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The Cosmic-Ray Neutron Sensor (CRNS) technique for estimating landscape average

soil water content (SWC) is now a decade old and includes many practical methods

for implementing measurements, such as identification of detection area and depth and

determining crop biomass water equivalent. However, in order to maximize the societal

relevance of CRNS SWCdata, practical value-added products need to be developed that

can estimate both water flux (i.e., rainfall, deep percolation, evapotranspiration) and root

zone SWC changes. In particular, simple methods that can be used to estimate daily

values at landscape average scales are needed by decision makers and stakeholders

interested in utilizing this technique. Moreover, landscape average values are necessary

for better comparisons with remote sensing products. In this work we utilize three well-

established algorithms to enhance the usability of the CRNS data. The algorithms aim

to: (1) temporally smooth the neutron intensity and SWC time series, (2) estimate a daily

rainfall product using the Soil Moisture 2 Rain (SM2RAIN) algorithm, and (3) estimate

daily root zone SWC using an exponential filter algorithm. The algorithms are tested on

the CRNS site at the Hydrological Open Air Laboratory experiment in Petzenkirchen,

Austria over a 3 years period. Independent observations of rainfall and point SWC data

are used to calibrate the algorithms. With respect to the neutron filter, we found the

Savitzky-Golay (SG) had the best results in preserving the amplitude and timing of the

SWC response to rainfall as compared to the Moving Average (MA), which shifted the

SWC peak by 2–4 h. With respect to daily rainfall using the SM2RAIN algorithm, we

found the MA and SG filters had similar results for a range of temporal windows (3–

13 h) with cumulative errors of <9% against the observations. With respect to daily

root zone SWC, we found all filters behaved well (Kling-Gupta-Efficiency criteria > 0.9).

A methodological framework is presented that summarizes the different processes,

required data, algorithms, and products.
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INTRODUCTION

The Cosmic-Ray Neutron Sensor (CRNS) is an in situ technique
that is unique in its capability to estimate soil water content
(SWC) at scales from ∼1 to 10 ha using stationary and mobile
platforms (c.f. Zreda et al., 2008, 2012; Desilets et al., 2010; Franz
et al., 2015; Kohli et al., 2015; Andreasen et al., 2017). Several
studies have used CRNS data to support precision agriculture
(Finkenbiner et al., 2019), catchment hydrology (Fersch et al.,
2018), snow hydrology (Schattan et al., 2017), land surface
modeling (Rosolem et al., 2014; Baatz et al., 2017; Lawston
et al., 2017), validation of remote sensing products (Montzka
et al., 2017; Babaeian et al., 2018), and understanding vegetation
dynamics (Franz et al., 2013). In order to maximize the societal
and scientific relevance of SWC data (Vereecken et al., 2008),
practical value-added products need to be developed that can
estimate both water flux and root zone SWC changes. In
particular, simple methods that can be used to estimate daily
values at landscape average scales are needed by stakeholders
as well as for better comparisons with remote sensing products
(e.g., soil moisture products from Metop Advanced SCAT
Scatterometer (ASCAT), NASA’s Soil Moisture Active Passive
mission (SMAP), ESA’s Soil Moisture Ocean Salinity mission
(SMOS), and Sentinel-1, see McCabe et al. (2017) for details on
current and planned missions for measuring hydrologic fluxes
and state variables).

While remote sensing has made significant progress in recent
years (McCabe et al., 2017), significant gaps in spatial and
temporal resolution and latency of images makes practical
applications of retrieved hydrologic products challenging for
stakeholders. For example, microwave instruments like ASCAT,
SMOS, and SMAP offer a shallow (0 to ∼3 cm, Jackson et al.,
1997) SWC estimate at a snapshot in time and at a spatial
resolution of tens of kilometers every 1–3 days. Sentinel-
1 provides SWC estimates at a spatial resolution of 1 km
and temporal resolution of 1.5–4 days over Europe (Bauer-
Marschallingere et al., 2019). However, this is not available
globally and temporal resolution of Sentinel-1 is decreased
outside of Europe. Blending of different datasets can further
increase the spatial and temporal resolution (e.g., SMAP and
Sentinel for a 3 km product every 2–3 days). A critical and likely
remaining gap for agricultural stakeholders, is providing daily
field and subfield scale (0.1–10 ha) root zone SWC data (0 to
∼1m). With the inability of satellites to directly estimate root
zone SWC, indirect methods using a combination of satellites,
ground sensors, and models are needed to produce root zone
SWC data.

