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Cosmic ray neutron (CRN) sensing allows for non-invasive soil moisture measurements

at the field scale and relies on the inverse correlation between aboveground measured

epithermal neutron intensity (1 eV−100 keV) and environmental water content. The

measurement uncertainty follows Poisson statistics and thus increases with decreasing

neutron intensity, which corresponds to increasing soil moisture. In order to reduce

measurement uncertainty, the neutron count rate is usually aggregated over 12 or 24 h

time windows for stationary CRN probes. To obtain accurate soil moisture estimates

with mobile CRN rover applications, the aggregation of neutron measurements is also

necessary and should consider soil wetness and driving speed. To date, the optimization

of spatial aggregation of mobile CRN observations in order to balance measurement

accuracy and spatial resolution of soil moisture patterns has not been investigated in

detail. In this work, we present and apply an easy-to-use method based on Gaussian

error propagation theory for uncertainty quantification of soil moisture measurements

obtained with CRN sensing. We used a 3rd order Taylor expansion for estimating the

soil moisture uncertainty from uncertainty in neutron counts and compared the results

to a Monte Carlo approach with excellent agreement. Furthermore, we applied our

method with selected aggregation times to investigate how CRN rover survey design

affects soil moisture estimation uncertainty. We anticipate that the new approach can be

used to improve the strategic planning and evaluation of CRN rover surveys based on

uncertainty requirements.

Keywords: cosmic ray neutron sensing, error propagation, aggregation, cosmic ray rover, uncertainty

INTRODUCTION

Soil moisture is an essential variable of the terrestrial system as it governs the transfer of both
water and energy between the land surface and the atmosphere (Vereecken et al., 2015). Accurate
information on soil moisture dynamics is vital for a better understanding of processes in the vadose
zone, because it controls major subsurface processes, such as ground water recharge, runoff, and
infiltration. Furthermore, soil moisture dynamics are important for the optimization of agricultural
management because they determine crop growth, leaching processes, and the fate of fertilizers
applied to soils. Soil moisture is highly variable in both space and time, with typical length and time
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scales ranging from a few centimeters to several kilometers
and from minutes to years, respectively (Robinson et al., 2008;
Vereecken et al., 2008).

Recent advances in non-invasive monitoring techniques
enable continuous and contactless measurements of soil moisture
dynamics at the field scale (Bogena et al., 2015). Among other
methods, the cosmic ray neutron sensing (CRNS) method has
become increasingly popular for soil moisture estimation since its
introduction by Zreda et al. (2008). The CRNS method relies on
the inverse relationship between soil moisture and the amount of
aboveground epithermal neutrons (energy range from∼0.2 eV to
100 keV) (Köhli et al., 2018). The measurement footprint ranges
from 130 to 240m radius around the neutron detector with
a penetration depth ranging between 15 and 80 cm depending
on soil moisture and other parameters (Köhli et al., 2015).
Typically, stationary CRNS probes are used to obtain continuous
information on field scale soil moisture dynamics (Zreda et al.,
2012; Andreasen et al., 2017; Schrön et al., 2018a). More recently,
mobile applications of CRNS probes (i.e., CRN roving) have
been introduced, which enable to measure spatial soil moisture
variability at the larger catchment scale (Chrisman and Zreda,
2013; Dong et al., 2014; Franz et al., 2015; Avery et al., 2016;
McJannet et al., 2017; Schrön et al., 2018b).

Measurement uncertainty is an important quantity that
should accompany every geophysical data set. The systematic
uncertainty has been analyzed by Baroni et al. (2018), who
quantified the influence of environmental factors, such as
vegetation or soil properties, on the CRNS product. The
present study investigates the statistical uncertainty of CRNS soil
moisture estimates, which depends on the detector configuration,
i.e., the number of counts in a given period of time. This
count rate, however, is inversely related to soil moisture, such
that dryer soil leads to more precise measurements (cf. Desilets
et al., 2010; Bogena et al., 2013). In CRN rover applications,
this translates to the number of detected neutrons in a specific
spatial unit that is passed during the record period of the
detector. Hence, the traveling speed determines the spatial
resolution and is an important factor for the quantification of
measurement uncertainty.

