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Real-time monitoring of soil matric potential has now become a common practice for

precision irrigation management. Some crops, such as cranberries, are susceptible

to both water and anoxic stresses. Excessive variations in soil matric potential in

the root zone may reduce plant transpiration, due to either saturated or dry soil

conditions, thereby reducing productivity. A timely supply of the right amount of water is,

therefore, fundamental for efficient irrigation management. In this paper, we compare

the capabilities of a machine learning-based model and a physics-based model to

predict soil matric potential in the root zone. The machine learning model is a random

forest algorithm, while the physics-based model is a two-dimensional solver of Richards

equation (HYDRUS 2D). After training and calibration on a dataset collected in a cranberry

field located in Québec (Canada), the performance of the two models is evaluated for

30 different time frames of 72-h soil matric potential forecasts. The results highlight

that both models can accurately forecast the soil matric potential in the root zone. The

machine learning-based model can achieve better performance when compared to the

physics-based model, but forecasting accuracy decreases rapidly toward the end of the

72-h lead time, while the error for the Richards equation-based model does not increase

with time and remain small compared to the typical measurement error.

Keywords: machine learning, physics-based model, soil water dynamics, irrigation management, precision

agriculture, random forest

INTRODUCTION

Meeting future food demands for a rising global population while minimizing environmental
impacts remains a challenge, for which precision irrigation strategies will play a critical role
(Provenzano and Sinobas, 2014). Precision irrigation is based on real-time measurements of soil
moisture conditions and the capacity of models to predict the amount to be applied for irrigation
scheduling (Autovino et al., 2018). When applying water-saving irrigation strategies, one must
observe water stress indicators, such as soil water content, soil matric potential in the root zone,
leaf water potential, etc. These indicators may help to prevent water stress conditions and excessive
water use (Rallo et al., 2014). However, they do not inform growers on how much water is needed
to bring the plant root zone to optimal conditions. Besides, most of the time, when the plant water
stress can be observed, it is already too late to act (Rekika et al., 2014), especially in highly sensitive
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crops such as lettuce, tomatoes and cranberries (Lafond
et al., 2015; Pelletier et al., 2017). That is why soil-water-
plant-atmosphere models (SWPA) are often used to provide
information on the soil and plant water status (Minacapilli et al.,
2009; Cammalleri et al., 2013; Aguilera and Ruiz-Valenzuela,
2019). Several physically-based and process-based models, such
as HYDRUS (Autovino et al., 2018) and CATHY (Camporese
et al., 2015), are currently used to describe water processes
in the SWPA continuum. After appropriate calibration and
validation, these models can be used to support irrigation water
management, providing not only the timing of irrigation, but
also the amount of water needed, therefore helping to increase
productivity and reduce water use. For example, Bigah et al.
(2019) proposed a process-based model to predict the water
needs for different cranberry farm operations such as irrigation,
frost protection and harvest. Rekika et al. (2014) proposed
an analytical model to estimate soil critical matric potential
thresholds for irrigation management for various highly sensitive
crops (onions, celery, and baby spinach seed germination).

In the last few years, along with physics-based models, many
machine learning (ML) based models have been developed
and applied to water management. Artificial Neural Networks
(ANN) have been used to model the water table dynamics of
various agricultural systems (Dibike and Coulibaly, 2006; Yoon
et al., 2011). Li et al. (2016) have compared the capacity of
Random Forest (RF) and ANN models to predict lake water
levels. The results demonstrated that the RF model has superior
predictive capabilities with fewer parameters and training time.
Decision tree-based models have been successfully applied in
groundwater hydrological modeling (Singh et al., 2014; Wang
et al., 2018). Marques et al. (2005) used ML algorithms to
optimize water supply for crops at different growing stages,
given the water cost, the market price, cost of irrigation, crop
expenses, and expected yield reduction due to under- or over-
irrigation throuhout the entire growing period. The resulting
optimization models were incorporated into a decision support
system (DSS) for precision irrigation, but did not account for
field-specific characteristics. Literature also comments on models
for determining irrigation needs based on field-specific data.
For example, Hedley et al. (2013) used ML to predict soil
water status and water table depth based on soil resistivity
mapping. Smith and Peng (2009) used ML to classify soil
textural composition based on infrared measurements as an
input to a deficit irrigation control system. However, none of
these studies have compared the performance between physics-
based and ML-models for predicting soil water status using the
same dataset.