The CRNS technology offers part of the solution to fill
this critical measurement gap at the field scale given its
ability to measure landscape average SWC over hundreds of
meters horizontally and tens of centimeters vertically. Over
the past decade since its development CRNS theory and best
practices for equipment have greatly matured. Nonetheless,
practical implementation of using the CRNS data by stakeholders
requires further developing value-added products. In this
methodological study, we will apply and evaluate three well-
established algorithms used within the science community to

increase the practical use of CRNS data. The three algorithms
aim to: (1) temporally smooth the neutron intensity and SWC
time series, (2) estimate a daily rainfall product using the Soil
Moisture 2 Rain (SM2RAIN) algorithm (Brocca et al., 2014),
and (3) estimate daily root zone SWC using an exponential
filter algorithm (Wagner et al., 1999; Albergel et al., 2008).
The remainder of the manuscript is organized as follows. In
section Materials and methods the three algorithms will be
described in detail. In section Results the algorithms will be
tested on the CRNS site established in 2013 at the Hydrological
Open Air Laboratory (HOAL) in Petzenkirchen, Austria (Blöschl
et al., 2016) using independent observations of rainfall and
a network of in situ point SWC data. Finally, in section
Summary and Conclusions, we will present a summary and
future recommendations.

MATERIALS AND METHODS

In order to provide the reader a clear outline of the manuscript
Figure 1 provides a methodological framework. The framework
describes the various processes, data sources, algorithms, and
value-added products covered in this study.

Study Area
ACRNS (Model # CRS 1000/B, HydroInnova LLC, Albuquerque,
NM, USA) was installed at the study area in northeast Austria
(48.1547◦N, 15.1483◦E, elevation 277m, average slope of 8%)
on 11 December 2013 and has continuously operated since
(Franz et al., 2016). The study site, the Hydrological Open Air
Laboratory (HOAL) (Blöschl et al., 2016), which is a cooperation
project between the Federal Agency for Water Management
(BAW Petzenkirchen) and the Vienna University of Technology
(TU Wien), is located in Petzenkirchen, about 100 km west of
Vienna. HOAL receives an annual average 823mm of rainfall,
the average annual temperature is 9.5◦C, and the mean annual
evapotranspiration estimated by the water balance is 628 mm/yr
(1990–2014) (Blöschl et al., 2016). The research station is
located in an undulating agricultural landscape, characterized by
Cambisols (56%), Planosols (21%), Anthrosols (17%), Gleysols
(6%), and Histosols (<1%) (United Nations, 2007). Infiltration
capacities tend to be medium to low, water storage capacities
tend to be high, and shrinking cracks may occur in summer due
to high clay contents (Blöschl et al., 2016). The main crops are
winter wheat, barley, maize, and rape. The land use at the study
site consists of various parcel sizes making up a patchwork of
different crops. As previously summarized by Franz et al. (2016),
the location of the CRNS within the various land use parcels
makes landscape average measurements of SWC challenging
(Franz et al., 2016). Full details of the study site, available datasets,
overarching research questions, and specific hypotheses can be
found in Blöschl et al. (2016).

A network of Time-Domain Transmissivity (TDT) sensors
(SPADE, Julich, Germany) were installed in the second half of
2013 and available for a portion of 2014. The TDT sensors
record hourly SWC at a point and were installed at 31
sites distributed around the study area (Blöschl et al., 2016;
Franz et al., 2016). At each site four TDT sensors were
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FIGURE 1 | Methodological framework describing the different processes, required data, algorithms, and products using CRNS data from Petzenkirchen, Austria.

installed horizontally at four depths (5, 10, 20, and 50 cm).
Depending on routine agricultural operations and location
of the stations, 11 TDT stations were removed at various
times throughout the year. In this study we only use the
sensors which are located within the footprint of the CRNS.
Figures 2A–D illustrates the individual TDT site time series
and the large degree of spatial variation in space and time
at the site. In order to compare the TDT data against the
CRNS neutron data, the spatial average of each sensor depth
is illustrated in Figure 2E (ignoring sensor locations with
time gaps). The daily rainfall onsite is shown in Figure 2F.
Lastly, weighted sums over the profile from 0–30 to 0–60 cm
are computed based on sensor insertion depth. In order to
compute the profile weighted averages first the arithmetic mean
from all locations was computed by depth. Next a weight
was assigned between the midpoint for each successive TDT
sensor depth, that is a weight of 7.5 for the 5 cm sensor, 7.5
for the 10 cm probe, and 15 for the 20 cm sensor for the 0–
30 cm profile average. The same process was repeated using
the 50 cm sensor for the 0–60 cm profile average. The profile
sums are used in this study as calibration for the exponential
filter algorithm.