Various neutron detectors exist of different size and efficiency.
Typically, a larger detector volume improves the counting
statistics, and thus reduces the uncertainty of the soil moisture
product. The record period of most mobile neutron detectors
is between 10 s and 1min, while typical driving speeds range
from 2 to 10 km/h on agricultural fields (Schrön et al., 2018b;
Fentanes et al., 2019) to ∼50 km/h for large-scale surveys (e.g.,
Chrisman and Zreda, 2013; Dong et al., 2014; McJannet et al.,
2017; Dong and Ochsner, 2018). In most studies, additional
spatial smoothing was applied to the CRN rover measurements
by using a temporal moving window filter in order to reduce
the uncertainty in the soil moisture estimates (e.g., Schrön et al.,
2018b: window size of 3 measurements; Chrisman and Zreda,
2013: window size of 7 measurements). However, long record
periods as well as large averaging window sizes lead to elongated
measurement footprints in the direction of data acquisition and
thus to a decrease in spatial resolution (Chrisman and Zreda,
2013; Fersch et al., 2018; Schrön et al., 2018b). For instance,

aggregated neutron counts for 1, 3, 5, and 7min time periods
acquired with an average driving speed of 50 km/h correspond
to elongated footprints where the longer axis is 0.8, 2.5, 4.2, and
5.8 km long, respectively. More advanced approaches for data
aggregation have also been proposed. Some studies assigned the
average of all raw neutron measurements within a fixed radius to
a grid (e.g. Dong and Ochsner, 2018; Gibson and Franz, 2018;
Finkenbiner et al., 2019). In a further processing step, inverse
distance weighting was used to further sharpen the image and to
increase resolution (Gibson and Franz, 2018; Finkenbiner et al.,
2019).

Bogena et al. (2013) and Schrön et al. (2018a) have already
analyzed the dependence of the accuracy of CRN-based soil
moisture measurements on the time integration for a stationary
CRNS probe. In principle, this method can also be applied to
mobile CRN rovers by taking spatial aggregation into account.
Nevertheless, the effects of the spatial aggregation of neutron
counts on the soil moisture measurement accuracy have not
yet been investigated in detail. A comprehensive method to
determine uncertainty in soil moisture from uncertainty in
neutron counts would allow for the discrimination of statistical
effects from the effects of environmental water. In earlier CRN
rover studies, such undetermined features could not be assessed
in full detail (e.g., Dong et al., 2014; Franz et al., 2015; Dong and
Ochsner, 2018; Schrön et al., 2018b).

In this study, we aim to analyze how temporal and spatial
aggregation of neutron counts affects the accuracy of soil
moisture measurements with CRNS technology with a focus on
mobile CRN roving. To this end, analytical expressions for error
propagation are introduced that allow to assess the accuracy
of soil moisture estimates from uncertain neutron count rates.
The appropriateness of the analytical expressions is evaluated
usingMonte Carlo simulations. The applicability of the analytical
expressions is tested using experimental data from three different
CRN rover campaigns with different spatial scales in Germany
and in Oklahoma (USA).

MATERIALS AND METHODS

Jülich CRN Rover
The Jülich CRN rover consists of an array of nine neutron
detector units (Hydroinnova LLC, Albuquerque, NM, USA) each
holding four 10BF

3-filled tubes, which amounts to a total number
of 36 neutron detector tubes located in 9 detector housings.
The housing of the detector tubes was designed such that the
moderating High Density Polyethylene (HDPE) can be removed
on demand. This allows to convert the neutron detector tubes
from epithermal (with HDPE) to thermal neutron sensitive
(without HDPE) and back. During the presented measurement
campaigns, the Jülich CRN rover was configured to measure
epithermal neutrons with five detector units. Three of these
units were mounted in vertical orientation, while the other
two units were oriented horizontally (Figure 1). The remaining
four detector units measured thermal neutrons during the
experiments to calculate the thermal-to-epithermal neutron ratio
(Nr). The Nr ratio has already been successfully used in previous
studies to estimate surface biomass and to correct the influence
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FIGURE 1 | Jülich Cosmic rover in the field at the TERENO research site Fendt

(a). Setup of the nine detector units inside the car (b). Example of one

detector unit consisting of four detector tubes—here shown without the

moderating HDPE (c).

of surface biomass on soil moisture from cosmic ray neutrons
(Tian et al., 2016; Jakobi et al., 2018). The driving speed during
the presentedmeasurement campaigns with the Jülich CRN rover
was 4–5 km/h, and the time interval of the raw neutron count
measurements was 10 s.