Given the increased popularity of ML approaches, the main
objective of this paper was to test the efficiency of a physics-based
model, HYDRUS-2D, and a ML-based model, a Random Forest
(RF) model, in predicting soil water status for a highly sensitive
and valuable crop. Using a dataset collected at an experimental
site in Québec (Canada), HYDRUS and RF were used, after
appropriate calibration and training, to predict the water status
in the root zone with up to a 72-h lead time, in the context of real-
time precision irrigation management. The comparison between
the two approaches was made from the perspective of a grower

or an irrigation manager, who typically only measures soil matric
potential at one location to manage irrigation in their crop-fields.

MATERIALS AND METHODS

Study Area and Hydrometeorological Data
Study Area
The study area was located on a cranberry farm, under a warm
and humid summer climate, near Québec City, Québec, Canada
(46◦14′N, 72◦02′W). The average rainfall in June and September
is 48.0mm and 70.6mm, while the average temperatures are 17.1
and 13.3◦C, respectively. The location of the farm is shown in
Figure 1, and the studied cranberry fieldis ∼18 ha (40-m wide
by 450-m long). This site is equipped with a subsurface drainage
system with four drainage pipes, equally spaced at 12m, at an
average depth of 0.9m below the soil surface. These subsurface
drains, which are designed to maintain a 0.6-m deep water table
throughout the field, discharge into a control chamber south
of the site. This setup is designed to ensure adequate moisture
conditions, ideally keeping the plant root zone between−6.5 and
−4 kPa. Three PVC pipes were inserted vertically at mid-spacing
between the subsurface drains, serving as observation wells for
water table measurements. The site was also equipped with a
rain gauge.

Cranberry Production
Cranberry (Vaccinium macrocarpon Ait.) is a high-value
perennial crop that has historically been grown on wetlands (peat
soils), but is also commonly cultivated on sandy anthropogenic
soils. The cranberries require about 60mm of water per month
during the growing season in Québec (Pelletier et al., 2015). The
water tablemust be controlled during the growing season because
too dry or too wet conditions can adversely affect cranberry
growth and root development (Périard et al., 2017). A water table
depth between 0.3 and 0.5m for sandy soils and around 0.6m for
peat soils canmeet cranberry water requirements by capillary rise
(Périard et al., 2017). A soil with high a hydraulic conductivity
is preferred to maintain optimal water conditions for cranberry
growth by water table control or irrigation (Gumiere et al.,
2017). As mentioned previously, for cranberry production in
Québec, the optimal range of soil water matric potential in
the root zone (i.e. 10-cm deep) is between −6.5 and −4.0
kPa (Caron et al., 2017). Thus, matric potential and hydraulic
conductivity represent the soil properties with the largest impact
on cranberry yields.

Hydrometeorological Data and Soil Matric Potential
Precipitation was measured every 15min using a rain gauge
(WatchDog 1120 Rain Gauge, Spectrum Technology, Inc., IL
US) combined with an ST-4 Hortau datalogger (Lévis, Québec,
www.hortau.ca). In summer, sprinkler irrigation was used for
cooling crops. Thus, the rain gauge also measured the amount
of irrigation. The total precipitation used in this study is the sum
of irrigation and rainfall.

Water table (WT) depth was continuously measured using
a submersible pressure transducer (TDH80, Transducersdirect
Inc., Ellington Court Cincinnati, Ohio, USA) and a datalogger
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FIGURE 1 | Site localization in Quebec (Canada) and location of the tensiometers (T1, T2, and T3 installed at 10 cm bellow the soil surface), the water table pressure

gage (N3) and the drains within the cranberry field.

(ST-4, Hortau Inc., Lévis, Québec, Canada). This sensor
automatically corrects data for atmospheric pressure. The
soil surface was the elevation datum for the pressure depth
measurements. Data were collected every 15min and sent
wirelessly to Hortau’s Irrolis (Irrolis 3 v.3.5.1, Hortau Inc., Lévis,
Québec, Canada) website. For the physics-based model, WT
values were only used to assign the boundary conditions at the
drain location.