Temporal Filtering of CRNS Data
The CRNS technique works by counting low-energy neutrons
(∼0.5–1000 eV) from a moderated detector over a certain time

interval (typically 1 h for stationary sensors) (see Zreda et al.,
2008, 2012; Desilets et al., 2010; Andreasen et al., 2017 for
details). The uncertainty of CRNS neutron count rates follows
Poisson statistics (Knoll, 2000; Zreda et al., 2012), where the
standard deviation is equal to the square root of the total
counts. For example, 1,000 counts per hour (cph) would have
an uncertainty of 31.6 cph or 3.16%. Because of the inherent
counting statistics, plots of hourly neutron counts and SWC
appear noisy with random fluctuations around a mean value. In
order to produce a smoothed SWC time series, a temporal filter
is applied to the corrected neutron data. Following the standard
set of corrections for time-varying barometric pressure, high-
energy incoming neutron intensity, and atmospheric water vapor
(Zreda et al., 2012; Rosolem et al., 2013), a time series filter can be
applied. Here we compared the 1 h corrected neutron counts vs. a
Moving Average (MA) filter with different temporal windows (3–
24 h) and vs. a Savitzky-Golay (SG) filter with different ordered
polynomials (1st−3rd order) and temporal windows (3–25 h)
(see Savitzky and Golay, 1964; Orfanidis, 1996 for full details).
In general, the 1 h neutron count data had large fluctuations
for this site, the MA filter is simple and widely used but the
smoothed data distorted the location of the neutron trough after
a rainfall event, thus affecting the timing and magnitude of the
SWC peak. The SG filter was evaluated here because it is known
for better balancing the degree of smoothing while minimizing
the distortion of the sharp decreases/increases in the data, which
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FIGURE 2 | Time series of TDT probes organized by depth (A–D) and by site location illustrating the wide range of SWC encountered. All TDT sensors were installed

in the second half of 2013 but removed over time on different dates due to the various soil cultivation and harvest times of each of the land use parcels. See Figure 2a

in Franz et al. (2016) for spatial locations. (E) Time series of landscape average SWC by TDT depth and profile weighted averages of 0–30 and 0–60 cm. (F) Time

series of daily rainfall data.

is useful in preserving the amplitude and timing of neutron count
decreases following a rain event. In this work we will quantify
how the different neutron filter methods translate into hourly
SWC, daily rainfall with the SM2RAIN algorithm and root zone
SWC using the exponential filter.

Estimation of Landscape Average Rainfall
Using SM2RAIN Algorithm
Given the challenge of estimating landscape average rainfall
from ground based observations and top down approaches
using satellites, additional sources of rainfall data are
greatly needed (McCabe et al., 2017). One recently proposed
approach is the Soil Moisture 2 Rain (SM2RAIN) algorithm
(http://hydrology.irpi.cnr.it/research/sm2rain/ and Brocca

et al., 2014; Chiaravalloti et al., 2018). SM2RAIN assumes
that the soil acts like a bucket and that measurements of
SWC can be inverted to estimate rainfall from a bottom
up approach (Brocca et al., 2014). Following the bucket
analogy the following equations can be used to describe the
mass balance:

Z∗
ds (t)

dt
= p (t) − r (t) − e (t) − g (t) (1)

where Z∗ is the soil water capacity equal to soil depth times
porosity, s (t) is relative soil moisture (=SWC/porosity) as
function of time t, p (t) is precipitation, r (t) is surface runoff,
e (t) is evaporation, and g (t) = as (t)b is deep drainage and a
and b are calibration coefficients. During rainfall, surface runoff
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and evapotranspiration are assumed to be negligible at the daily
timescale. This assumption will be discussed more in section
Limitations of Study. Thus, precipitation can be estimated as:

p (t) = Z∗
ds (t)

dt
+ as (t)b (2)

thereby leaving three parameters to calibrate
(

Z∗, a, b
)

using of
observations of SWC and rainfall.