Experimental Sites
Fendt Site (Germany, Experiment A)
The long-term research site Fendt (47◦50’N, 11◦3.6’E) belongs to
the Pre-Alpine observatory (Wolf et al., 2016; Kiese et al., 2018)
of the TERENO (TERrestrial ENvironmental Observatories)
network (Zacharias et al., 2011; Bogena et al., 2012). The Fendt
site is located at the south-eastern tip of the Rott catchment (55
km2) at about 595m a.s.l. The soils are dominated by Cambrian
stagnosols and land use consists mainly of pasture and forest. The
Fendt site has a temperate marine climate with an average annual
rainfall of 1,033mm and temperature of 8.6◦C (Fu et al., 2017).
For more detailed information on site characteristics, we refer to
Kiese et al. (2018).

The CRN rover measurements on the Fendt research site
were carried out as part of a joint field campaign of the
CosmicSense project (for more information please visit the

project webpage: https://www.uni-potsdam.de/en/cosmicsense.
html). We drove back and forth along a ∼350m long grass
road for 4 h at the lowest possible speed of 4–5 km/h on 14
April 2019. For reference, shallow soil moisture (0–7 cm depth)
was measured at 155 locations a few meters off the road using
HydraProbe soil moisture sensors (Hydra Go Field Version,
Stevens Water Monitoring Systems, Inc., Portland, USA). The
measurement transect was bordered by a road in the west and
a small stream in the east.

Selhausen Site (Germany, Experiment B)
The research site Selhausen (50◦52’N, 6◦27’E) covers an area
of ∼1 × 1 km and is part of the Lower Rhine Valley/Eifel
Observatory of the TERENO network (Bogena et al., 2018). The
Selhausen site is located in the eastern part of the Rur catchment
(2,354 km2) and is characterized by an eastern upper terrace
composed of Pleistocene sand and gravel sediments that are
buried in loess sediments and by a western lower terrace that
is generally dominated by Pleistocene/Holocene loess sediments
(Weihermüller et al., 2007). The soils in the area consist of
Cambisols, Luvisols, Planosols, and Stagnosols (Rudolph et al.,
2015). Generally, all fields within the study area are used for
agriculture. The crops that are most commonly grown are
winter cereals, sugar beet and silage maize (Reichenau et al.,
2016). The site has a temperate maritime climate with a mean
annual precipitation and temperature of 714mm and 10.2◦C,
respectively (Korres et al., 2015). Detailed information on the
Selhausen research site can be found in Bogena et al. (2018) and
Brogi et al. (2020).

The CRN rover measurements at the Selhausen site were
collected as part of a MOSES (Modular Observation Solutions
for Earth Systems) test campaign. MOSES is an infrastructure
program funded by the Helmholtz Association (https://www.ufz.
de/moses/). The campaign was carried out on 11 July 2018 and
we mostly drove on the roads in the research area. Whenever it
was possible, we also drove on the agricultural fields. Some of the
fields in the northwest and southeast of the area were irrigated
during the CRN rover measurements. Reference soil moisture
measurements were again made with HydraProbe sensors as in
the Fendt experiment at 738 locations distributed over a large
fraction of the experimental area with a focus on sites where
earlier studies were based (e.g., Rudolph et al., 2015; Jakobi et al.,
2018; Brogi et al., 2019). This was done to limit the amount of
work associated with taking reference measurements (4 people
were measuring for∼4 h).