Soil matric potential (SMP) was measured continuously
with commercial tensiometers (HXM-80, Hortau Inc., Lévis,
Québec, Canada) connected to the same ST-4 datalogger. The
tensiometers were located at three positions (T1, T2, T3 at
a depth of 10 cm), transversally to the subsurface drain, as
shown in Figure 1. Data were collected every 15min and
transferred to Hortau’s Irrolis (Irrolis 3 v.3.5.1, Hortau Inc., Lévis,
Québec, Canada) website. Missing SMP values were interpolated
from existing measurements using cubic splines (Moritz and
Bartz-Beielstein, 2017). Hourly SMP values used in this study
are the measured average of four 15-min measurements.
Figure 2 shows all the hydrometeorological, i.e., precipitation,
WT and SMP.

Machine Learning Model
Overview of the Random Forest (RF) Method
Random Forest (RF) is a supervised ML method with multiple
building blocks (decision trees) producing an ensemble of
predictive models (Rodriguez-Galiano et al., 2014). Amongst

supervised ML algorithms, RF has proven to be suitable for
either classification or regression, depending on the nature of the
targeted variable. For simulating soil matric potential in the root
zone, we only used regression trees (RT).

The regression algorithm is built around a set of hierarchically
structured restrictions, sequentially applied to a root node up to
terminal nodes of the decision tree (Breiman, 2001). To prevent
correlations between the different RTs, RF develops each tree
independently using different bootstrap samples extracted from
the learning dataset and a subset of randomly selected variables
out of the predictive variables (Breiman, 2001). Specifically, the
RF builds each tree by making them grow from two-thirds of
each bootstrap sample (in-bag). About one-third of the samples
are excluded from the bootstrap sample (out-of-bag) for a non-
biased estimation of the regression error. A prediction of the out-
of-bag (OOB) data is generated for each tree. These predictions
are subsequently averaged to obtain an estimation of the error
rate of the OOB. The generalization error of the RF model
depends on the weight of the individual trees and the correlations
between them (Qu et al., 2019). The building of a RT follows
a recursive binary partition approach starting at the root node
and divides the non-correlated variables into two new branches.
This recursive division is performed on the dependent variable as
a function of the most significant independent variable, leading
to the best ensemble of homogeneous populations. Each node
is then divided using the most homogeneous population among
the subsets of predictive variables selected randomly at the node.
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FIGURE 2 | Observed hydrometeorological data collected in the study area. From the top, we report rainfall, potential evapotranspiration, soil matric potential

measured at T1, T2, and T3 locations, and water table near the drain.

This division process continues until a predefined number of
observations at the terminal node (node size) is reached. The
result obtained using the RF is, in the case of a regression, an
average of the predictions from all decision trees.

The RF regression algorithm can be summarized into three
basic steps as follows (Breiman, 2001):

• Different bootstrap samples Wi (i = bootstrap iteration) are
randomly drawn from the original dataset W. Two-thirds of
the samples are included in a bootstrap sample and one-third
as the OOB samples. Each tree is constructed to correspond to
a particular subset of the bootstrap.

• At a node in each tree, a new split is randomly selected
from all indices, and the input variable with the lowest mean
squared error (MSE) is chosen as the splitting criterion of the
regression tree.

• The data splitting process at each internal node is repeated
according to the above steps until all randomized trees have
been grown, and a stop condition is achieved.

The final results of the regression are calculated as follows, where
N stands for the number of trees in the forest and Tn represents
a tree:

ŷ(Wi) =
1

N

N
∑

n=1

Tn(Wi) (1)

ML-Based Model Development

Input selection
The RF-model was implemented in R Development Core Team
(2010) using the package caret (Kuhn, 2020). Soil matric
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potential (SMP) at the root zone was predicted hourly from 1
to 72 h ahead. As input, we considered rainfall (P), potential
evapotranspiration (ET0) and SMP at the T1 position only
(Figure 1) in the root zone of previous time steps. The T1
position was chosen because most growers typically measure
soil matric potential in one location only, and the most
significant position in cranberry fields is indeed in the middle of
two drains.

The model was built with separate combinations of input
variables. Lag times of input variables were generated bymeans of
the sliding windowmethod (Brédy et al., 2020), which allowed us
to restructure the time series of P, ET0, and SMP as a supervised
learning problem by using a size of the lag (d) equal to 168 h.
This lag size was chosen to consider the influence of the SMP
values at position T1 over the previous 168-h time period on
the predictions. Therefore, we constructed the ML-based model
maps an input window of width d into an individual output value
y. The model predicts the SMP values at the T1 position (yi,t+j,
with j the time step forecast) using the window: (xi,t+j, xi,t+j−1,
. . . ,xi,t , . . . , xi,t−d+1, xi,t−d) for P and ET0 and (yi,t , . . . , yi,t−d+1,
yi,t−d) for the antecedent SMP value. Multi-step forecasts from 1

to 72-time steps were used for forecasting the SMP value in the
root zone.