Given the wide array of SWC products at different scales
the SM2RAIN algorithm has been applied and validated across
time and space. By using the European Space Agency Climate
Change Initiative (ESA CCI) soil moisture product, Ciabatta
et al. (2018) developed a global scale SM2RAIN-CCI rainfall
product that has been compared with five different global rainfall
products showing good correlation at 1◦ spatial resolution
and 5 day accumulated totals against gridded rain gauge-
based rainfall observations (assumed to be the actual true
rainfall). Spatial correlations range from 0.3 to 0.8 across
a wide portion of the global land surface. At finer spatial
(12.5 km) and temporal (1-day) resolutions, the SM2RAIN
algorithm has been recently applied to the EUMETSAT Satellite
Application Facility on Support to Operational Hydrology and
Water Management (HSAF) soil moisture product (Brocca
et al., 2019) showing better performance than a state-of-the-art
satellite rainfall product (i.e., Global Precipitation Measurement,
GPM) over Africa and South America. From a study in Italy,
Chiaravalloti et al. (2018) compared in-situ rain gauges vs.
satellite remote sensing products obtaining a correlation of
around 0.7 for 24-h periods. Brocca et al. (2015) applied the
SM2RAIN algorithm to in situ soil moisture observations across
Europe, but the algorithm has been never applied to CRNS.
Therefore, the potential of the method to obtain landscape
average rainfall estimates at field scale is tested here for the
first time.

Estimation of Root Zone Soil Water
Content Using an Exponential Filter
A common problem with remotely sensed SWC data is that
only the near surface (∼0–3 cm) is directly observed using
microwave wavelengths (Jackson et al., 1997). In order for these
satellite products to be useful, SWC storage must be extrapolated
across a plant root zone. This extrapolation can be accomplished
in a number of ways using simple linear interpolation to a
full data assimilation approach using a physically based water
and energy balance model. However, given the computational
demands, lack of boundary conditions, initial conditions, and
model parameters this approach can be challenging. A fairly
simple method to do root zone SWC extrapolation uses the
idea of an exponential filter to solve for the time delay between
surface soil response and deeper soils (Wagner et al., 1999). The
exponential filter has been used with great success for remote
sensing products, in-situ point scale networks (Paulik et al.,
2014; Wang et al., 2017), and recently CRNS (Peterson et al.,
2016).

In this study, we utilized the continuous CRNS SWC data,
and assumed a depth of ∼0-20 cm based on expected effective

depth of the site (see Franz et al., 2012a; Kohli et al., 2015
for details on effective depth calculation). In addition, by using
the seasonal TDT data from 2014 at Petzenkirchen we can
parameterize the exponential filter approach, thus being able
to produce an operational root zone storage product from the
CRNS data henceforth. The exponential filter model considers
the water balance model of a two-layer soil profile. Layer 1 has
historically been set to the depth of the remote sensing product
(0–3 cm) but 0–20 cm will be used here for CRNS applications.
Layer 2 has been set to a root zone depth around∼1m depending
on vegetation type and local soil depths. The exponential filter
approach is flexible allowing the user to specify a desired depth,
given the stated assumptions about the method remain valid.
Here, we will assume layer 1 is the surface layer (provided by
the continuous CRNS SWC data ∼0–20 cm, denoted by SWC1),
and layer 2 is the lower soil layer of interest (here an integrated
root zone storage estimate constrained by the depth of the TDT
sensors in order to calibrate the exponential filter approach). For
demonstration purposes here a layer 2 depth of 0–30 and 0–60 cm
will be provided in the following examples. Having two different
root zone depths may be important to relate the available SWC
with different growth stages of crop over the growing season.
SWC of layer 2 (denoted by SWC2) is described as:

L
dSWC2

dt
= C (SWC1 − SWC2) (3)

where t is time, L is the depth of layer 2, and C is an
area-representative pseudo-diffusivity constant. This approach
assumes that plant transpiration and drainage losses from the
lower layer are negligible, and that hydraulic diffusivity between
the soil layers is constant (Wagner et al., 1999). These limitations
will be further discussed in section Limitations of Study. Equation
(3) can be solved using a recursive formulation following
(Albergel et al., 2008):

SWI2(t) = SWI2(t−1) ∗ (1− Kt) + SWI1(t) ∗ Kt (4)

where SWI2(t) and SWI1(t) are the SoilWater Index (SWI) of layer
2 and layer 1, respectively, t is a time index, andKt is the gain. Soil
water index is the SWC scaled between 0 and 1 using assumed

minimum and maximum values, SWI=
(

SWC−SWCmin
SWCmax−SWCmin

)

. For

layer 1, the SWC is bounded by the minimum and maximum of
the hourly CRNS observations. We note that the lower bound
is dependent on the length of CRNS record and drier periods
may be experienced in future drought periods. For layer 2,
previous work has bounded SWC by the wilting point as the
minimum value, and the mid-point between field capacity and
porosity as the maximum value. Soil data or calibration of the
model is thus required. The gain Kt ranges from 0 to 1 and is
calculated as:

Kt =
Kt−1

Kt−1 + exp (−1t/T)
(5)

where Kt−1is the gain of the previous time step, 1t is the time
step (here 1 day), and T is a characteristic time length (equal
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to L/C from Equation 3). The filter is initialized by setting
Kt = 1 and SWI2(1) = SWI1(1). The characteristic time length
(T) is dependent on a variety of factors, including thickness
of layer 2, topographic complexity (Paulik et al., 2014), and
soil properties that may influence water movement (flux) rates
(Albergel et al., 2008) thus requiring local calibration. Here we
followed the same methodology as Peterson et al. (2016), which
calibrated three parameters, T and the layer 2 minimum and
maximum SWC (T, SWC2min, SWC2max). In order to perform
the calibration we used the in-situ TDT data and a Monte Carlo
approach varying the three parameters over their expected range
(SWC2min from 0.01 to 0.25 every 0.005 cm3/cm3, SWC2max

from 0.36 to 0.75 every 0.005 cm3/cm3, and T from 10 to
70 every 2 days). The three optimal model parameters were
selected based on the objective function of maximizing the
Kling-Gupta-Efficiency (KGE) criteria (Gupta et al., 2009), where
a perfect fit would be KGE equal to 1. KGE has been shown
to be a superior metric in hydrologic model calibration (Gupta
et al., 2009) as it is based on weighting the correlation, the mean,
and standard deviation between the observed and predicted
time series.

RESULTS

Temporal Filtering of CRNS Data
Table 1 provides a comparison of the 24 different neutron filters
propagated through the SM2RAIN algorithm for estimating daily
rainfall. Using the cumulative sum percent error and KGE we
selected the best MA (8 h) and SG (3rd order, 13 h) filters. These
two filters and the 1 h data will be used for visual purposes for
the remainder of analyses. Figure 3A illustrates the 1 h corrected
neutron counts (black dots), the MA 8 h (blue dots and line) and
SG 3rd order, 13 h filtered neutrons counts (red dots and line) for
the Petzenkirchen site from 2013 to mid 2014 corresponding to
the available TDT data. Following the neutron count filtering, the
standard calibration function of Desilets et al. (2010) was applied
to all datasets and SWC can be estimated, Figure 3B (see Franz
et al., 2016 for on-site parameters and Supplemental Data).
Figure 3C illustrates the daily liquid observed rainfall time series.
Note, we also apply a porosity upper bound (=0.6 cm3/cm3

based on the sites soil bulk density, see Franz et al., 2016) to the
SWC data. Neutron counts that result in SWC above porosity
are due to the presence of liquid or solid water on the surface.

TABLE 1 | Summary of daily rainfall error analysis using different filtering techniques on moderated neutron counts and propagating calculated SWC data through

SM2RAIN algorithm.

Neutron filter method SM2RAIN

estimated rainfall

(mm)

Rainfall difference,

SM2RAIN-observed

(mm)

% Error R-value RMSE

(mm/day)

Bias

(mm/day)