For this site, the bulk density of the fine fraction (̺bd<2)
was estimated to be 1.32 g/cm3 from literature values (Ehlers
et al., 1983; Unger and Jones, 1998) and from previous sampling
campaigns conducted within the study area. These values were
modified using gravel content as successfully done by Brogi
et al. (2020) for the simulation of crop growth in this study
area. For this, a high-resolution soil map produced from a
combination of electromagnetic induction measurements and
direct soil sampling (Brogi et al., 2019) was used to retrieve
spatially distributed gravel content. This map divides the study
area in 18 soil units, each provided with information on gravel
content for each horizon. To obtain bulk density (̺bd) values
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considering gravel content, the method proposed by Brakensiek
and Rawls (1994) was used:

̺bd = ̺bd<2 + Z2 (̺bd>2 − ̺bd<2) (1)

where ̺bd>2is the bulk density of rock fragments (2.65 g/cm3,
Brakensiek and Rawls, 1994) and Z2 [g/cm3] is the volume of
rock fragments (Flint and Childs, 1984), which was approximated
according to Brakensiek and Rawls (1994) with:

Z2 = Z1/(2− Z1) (2)

where Z1 is the gravel content in % of weight relative to
the total weight of dry samples. The same map was used to
determine the sum of lattice water and organic matter (θoff ) for
the Selhausen site with the loss-on-ignition method by heating
mixed samples of the 18 soil units to 1,000◦C for 12 h (Zreda
et al., 2012; Baatz et al., 2015). The samples were obtained from
mixed top soil material (30–40 cm depth) from a total of 200
measurement locations in the area. The reference soil moisture,
̺bd and θoff were horizontally weighted to match the CRN rover
measurement locations (Schrön et al., 2017).

Oklahoma Site (USA, Experiment C)
The Oklahoma site is located in the Cimarron River catchment
in the central north of Oklahoma, USA. The soil is dominated
by Mollisols, Alfisols and Inzeptisols with loamy texture in the
central part of the transect and sandy texture in the western
part of the transect (SSURGO database, https://websoilsurvey.sc.
egov.usda.gov/). The land use consists mainly of warm seasonal
grasses, winter wheat and small patches of deciduous forests. The
average annual precipitation ranges from 880mm in the east to
732mm in the west (Dong and Ochsner, 2018).

CRN rover measurements were performed 18 times on a
∼150 km long unpaved road. The resulting dataset was analyzed
by Dong and Ochsner (2018) to determine controlling factors
for mesoscale soil moisture patterns. The CRN rover used at this
site consists of two epithermal neutron detectors, each holding
two 3He-filled detector tubes (Hydroinnova LLC, Albuquerque,
NM, USA). The aggregation interval of the raw neutron count
measurements was 1min and the driving speed varied according
to the local conditions. The average speed was 48 km/h (Dong
and Ochsner, 2018).

For the Oklahoma study area, we extracted ̺bd and clay
content of the top soil from the SSURGO database and converted
it to a 200 × 200m resolution grid as described by Dong and
Ochsner (2018). In a further step, we used their linear relation to
derive lattice water (θoff ) from clay content. The hydrogen pool of
the soil organic matter was not considered by Dong and Ochsner
(2018). Next, average values of ̺bd and θoff in a 200m radius were
assigned to the CRN rover measurement locations.

Data Acquisition and Standard Processing
Both CRN rovers recorded GPS locations at the end of each
aggregation interval. These were set to half the distance traveled
between two recordings so that the location better reflected
the origin of the accumulated neutron counts (Dong and
Ochsner, 2018; Schrön et al., 2018b). In addition, absolute

humidity (calculated frommeasured air temperature and relative
humidity) and atmospheric pressure were recorded with both
CRN rovers. The corrected neutron counts (Ncor) for the Jülich
CRN rover were obtained by applying standard correction
procedures for atmospheric pressure (Desilets and Zreda, 2003),
absolute humidity (Rosolem et al., 2013) and variation in
incoming cosmic radiation (Desilets and Zreda, 2001). The
correction procedures are described in detail in Jakobi et al.
(2018, Appendix B). The reference incoming cosmic radiation
was obtained from the neutron monitor at Jungfraujoch (JUNG,
available via theNMDBneutronmonitor database at www.nmdb.
eu). The hourly incoming cosmic ray data were interpolated
linearly to the respective time stamps of the measurements with
the Jülich CRN rover. For the Oklahoma CRN rover, we used
the raw and corrected neutron counts as published by Dong and
Ochsner (2018).