Evapotranspiration (ET0) was estimated using the formula
proposed by Baier and Robertson (1965):

ET0day = −2.40+ 0.065Tmax + 0.083(Tmax − Tmin)+ 0.0044Ra

Where Ra is the extraterrestrial radiation (cal cm−2 d−1), ET0day

is the daily evapotranspiration (mm d−1) and Tmax and Tmin are
daily maximum and minimum emperatures (◦C).

The temperatures were measured using the Hortau’s weather
station, which includes the WatchDog 2900ET (Spectrum
Technology, Inc., IL USA). To obtain hourly ET (used as input),
the results from Baier and Robertson’s formula were multiplied
by a ratio of extraterrestrials radiations for hourly (Rh) and
daily (Rd) periods using the equation, ET0 = ET0day ·

Rh
Ra
. The

extraterrestrial radiation for the daily and hourly periods were
estimated using the equations of Allen et al. (1998), which for
each day of the year and for different latitudes, can be estimated
from the solar constant, Gsc = 4.92 MJm−2d−1.

FIGURE 3 | Simulation results of the physics-based model for the calibration run using the entire time series of soil matric potential measured at T1 location. Results

for T2 and T3 are shown for validation. RMSE values for T2 and T3 are 7.68 and 9.4 cm; NSE values for T2 and T3 are 0.66 and 0.21 and R2 values 0.72 and 0.94,

respectivelly.
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Because of computational time constraints, the number of
decision trees (ntree) was set to 200; as reported by Rodriguez-
Galiano et al. (2014) and (Brédy et al., 2020), the gain in accuracy
is negligible for ntree> 200.

Data splitting
The experimental dataset consisted of 2,000 hourly observations
for each variable (P, ET0, and SMP at T1 position) ranging
from July to September 2018. This dataset was split by
the holdout method, using the “CreateDataPartition” caret
package function Kuhn (2020) in two subsets: a training
subset, which contained 70% of data randomly selected for
each dataset and the remaining 30% that were used as test
subset. For each step-ahead prediction,this data division was
repeated 30 times using a uniform distribution. This allowed
the models to be trained and validated with a total of 30
different training and test subsets for each training pattern
(t + 1 to t + 72) and to estimate the variability of
their results.

Model calibration and validation
The calibration procedure aims to optimize a set of model
parameter values that enable the model to map the relationship
between the inputs and outputs of a given dataset (Wu et al.,
2014). For the RF method, two parameters (ntree and mtry) were
assigned using results and recommendations from the literature:
200 trees and 1/3 of the predictive variables (Liaw and Wiener,
2002), respectively. The model was trained to determine the
optimal parameter values that minimize the training error. The
test data were used to independently assess the generalization
ability of the trained model, an essential step to evaluate the
model quality and accuracy with data that were not used
in training.

Physics-Based Model
Richards Equation Numerical Solver
Assuming that the air phase does not affect the liquid flow
processes and that thermal gradients are negligible, the water
movement in partially saturated porous media can be described
by Richards equation (Richards, 1931):

FIGURE 4 | Comparison between simulated and observed SMP in time for 27 of the 30 initial windows of randomly chosen scenarios, gray full points represents

observed values and full black line the simulated values of SMP.
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Swss
∂ψ

∂ t
+ φ

∂Sw

∂ t
= ∇[KsKr∇ψ + ηz]+ qs, (2)

where Sw = θ/φ is water saturation, θ and φ being the volumetric
soil water content and porosity [/], respectively, Ss is the specific
storage coefficient [L−1], [L−1], ψ is the pressure head [L],
t is time [T], ∇ is the gradient operator, Ks is the saturated
hydraulic conductivity tensor [L/T], [L/T], Kr is the relative
hydraulic conductivity function [/], ηz = (0, 0, 1)1 is the vertical
direction vector, z is the vertical coordinate directed upward
[L], and qs represents a sink term [L3/L3T] [L3/L3T] accounting
for evapotranspiration.

