the soil moisture estimates
from both models, as well as the observation and forecast
biases, in general show a relatively high temporal correlation.

The observation bias estimates from both models are in better
agreement than the forecast bias estimates.

Figure 10 shows the same distributions and statistics,
but for the validation period for the applications with a
separate calibration and validation period. Essentially the same
conclusions can be drawn as for Figure 9, indicating the
robustness of the methodology.
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FIGURE 8 | Comparison of the observation for forecast biases and the upper layer soil moisture estimates for three selected sub-basins.

6.4.3. Impact on the Discharge Forecasts
The impact of the data assimilation on the discharge forecasts has
yielded mixed results. For the HBV model, the average NSE of
the baseline and assimilations runs was unaltered, regardless of
whether a separate calibration and validation period was used or
not. In the case of separate calibration and validation periods,
the data assimilation had a positive impact on the discharge
estimation for 31 stations, and a negative impact for 24 stations.
During the separate calibration period, a positive impact was
obtained for 35 stations, and a negative impact for 19 stations.

However, in both cases, the data assimilation only changed the
NSE by 0.05 or less on average.

A stronger impact was found for the GRKAL model. In the
case of no separate calibration and validation, the NSE between
the observed and simulated discharge reduced to −1.52, with a
reduction of more than 0.05 for 19 stations, and more than 0.5
for 8 stations. A positive and negative impact was obtained for
5 and 50 stations, respectively. In the separate validation period,
the NSE reduced to −6.60, with a positive and negative impact
for 8 and 47 stations, respectively. For 17 stations a reduction
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FIGURE 9 | Distribution of the biases (left hand side column), correlation coefficients (middle column), and NSE values (right hand side column) between the results

obtained by the HBV and GRKAL models, for all subcatchments. (Top) Modeled soil moisture. (Middle) Observation bias. (Bottom) Forecast bias. Results lower than

the lowest values in the plot are added to the lowest class, and results higher than the highest value are added to the highest class.

of more than 0.05 was obtained, with a reduction of more than
0.5 for 12 stations, respectively. Overall, the impact of the DA
is negative for the GRKAL model, with this average negative
impact being caused by a small number of strongly negatively
impacted stations.

This discrepancy can be explained by the calibration of the
models, which did not take into account the soil moisture
content, and only focussed on optimizing the discharge forecasts.

Furthermore, both models calculate the soil moisture contents in
strongly different ways. In other words, they define soil moisture
in different ways, not consistent with the definition of soil
water content by the SMOS satellite. Despite the bias estimation,
it is thus not surprising that the assimilation of external soil
moisture values did not improve the discharge forecasts. The
potentially negative impact of soil moisture assimilation on
discharge forecasts was also noted by Mao et al. (2019).
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FIGURE 10 | Same as Figure 9, but results for the validation period for the applications with a separate calibration and validation period.

7. DISCUSSION AND CONCLUSIONS

The objective of this paper was to evaluate a strategy to assimilate

SMOS data into conceptual hydrologic models. Both the state

variables and observation and forecast biases are estimated using

a dual state and observation/forecast bias estimating ensemble
Kalman filter. The GRKAL and HBV models were used for
this purpose. When the soil moisture estimates from both

models are in good agreement, the observation and forecast

bias estimates are in good agreement as well. When the soil
moisture estimates from both models are different, with a
different climatology but a relatively high temporal correlation,
the bias estimates still show a relatively high temporal correlation.
On the other hand, if the soil moisture estimates have a low
temporal correlation but a relatively similar climatology, the bias
estimates are again relatively similar. Further research can focus
on the assimilation of remote sensing data into physically-based
land surface models.
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