Conversion of Neutron Counts to Soil
Moisture
We converted the corrected neutron count rates to gravimetric
soil moisture (θg [g/g]) with the approach of Desilets et al. (2010):

θg = a0

(

Ncor

N0
− a1

)−1

− a2 − θoff (3)

where N0 is a free parameter that is usually calibrated with
independent in-situ soil moisture reference measurements, and
ai = (0.0808, 0.372, 0.115) are fitting parameters determined
by Desilets et al. (2010) and validated in many publications
thereafter. Estimated hydrogen content within the CRN probe
footprint stored in pools other than soil moisture (θoff [g/g], i.e.,
lattice water and organic matter) is subtracted from the CRN soil
moisture estimate (Franz et al., 2012). As in previous CRN rover
studies, we only considered lattice water and organic matter here
(e.g., Avery et al., 2016; McJannet et al., 2017). The conversion
from gravimetric to volumetric soil moisture (θv [m3/m3]) is
known as:

θv = ̺bd θg (4)

For the Fendt site, we used a constant ̺bd = 1.028 g/m3 and
θoff = 0.072 g/g, which were sampled ∼150m northeast of the
measurement transect by Fersch et al. (2018). The in-situ soil
moisture measurements were used to calibrate N0 in Equation
3, which resulted in a value of 753 cts/min for the Fendt site.
For the N0 calibration of the CRN rover application at the
Selhausen site, all reference in-situ soil moisture were used with
four different aggregation methods (moving window and nearest
neighbor aggregation of 3 and 9 measurements, respectively).
Subsequently, the four aggregated N0 values were averaged,
resulting in a mean N0 value of 720 cts/min for the Selhausen
site. In this way, we did not favor any of the aggregation strategies
used in this study. For the conversion of measured neutron
counts to soil moisture at the Oklahoma site, we used N0 = 556
cts/min. This value was obtained by Dong and Ochsner (2018)
using calibration against reference data from four stations of the
Oklahoma Mesonet.
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Quantification of Measurement Accuracy
The measurement accuracy of CRN rover measurements was
quantified using the standard deviation (σ ) and the root mean
squared error (RMSE). Both have a similar meaning and are
therefore directly comparable. The standard deviation σ is
given by:

σ (c) =

√

√

√

√

1

A(c)− 1

A(c)
∑

i = 1

∣

∣

∣
x(c)i − x(c)

∣

∣

∣

2
(5)

where x and x are themeasurements and their mean, respectively,
and A is the total number of measurements, which scales with the
aggregation size c. The RMSE is given by:

RMSE(c) =

√

√

√

√

1

A(c)

A(c)
∑

i = 1

∣

∣x(c)i − x2(c)i
∣

∣

2
(6)

where x2 are the reference measurements for a given level
of aggregation.

Expected Measurement Accuracy Due to
Uncertain Neutron Count Rates
Measurements of a proportional neutron detector system
are governed by counting statistics that follow a Poissonian
probability distribution (Zreda et al., 2012). For a large number
of events per unit time, the Poisson distribution converges to a
normal distribution. Therefore, the expected uncertainty in the
neutron count rate N is defined by the standard deviation

√
N.

Consequently, increasing neutron count rates lead to decreasing
relative measurement uncertainty as well as decreasing absolute
soil moisture uncertainty (Schrön, 2017). It is important to
realize that the basic uncertainty is introduced by the raw count
rate rather than the processed neutron counts after correction.
Therefore, the uncertainty analysis must be based on the raw
measurement N and propagated to the corrected neutron counts
with the factor s, the product of the correction factors for
pressure, humidity and incoming cosmic radiation:

σN = s
√
N (7)

In order to obtain the expected standard deviation of soil
moisture, the uncertainty of the neutron count rates must be
propagated through Equation 3. One possible approach is the
approximation by an analytical Taylor expansion. We used the
method presented by Mekid and Vaja (2008), which develops
the Taylor expansion up to the 3rd polynomial order and
considers six central moments in the uncertainty distribution.
Since the random detection of neutron counts follow a symmetric
Gaussian normal distribution, only the 2nd, 4th, and 6th—
moments are relevant in this calculation. The 1st, 2nd, and 3rd

order approximation of the propagated uncertainty of θg (σθg

[g/g]) are given by:

σθg (N) =

√

√

√

√

√

√

√

√

√

√

√

θ
′
(N)

2
σN

2 +
1

2
θ
′′
(N)

2
σN

4

+θ
′
(N) θ

′′′
(N) σN

4 + 15
36θ

′′′
(N)