The unsaturated hydraulic properties are taken into account
bymeans of the vanGenuchten functions Sw(ψ) andKr(ψ)Kr(ψ)
(Van Genuchten, 1980):

Sw = Swr +
1− Swr

[1+ (α|ψ |)n]m
(3)

Kr = (
Sw − Swr

1− Swr
)0.5

{

1− [1− (
Sw − Swr

1− Swr
)
1
m ]m

}2

(4)

where Swr = θr/φ is the residual water saturation, with θr the
residual water content, α is an empirical constant [L−1] related to
the inverse of the air entry suction, while the dimensionless shape

parameters n and m are linked by the expression m = 1 − 1/n.
These parameters are often referred to as the van-Genuchten
Mualem (VGM) parameters.

The sink term (qs) in Richards equation accounts for depth-
dependent root water uptake. The potential evapotranspiration
(ET0) is distributed across the root depth according to a root
distribution function. Actual evapotranspiration depends on soil
water content and, hence, on the soil matric potential in the
root zone. If the soil is dry, vegetation can experience water
stress, and transpiration would reduce to limit water losses;
in nearly saturated conditions, the low availability of oxygen
to roots might also cause a decrease in the transpiration rate.
We modeled the effect of low and high soil moisture on root
water uptake by multiplying the potential root water uptake by
a reduction function, αrw (Feddes et al., 1974). The reduction
function, commonly referred to as Feddes function, is zero at
pressure heads higher or equal to ψ1, close to saturation when
oxygen stress is inhibiting root water uptake. As ψ decreases,
αrw is assumed to increase linearly up to 1 at the anaerobiosis
point (ψ2). When pressure head falls below ψ3, associated
with incipient water stress, transpiration is assumed to decrease
linearly, reaching zero at the wilting point, ψ4. Between ψ2 and
ψ3 the soil is under well-watered conditions and roots can take
up water at their potential rate (i.e., αrw = 1).

Equation (1) is solved with the HYDRUS-2D (Šimunek et al.,
2003) using Galerkin-type linear finite element schemes.

FIGURE 5 | Scatter plot of observed vs. simulated SMP at the root zone for 27 of the 30 scenarios completed by the physics-based model using the calibration

dataset. The blue line represents the fitted linear model between simulated and observed values.
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Model Setup
A vertical cross-section of a half cranberry field is simulated. The
domain (Figure 1) is 1-m deep and 6-m wide with a subsurface
drain at one end and the middle of the field at the other end.

The computational domain represents mid-drain spacing. It is
discretized with a 2D finite element mesh of 4,000 nodes and
8,000 elements. No-flow boundary conditions are assumed on the
sides and bottom of the domain, while seepage face or Dirichlet

FIGURE 6 | Boxplot of soil hydraulic parameters for the 27 scenarios completed by the physics-based model, full circles in black indicate the initial parameters.

FIGURE 7 | Scatter plot of observed and simulated soil matric potential in the root zone for 27 of the 30 scenarios completed by the physics-based model using the

validation dataset (forecasting period). The blue line represents the fitted linear model between simulated and observed values.
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boundary conditions, according on whether the water table is
above or below the drain, respectively, are used to represent the
drain. At the surface, measured precipitation and estimated ET0

rates are imposed.
A hydrostatic profile corresponding to a water table of 0.5m

below the surface was used as initial condition for all the
simulation scenarios. In addition, a warm-up period of five days
was always applied before the start of each calibration; such a
period was found to be sufficient to dissipate the influence of the
arbitrary initial conditions.

The parameters of the Feddes model for cranberries are
known (Caron et al., 2017), with values for ψ1 , ψ2 , ψ3 , and ψ4

of −0.1, −0.45, −0.75, and −3.0m, respectively. The maximum
rooting depth is 0.15m and the root distribution is linear.
The VGM soil parameters (Ks , φ , θr , α , and n) were calibrated
according to the procedure described in the next section.

Model Calibration and Validation
The model was first calibrated using the entire data set of SMP
within the root zonemeasured in the T1 position (Figure 1). This
calibration was carried out to evaluate the possibility of obtaining
a well performing model. In order to verify the accuracy and
the physical validity of this simulation, we show in Figure 3 the
performance of the model for all the three tensiometers available,
although T2 and T3 were not used for calibration. To minimize
the RMSE (Equation 5) between observed and simulated
soil matric potentials, we used the Marquardt-Levenberg
parameter estimation technique implemented in HYDRUS
(Šimu̇nek and Hopmans, 2002).

The same optimization method was used to calibrate the
soil parameters in 30 different simulation scenarios, whereby
a time window of 408 h was used for calibration and the
subsequent 72 h for forecasting, in order to consistently compare

the forecasting capacity of the calibrated model with that of the
trained ML algorithm.