KGE Z* A b

1 h raw data 3104.7 876.7 39.4 0.598 4.20 0.79 0.481 20.00 3.81 49.92

MA 3h 2225.2 −2.8 0.1 0.694 3.57 0.00 0.559 31.43 5.37 29.71

MA 6h 2239.5 11.5 0.5 0.738 3.34 0.01 0.623 56.98 6.97 50.00

MA 8 h* 2144.2 −83.8 3.8 0.743 3.32 −0.08 0.615 69.65 3.32 46.85

MA 10h 2090.0 −138.0 6.2 0.721 3.44 −0.12 0.609 81.58 0.00 50.00

MA 12h 2051.8 −176.2 7.9 0.736 3.36 −0.16 0.629 91.43 0.00 50.00

MA 24h 1919.5 −308.5 13.8 0.753 3.27 −0.28 0.641 139.02 0.00 50.00

SG 1st order, 3 h 2062.9 −165.2 7.4 0.686 3.62 −0.15 0.518 30.28 8.54 47.32

SG 2nd order, 3 h 3104.7 876.7 39.4 0.598 4.20 0.79 0.410 20.00 3.81 49.93

SG 1st order, 7 h 2140.4 −87.6 3.9 0.731 3.38 −0.08 0.601 63.28 7.94 49.97

SG 2nd order, 7 h 2162.8 −65.2 2.9 0.701 3.54 −0.06 0.555 32.35 4.97 49.70

SG 3rd order, 7 h 2162.8 −65.2 2.9 0.701 3.54 −0.06 0.555 32.35 4.97 49.70

SG 1st order, 9 h 2148.5 −79.5 3.6 0.728 3.40 −0.07 0.619 77.32 1.04 46.90

SG 2nd order, 9 h 2023.8 −204.2 9.2 0.713 3.49 −0.18 0.536 39.60 4.24 49.93

SG 3rd order, 9 h 2064.1 −163.9 7.4 0.711 3.50 −0.15 0.547 40.23 4.27 49.93

SG 1st order, 11 h 2094.8 −133.2 6.0 0.719 3.45 −0.12 0.606 86.95 2.85 49.96

SG 2nd order, 11 h 2116.2 −111.8 5.0 0.704 3.52 −0.10 0.577 46.68 3.40 10.36

SG 3rd order, 11 h 2116.2 −111.8 5.0 0.704 3.52 −0.10 0.577 46.68 3.40 10.36

SG 1st order, 13 h 2051.8 −176.2 7.9 0.710 3.50 −0.16 0.593 97.39 0.41 49.98

SG 2nd order, 13 h 2193.9 −34.1 1.5 0.733 3.37 −0.03 0.631 53.17 2.20 5.62

SG 3rd order, 13 h* 2193.7 −34.3 1.5 0.733 3.37 −0.03 0.631 53.17 2.20 5.62

SG 1st order, 25 h 1895.8 −332.3 14.9 0.693 3.60 −0.30 0.583 139.97 0.07 50.00

SG 2nd order, 25 h 1965.4 −262.6 11.8 0.702 3.54 −0.24 0.579 97.91 0.00 49.99

SG 3rd order, 25 h 1965.4 −262.6 11.8 0.702 3.54 −0.24 0.579 97.91 0.00 49.99

MA stands for moving average and SG for Savitzky-Golay.

Record Period 12/13/2013 to 12/31/2016, 2228.0mm of observed rainfall.
*Denotes selected method for each filtering technique.
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FIGURE 3 | Time series of (A) hourly corrected neutron counts (black dots), MA (blue dots with line) and SG filtered neutrons (red dots with line), (B) hourly SWC using

the Desilets et al. (2010) equation and (C) daily rainfall observed study site for the same time period as TDT observations.

Given the closeness of the SG and MA time series, Figure 4
provides a zoomed in view between May and June 2014. From
Figures 3A, 4A the connection between rainfall events and sharp
decrease in neutron count rates is evident. Also note that for
periods between rainfall events a steady increase in neutron
counts is observed as more water is being transported to the
atmosphere and soil via evapotranspiration (soil evaporation and
plant transpiration). From Figures 3, 4 it is evident that both the
MA and SG filter time series follow the central tendency of the
black dot data cloud. However, Figure 4B illustrates that the MA
filter changes the SWC peak by 2–4 h and slightly decreases the
amplitude compared to the SG filter. The change in amplitude
and timing of the SWC peak will affect surface runoff generation
and connections to the watershed discharge (Dingman, 2002).
Here our study only focused on the connection of CRNS data
to daily rainfall and root zone SWC but future work should also
investigate the connections to surface runoff and discharge.

Estimation of Landscape Average Rainfall
Using SM2RAIN Algorithm
Table 1 summarizes the 24 different neutron filters using
the SM2RAIN algorithm and rain gauge observations at
Petzenkirchen. The rainfall observations are used to select
the three free parameters

(

Z∗, a, b
)

in Equation (2) by
minimizing the root mean square error (RMSE) between
observed and estimated daily rainfall. The 1 h data results in a
poor comparison with the observed data as the cumulative
sum is 39.4% larger than the observations (3104.7 vs.
2,228mm over the 3 year period, 2013–2016). The MA
filter with a temporal window of 3–12 h resulted in small
cumulative error (<8%). The SG filter with 1st−3rd order
polynomials and temporal windows of 7–13 h also had small
cumulative error (<9%). The other statistical metrics (Pearson
correlation (R), KGE, Bias) were also comparable for these
neutron filters.
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FIGURE 4 | Zoomed in times series of Figure 3 better illustrating the 2–4 h shift in the timing of rainfall using the MA filter the Petzenkirchen. (A) Hourly corrected

neutron counts (black dots), MA (blue dots with line) and SG filtered neutrons (red dots with line), (B) hourly SWC using the Desilets et al. (2010) equation and (C) daily

rainfall observed study site for the same time period.