2
σN

6

(8)

where the rectangles from small to large denote increasing order
of approximation (Mekid and Vaja, 2008). Equation 8 requires
the 1st, 2nd, and 3rd derivatives of Equation 3, which are given by:

θ
′
(N) = −

a0

N0

(

Ncor
N0

− a1

)2

θ
′′
(N) =

2a0

N0
2
(

Ncor
N0

− a1

)3
(9)

θ
′′′

(N) = −
6a0

N0
3
(

Ncor
N0

− a1

)4

For easier implementation of the 3rd order uncertainty
approximation, the expressions given in Equations 8 and 9 can
be simplified to:

σθg (N) = σN
a0N0

(Ncor − a1N0)
4

(10)

√

(Ncor − a1N0)
4 + 8σN2(Ncor − a1N0)

2 + 15σN4

To convert the expected standard deviation from gravimetric to
volumetric units (σθv [m

3/m3]) we used:

σθv (N) = ̺bd σθg (11)

To validate the proposed Taylor expansion approach, we used
a more computationally intensive Monte Carlo uncertainty
analysis (e.g., Bogena et al., 2013; Baroni et al., 2018). For this,
we calculated neutron count rates representative for volumetric
soil moisture ranging from 0.0 to 0.7 m3/m3. This was done
using Equations 3 and 4 by assuming Fendt site conditions (i.e.,
̺bd, θoff , and s) and N0 values ranging from 0 to 45,000 cts.
These values were chosen since they cover typical N0 values for
the counting periods of CRN rovers (e.g., Avery et al., 2016:
518 cts/min; Dong and Ochsner, 2018: 556 cts/min; Vather
et al., 2019: 133 cts/min) aggregated up to 1 h (e.g., Dong and
Ochsner, 2018: 33,360 cts/h), as well as typical N0 values for
long aggregation periods of stationary cosmic ray probes (e.g.,
Baatz et al., 2014: 936–1,242 cts/h; Baroni et al., 2018: 1,438 and
1,531 cts/h) aggregated up to 24 h. Subsequently, the synthetic
mean neutron count rates were recalculated to raw neutron count
rates with Nin = 1

sNcor assuming the average conditions of the
Fendt experiment and used to generate large sets of draws from
the appropriate Poisson distribution (Nout). These were rescaled
again with Npoisson = sNout and converted to soil moisture. The
standard deviation of the resulting soil moisture distributions was
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used to obtain the measurement accuracy as a function of soil
moisture, aggregation time and N0.

It should be noted that the non-linear behavior of Equation
3 transforms the Gaussian probability distribution of N to a
skewed distribution of θg . Consequently, the uncertainty of θg
is asymmetric, which cannot be expressed by a single standard
deviation as obtained from the uncertainty approximation
methods used in this study. However, since the focus is the
optimization of CRNS rover surveys, we are confident that the
presented approaches represent the uncertainty in soil moisture
estimates from uncertain neutron count rates sufficiently well.

Since uncertainties of rover measurements are often more
prone to areal than to temporal variation in soil moisture, we
also converted aggregation time to aggregation length for 5, 10,
50, and 100 km/h driving speed using:

Aggregation length
[

km
]

= Speed

[

km

h

]

· Aggregation time [h]

(12)

Other Sources of Uncertainty
Additional uncertainties for the estimation of soil moisture with
the CRNS method, such as the uncertainties in the amount of
biomass (Avery et al., 2016), N0, the incoming cosmic ray flux
(Baroni et al., 2018), air pressure (Gugerli et al., 2019), and
humidity are not investigated in this manuscript. However, due
to the linear dependency of σθv and soil bulk density (Equation
11), the uncertainty in soil bulk density (σ̺bd ) is known to have
a particularly strong influence on the volumetric soil moisture
product (Avery et al., 2016; Baroni et al., 2018). According
to error propagation theory, the relative uncertainty of soil
bulk density and gravimetric soil moisture in Equation 11 sum
up, which leads to the following calculation of volumetric soil
moisture uncertainty:

σθv (N, ̺bd ) = ̺bdσθg + σ̺bd θg (13)