Model Performance Criteria
Three statistical evaluation criteria were used to evaluate both
models predictive power and efficiency:

(1) The root mean square error (RMSE):

RMSE =

√

∑n
i=1 (yi − ŷi)2

n
(5)

(2) The Nash-Sutcliffe efficiency (NSE):

NSE = 1−

∑n
i=1 (yi − ŷi)2

∑n
i=1 (yi − yi)

2
(6)

And (3) the coefficient of determination (R2):

R2 =





∑n
i=1 (ŷi − ȳ) (yi − ỹ)

√

∑n
i=1 (yi − ȳ)2 (yi − ỹ)2





2

(7)

where ỹ average simulated value, ŷi are the observed data, yi
the simulated data, yi the mean of observed values and N
the number of observations. For a model to yield a good fit
between simulated and observed data the RMSE should be close
to zero, while NSE and R2 close to one. In this study, RMSE
and NSE statistics are used to measure the model performance
for forecasting SMP fluctuation whereas R2 is used to analyze
the linear regression goodness of fit between observed and
simulated data.

FIGURE 8 | Temporal dynamics of the RMSE for the physics-based model.
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RESULTS

Physics-Based Model
Figure 3 shows the calibration results for tensiometer T1, ranging
from 0 to 2018 h, between July 2018 and September 2018. The
resulting RMSE, NSE and R2 values, obtained during training,
are 6.18 cm, 0.74, and 0.79, respectively. They suggest a very
good agreement between observed and simulated values of
SMP; giving confidence about the possibility of successfully
calibrating the model and the subsequent comparison with the
ML-based model.

Figure 4 shows the comparison between simulated and
observed SMP time series at the T1 location (root zone) for
27 of the 30 scenarios. Figure 5 presents a scatter plot of
simulated vs. observed SMP values at the same location for the
same scenarios. The temporal dynamics following calibration is
well represented by the physics-based model, showing average
performance criteria for RMSE, NSE and R2 of 6.46 cm, 0.72
and 0.82, respectively. Three simulations, out of the 30 scenarios,
did not converge due to numerical instabilities, corresponding to
10% of the runs. The reasons for such instabilities can probably
be found in a complex interplay of initial conditions (a 2-
days warm-up used for every simulation) and soil parameters
whose search space was limited and therefore did not allow for
a comprehensive representation of the whole parameter space.
Another possible explanation is that, due to the very short
calibration windows (i.e., 360 h) which did not represent the
total range of possible situations (i.e., from very dry to very wet
periods), the calibration would have needed a larger parameter
space to reasonably simulate the observed values.

Figure 6 shows box plots of the calibrated van Genuchten-
Mualem (VGM) parameters and saturated hydraulic
conductivity for the 27 scenarios that converged. The VGM
parameters were calibrated individually for each scenario
using the Marquardt-Levenberg type parameter optimization
algorithm for inverse modeling included in HYDRUS-2D. The
initial VGM parameters were measured in the field and were
fixed to the same value for each scenario (θr = 0.072, θs = 0.423,
α = 0.03 cm−1, n = 1.56,m = 1− 1/n, and Ksat = 19.62cm/h).
The resulting variability of the soil hydraulic properties (VGM)
is relatively large, with some runs having parameters equal
to the lower or upper bounds, an additional clue of a limited
search space that could have led to the three simulations not
converging. Once again, this variation may be due to the initial
small windows selected, making the soil hydric condition very
different from window to window, and causing a wide range
of soil parameters required for simulating the water dynamics.
Another possible explanation could be hysteresis, not accounted
for in the model, due to the fact that for some windows the
system is mainly draining while for others the water table is
mainly rising.

Figure 7 shows the scatter-plot of the relationship between
observed and simulated SMP values for the forecasting period for
all the 27 successful scenarios. Themodel performance is still very
good, with RMSE = 5.72 cm, NSE = 0.78, R2 = 0.82 indicating
an excellent agreement between simulated and observed values of
SMP in the forecasting period.

FIGURE 9 | Out-of-the-bag error as a function of the ntree RF parameter. The

barcolor represents the forcasting time.

Figure 8 shows the RMSE over time for the forecasting period
(from 1 to 72 h). The RMSE values remain limited within a range
of 3–8 cm, without apparent increasing or decreasing trend,
suggesting a random distribution of errors.