Comparing the three parameters with Brocca et al. (2015)
we find different values. This is expected as the CRNS depth
and remote sensing depths are different (∼20 vs. 3 cm). At the
daily level, a R-value of 0.74 and 0.73 is found for the study
site for the optimal MA and SG filters, which is comparable
with the results obtained with satellite soil moisture products
(e.g., Chiaravalloti et al., 2018; Brocca et al., 2019). Figure 5
illustrates the daily cumulative sum of the three selected filters
vs. the observed rainfall, again showing excellent agreement
for the SG and MA filters. There are a few periods early in
the record that show small deviations. If compared with the
results obtained with classical in situ measurements shown
in Brocca et al. (2015), in which the range of R-values is

between 0.75 and 0.95, the performance with CRNS SWC are
in the lower range but with the significant added-value to
provide landscape average rainfall estimates. Table 2 includes
summary statistics for rainfall accumulations of 1, 3, and 5 days.
For increasing integration time the statistical metrics improve
to levels reported by Brocca et al. (2015) and Chiaravalloti
et al. (2018). With respect to error the World Meteorological
Organization (De Valle et al., 2007 and https://www.wmo-sat.
info/oscar/variables/view/1) reports rain gage error around 1
and 2–4 mm/day for satellite estimates, however each method
has different spatial resolution and coverage. The CRNS derived
rainfall provides a missing and critical gap at the 1–10
ha scale.

Frontiers in Water | www.frontiersin.org 8 April 2020 | Volume 2 | Article 9

https://www.wmo-sat.info/oscar/variables/view/1
https://www.wmo-sat.info/oscar/variables/view/1


Franz et al. CRNS: From Measurement to Applications

FIGURE 5 | Cumulative sums of observed rainfall and SM2RAIN estimates using three neutron filters. See Table 1 for full summary.

TABLE 2 | Summary of SM2RAIN algorithm statistical performance at Petzenkirchen for different integration periods.

Neutron filter method integration period

(days)

R RMSE

(mm/day)

KGE SM2RAIN estimated rainfall

(mm)

Rainfall difference,

SM2RAIN-observed (mm)

% Error

1 h raw data 1 0.598 4.20 0.41 3104.74 876.74 39.4

MA8h 1 0.743 3.32 0.62 2144.23 −83.77 3.8

SG 3rd order, 13 h 1 0.733 3.37 0.63 2193.72 −34.28 1.5

1 h raw data 3 0.635 2.72 0.45 3085.45 857.44 38.5

MA 8h 3 0.788 2.00 0.68 2299.48 71.48 3.2

SG 3rd order, 13 h 3 0.788 1.99 0.68 2238.16 10.15 0.5

1 h raw data 5 0.652 2.15 0.48 3062.31 834.31 37.4

MA 8h 5 0.791 1.55 0.69 2274.14 46.14 2.1

SG 3rd order, 13 h 5 0.753 1.67 0.65 2158.14 −69.86 3.1

MA stands for moving average and SG for Savitzky-Golay.

Estimation of Root Zone Soil Water
Content Using an Exponential Filter
Figure 2E illustrates the time series of landscape average TDT
sensors by depth that were available at the HOAL from 2013
to 2014. Due to various land management operations the
sensors were removed from different land uses at different
times. In order to calibrate the exponential filter model to
a root zone product a profile SWC was estimated from a
weighted average of TDT sensors within those 0–30 and 0–
60 cm profiles. Using the CRNS SWC data as layer 1 and
the SWC profile 0–30 and 0–60 cm data as layer 2, the three
free parameters for the exponential filter model (Equations
3, 4) were estimated using a Monte Carlo approach. The
objective function was maximizing KGE between the observed
and modeled SWC time series. Table 3 provides the summary
results illustrating that all three methods had large KGE values
of >0.9. Estimates of SWC2max and T were very similar for

all methods. SWC1min was lower for the 1 h neutron data
due to the higher random fluctuations. As expected T was
larger for the 0–60 cm layer. Following calibration Figures 6A,B

illustrate the comparison of SWC between the exponential filter
fit and the TDT landscape averages for both depths. With

respect to estimating the critical parameter T, Paulik et al.

(2014) used the International Soil Moisture Network (Dorigo

et al., 2013) data to compare T vs. different environmental

covariates. Paulik et al. (2014) found depth and topographic

complexity were most correlated to T. In contrast, Wang et al.
(2017) used the Nebraska Mesonet sites (same sensor type)
and found that T was strongly correlated to depth and soil
texture (percent sand and clay). We note that a relatively new
commercial product exists that uses the exponential filter with
a combination of passive microwave sensors to produce an
operational daily 100m SWC product at 10, 20, and 40 cm
(https://www.vandersat.com/soil-moisture-monitoring).
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Using the CNRS SWC data and the exponential model
fits in Table 3 an operational daily SWC product for 0–
30 and 0–60 cm can be produced. Figure 7 illustrates the
CRNS SWC, 0–30 cm SWC, and 0–60 cm SWC products.