Neutron Aggregation Strategies
For the Fendt experiment, we subdivided the measurement
transect into equally long sections while assuring that each
section contained at least 100 neutron count measurements. This
resulted in ten sections, for which we assumed constant soil
moisture during the 4 h measurement campaign. Within each of
the sections, we defined a central location using the respective
means of the east-west distance and the north-south distance.
Subsequently, we selected the ten measurements nearest to the
central location and calculated the standard deviation of the first
aggregation step using Equation 5. In the next aggregation step,
the twenty nearest measurements were selected. Then, the 1st and
11th, 2nd and 12th measurement, etc., were added to obtain 10
aggregated neutron count rates, and the standard deviation was
calculated again. This process was continued until less than ten
measurement were left. Finally, we used Equations 3 and 4 to
convert the corrected neutron counts to volumetric soil moisture.

As mentioned above, the neutron count statistics of
CRN rover measurements are usually improved by using
a moving window filter. However, in many locations more

local information is available where streets are intersecting.
Therefore, using a nearest neighbor average should improve
the measurement accuracy in these locations. We used the
Selhausen experiment to compare a moving window aggregation
strategy with a nearest neighbor aggregation strategy. We used
a moving average filter with a window size of three and nine
measurements along the driven route. Analogously, we averaged
the neutron counts at each location with the nearest neighbor
measurements in a way that the same number of measurements
can be compared (e.g., a moving window of nine subsequent
measurements is compared to the average of the location and the
eight nearest neighbors).

For the Oklahoma experiment, we followed the strategy
described by Dong and Ochsner (2018). From the average
driving speed during data collection (∼50 km/h), an average
measurement interval of ∼800m was derived. This was used
to generate an ideal route with 800m spacing between the end,
start and turning points of the transect driven on 7 August 2015.
Next, the neutron measurements within different radii from the
generated location were averaged for each transect driven. For
a more detailed explanation on the averaging strategy, we refer
to Dong and Ochsner (2018). Gibson and Franz (2018) and
Finkenbiner et al. (2019) applied a similar aggregation strategy,
but extended it by inverse distance weighting of the averaged
neutron measurements. We did not test the potential benefits of
this interpolation method as our primary focus was to establish
an analytical approach for soil moisture uncertainty assessment.
However, we suggest that the effects of different interpolation
methods should be investigated in a separate study.

RESULTS AND DISCUSSION

Expected Accuracy—Analytical vs. Monte
Carlo Approach
Figure 2 shows the standard deviation of soil moisture as a
function of soil moisture for synthetic neutron count rates
using the Fendt site characteristics and N0 values of 500, 1,000,
2,000, and 5,000 cts, respectively. It is important to note that
the presented results are site-specific and depend on soil bulk
density, θoff and s. As expected, the uncertainty in soil moisture
estimation increased with increasing soil moisture (Bogena et al.,
2013). An increase in N0 (i.e., more aggregation or more efficient
detectors) and therefore an increase in the count rate N led to
substantially lower errors in soil moisture estimation (Figure 2).

In addition, four error estimation methods are compared
in Figure 2, namely the Monte Carlo approach and the Taylor
expansions of 1st, 2nd, and 3rd order. We found that the analytical
expressions for measurement uncertainty underestimated the
standard deviation for high soil moisture content (> ∼0.3
m3/m3) when the 1st and 2nd order Taylor expansions were used.
For N0 values larger than 1,000, the 3rd order approximation
matched the results of the Monte Carlo analysis very well. For
low N0, the 3rd order approximation still deviated from the
Monte Carlo simulations (Figure 2) with high water content (i.e.,
low neutron counts). This can be explained by the increasing
steepness of Equation 3 toward the asymptote present at a
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FIGURE 2 | Standard deviation of soil moisture from raw neutron counts (σθv

[m3/m3]) as a function of soil moisture (θv [m
3/m3 ]) using N0 = 500, 1,000,

2,000, and 5,000 cts with Fendt site conditions and soil properties (̺bd =
1.028 g/m3, θoff = 0.072 g/g and s = 0.6136). The standard deviations were

obtained from a Monte Carlo approach and Taylor expansions (TE) of 1st, 2nd,

and 3rd polynomial order with Equations 8, 9, and 11.

neutron count rate of a1N0. Overall, we found only minor
differences between Monte Carlo simulations and the 3rd order
Taylor expansion to estimate measurement accuracy of soil
moisture due to uncertainty of neutron count rates. Therefore,
the 3rd order approximation was used in the remainder of
this study.