ML-Based Model
Figure 9 shows the out-of-the-bag (OOB) squared error over the
ntree parameter for the testing period. For ntree> 50 the error is
constant, showing no gain for ntree> 200.

Figure 10 shows the scatter plot between observed and
simulated SMP values for the 30 testing periods, i.e., 30% of the
408 h of data for each period. The performance metrics over all
simulation scenarios are RMSE = 8.49 cm, NSE = 0.55, and
R2 = 0.58, showing a drastic reduction of ML-model efficiency
for testing.

Figure 11 shows the RMSE as a function of forecasting time.
RMSE values vary from 2 to 8 cm, with a clear increasing trend
over time, confirming a strong reduction of the ML-based model
prediction capabilities as the forecasting time increases.

DISCUSSION

Both physics-based and ML-based models were used here to
predict SMP values in the root zone of a cranberry field. The
ML-based model shows a strong dependency on the forecasting
period. This dependence is somehow expected because the model
is based on an autoregressive relationship of the input variables.
The RMSE values increased quickly in the first 3 h and leveled off
from hours 20 to 60 in the forecasting period, before increasing
again. These results are consistent with the findings by Nayak
et al. (2006), who showed that the performance of ML-based
models (ANN, RF, Gradient Boosting) was better for shorter
lead times, but became worse as the prediction time increased.
Compared with ANN models, the tree-based ones do not stay
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FIGURE 10 | Scatter plot of simulated and observed soil matric potential in the root zone for the ML model in the forecasting period. The blue line represents the fitted

linear model between simulated and observed values.

FIGURE 11 | Temporal dynamics of the RMSE for the ML model.

in a local minimum which causes over-adjustment during the
training period (Maier et al., 2010). Also, decision-treemodels are
not affected by missing and correlated data and they have been
widely used in modeling natural phenomena.

For the physics-based model, the RMSE values appear to be
completely random, mostly oscillating between 4 and 7 cm, with

a single peak reaching 8 cm around 20 h of the forecasting period.
Interestingly, after 50 h in the forecasting period, the physics-
based model shows better performance than the ML-based
model. However, overall, bothmodels display good performances
in terms of RMSE and NSE values during the calibration and
validation (training and testing, for ML) steps, which indicates
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that both models can provide satisfactory forecasting SMP values
for irrigation management. Indeed, for cranberries, an error of
less than 10 cm in SMP prediction is acceptable for irrigation
management (Pelletier et al., 2017), considering a period of
reaction of 24 or less for the irrigation to be activated into the
concerned fields.

The physics-based model has the advantage of being able
to consistently represent the water dynamics over the entire
domain, not only where it was calibrated, as is the case for
the ML-based model for which no extrapolation is possible
beyond the range of observed values. On the other hand, physics-
based models need additional efforts to assign proper initial and
boundary conditions, as well as parameter heterogeneity, in order
to represent the soil water dynamics accurately. Also, physics-
basedmodels would likely need to be constantly calibrated as new
data are collected to maintain an effective prediction capability.
For this study, where the time windows were short, the range of
variability in the calibrated hydraulic parameters is quite large,
except for the soil hydraulic conductivity. Data assimilation could
represent a valid alternative strategy, as it would allow model
users to regularly update not only the system state, but also
the model parameters while keeping the advantages of physics-
based models.

CONCLUSIONS

In this paper, we presented a comparison between a physics-
based model and an ML-based model to predict the soil matric
potential in the root zone for real-time irrigation management
of a cranberry field. Both models were calibrated (trained)
and validated (tested) with the same dataset of SMP for 72 h
of forecasting scenarios. Both models presented acceptable
simulation errors in terms of RMSE, R2 and NSE values when
compared with observed values. From an operational point of
view, both models could be used for irrigation management and
scheduling. The ML-based model should be used with care for
long lead times, as it showed significant performance degradation
over time, whereas the error of the physics-based model was
mostly random throughout the forecasting period. The ML-
model has the advantage of being easy to implement, as it needs

a smaller computational effort for training, that is practically
negligible compared to the same step (calibration) of a physics-
based model. On the other hand, after proper calibration, the
physics-based model could be used to simulate water dynamics
everywhere within the domain for which it was calibrated,
since it is derived from physical laws of mass conservation
and hydrodynamics. Future developments should include the
comparison between both approaches and data assimilation
techniques, such as the Ensemble Kalman filter, implemented
within an operational context.
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