TABLE 3 | Summary of calibration fit and three parameter estimates for the 0–30

and 0–60 cm exponential filter models for different neutron filters.

Calibration of CRNS vs. TDT

Neutron filter method Depth

(cm)

KGE SWC2min

(cm3/cm3)

SWC2max

(cm3/cm3)

T (days)

Daily SWC, 1 h data 30 0.911 0.01 0.675 50

Daily SWC, MA 8h 30 0.909 0.045 0.68 48

Daily SWC, SG 3rd

order, 13 h

30 0.908 0.035 0.68 50

Daily SWC, 1 h data 60 0.914 0.125 0.585 64

Daily SWC, MA 8h 60 0.913 0.15 0.59 62

Daily SWC, SG 3rd

order, 13 h

60 0.912 0.145 0.59 64

MA stands for moving average and SG for Savitzky-Golay.

By tracking changes in SWC over these depths in real-
time stakeholders will be able to make more informed
decisions about irrigation, fertilization rates, and other
management operations.

Limitations of Study
The key limitation of this work is that only a single CRNS
site was used, mainly due to the challenge of having a high-
density in-situ SWC network to calibrate the algorithms. Several
other studies have such networks (e.g., Franz et al., 2012a,b;
Bogena et al., 2013; Lv et al., 2014) and would be good
candidates to validate and extend this work. Another limitation
of this work is that the optimal filter window for the MA
and SG methods is dependent on the total counts, which
are related to the site location (i.e., geomagnetic latitude),
elevation, and detector size/type. We anticipate the optimal
window size will decrease with increased total counts. This is
important for use of the MA filter, particularly in minimizing
any shifts in timing or amplitude of the SWC peak following
a rain event. Accurate depiction of the SWC peak is critical
for understanding the connection between CRNS data and

FIGURE 6 | Comparison of SWC for the CRNS (neutron filter SG 3rd order, 13 h), fitted exponential model, and observed landscape average TDT data for the (A)

0–30 cm and (B) 0–60 cm products.
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FIGURE 7 | Time series of SWC for CRNS, 0–30 cm exponential filter product, and 0–60 cm exponential filter product for the 3 years period.

surface runoff and discharge. This topic was beyond the
scope of the current study but deserves more attention in
the future.

With respect to the SM2RAIN algorithm, the CRNS data

performed comparable to rain gage and satellite products for
the MA and SG neutron filters. The 1 h data lead to a 39.4%
overestimation of rainfall due to the random fluctuations in

the neutron counts. The key assumption for the SM2RAIN
method is that no surface runoff is generated during rainfall,
which may be violated for certain sites. In addition, selection
of the three parameters did vary with choice of neutron
filter algorithm. Current versions of the SM2RAIN algorithm

do include a self-calibration procedure. We did find that
adding the criteria of cumulative sum percent error against

the observed rainfall was helpful in selecting appropriate
window sizes for evaluating the filters and conserving water
mass balance.

With respect to daily root zone SWC, all three neutron

filtering techniques worked well, albeit the 1 h data had
a different SWC2min parameter. The main challenge of the
exponential filter approach is selection of the T parameter

for novel sites where in-situ data may be unavailable. Paulik
et al. (2014) found using the ISMN SWC data that depth
and topographic complexity were most correlated to T,

whereas Wang et al. (2017) found T was highly correlated
to depth and soil texture for the Nebraska Mesonet site

data. What is clear is that caution should be used when
applying the exponential filter approach for sites with shallow

water tables, large topographic relief, and dense vegetation.
Given these limitations, the method’s simplicity and widespread
operational use in remote sensing and commercial products
make it a viable candidate for extending the use of CRNS
SWC data.

SUMMARY AND CONCLUSIONS

This methodological paper provides the background, equations,
and example calculations from the Petzenkirchen CRNS study
site using three well-established algorithms summarized in
the methodological framework in Figure 1 and available for
general use (see Data Availability Statement). The algorithms
make the essential step of enhancing the CRNS SWC data
for providing stakeholders with the value-added products of
a smoothed SWC time series, landscape average rainfall, and
root zone SWC data in order to make decisions. While
the provided examples are written in the computer program
MATLAB R2018b mostly used by engineers and academics,
next steps require the data and value-added products and
code be made available on web-based data portals, code
sharing environments and smartphone applications for use by
stakeholders. Therefore, this paper serves as a critical but only
a first step toward adoption of CRNS data toward practical
applications. Future work with CRNS and available in situ SWC
data should further validate these approaches and their use in
complex environments.
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