Figure 2 clearly shows that higher count rates will result in
lower soil moisture uncertainty. For this reason, aggregation
periods of 12 or 24 h are often used with stationary probes
and multiple CRN rover measurements along the same track
are averaged. Figure 3 shows the aggregation time required
to obtain soil moisture estimates of a specified measurement
uncertainty with the Jülich CRN rover and Fendt site conditions.
The aggregation time was obtained using the Monte Carlo
approach and the 3rd order Taylor expansion approach. In
addition, the aggregation time was converted to aggregation
length using Equation 12. For soil moisture contents below
0.4 m3/m3, an aggregation time of 10min is necessary to
achieve a measurement uncertainty below 0.03 m3/m3 with the
Jülich CRN rover and Fendt site conditions. Correspondingly,
this measurement uncertainty can be achieved with increasing
spatial aggregation depending on the driving speed. For instance,
aggregation lengths of ∼1, ∼2, ∼10, and ∼20 km are needed for
driving speeds of 5, 10, 50, and 100 km/h, respectively (Figure 3).

It is important to note that the measurement uncertainty
presented in Figures 2, 3 only considered uncertainty in neutron
count rate, and thus does not include other sources of uncertainty
in CRN soil moisture estimates, such as the uncertainty in soil
bulk density (Avery et al., 2016; Baroni et al., 2018). Figure 2
suggests that a soil moisture of 0.3 m3/m3 is associated with an

FIGURE 3 | Aggregation time/aggregation length with 50 km/h traveling speed

required to obtain soil moisture estimates (θv [m
3/m3]) with 0.02, 0.03, 0.04

and 0.05m3/m3 measurement uncertainty expressed as standard deviation

from raw neutron counts (σθν
[m3/m3]) as function of soil moisture. The

standard deviation was obtained from a Monte Carlo approach and a Taylor

expansion approach of 3rd polynomial order with Equations 8, 9 and 11 and

the presented estimates are valid for neutron measurements with the Jülich

CRN rover and Fendt site conditions (N0 = 753 cts/min, ̺bd = 1.028 g/m3,

θoff = 0.072 g/g and s = 0.6136). The aggregation length can be converted

linearly to other aggregations lengths and corresponding traveling speeds with

Equation 12 (e.g., for 100 km/h multiply tick marks with 2, for 10 km/h divide

the tick marks by 5, and for 5 km/h divide tick marks by 10).

uncertainty of 0.056 m3/m3 for N0 = 1,000 cts due to uncertain
neutron counts. An uncertainty of 20% in bulk density would add
an additional uncertainty of 0.06 m3/m3 according to Equation
13. Thus, the combined uncertainty due to uncertain soil bulk
density and raw neutron counts would be 0.116 m3/m3. It is
clear that above a minimum threshold of raw neutron counts,
the greatest absolute uncertainty in volumetric soil moisture
estimates using CRNS technology can be attributed to soil bulk
density (Avery et al., 2016). The framework presented here can
be used to determine such a minimum threshold for a particular
site, which is shown exemplary in Figure 4 for the Fendt site.
For this, we obtained the uncertainty in soil moisture estimation
with fixed neutron count rates N for different values of N0 using
Equations 10 and 11. If we assume a 20% uncertainty in soil
bulk density and a soil moisture range from 0.2 to 0.4 m3/m3,
the uncertainties in soil bulk density and raw neutron counts
are approximately equal, when there are 500 cts/unit area. For a
soil moisture of 0.4 m3/m3 the combined uncertainties (Equation
13) from 20% uncertainty in soil bulk density and 1,000 cts/unit
area is ∼0.13 m3/m3. As we lack estimates of the uncertainty
in bulk density for the case studies presented here, we focus on
the uncertainty from raw neutron counts in the remainder of
this manuscript.
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FIGURE 4 | Standard deviation from raw neutron counts (σθν
[m3/m3]) as a

function of soil moisture (θν [m3/m3 ]) using fixed N = 500, 1,000, 2,000, 4,000

and 8,000 cts and variable N0s representative for soil moistures between 0

and 0.7m3/m3 at the Fendt site (̺bd = 1.028 g/m3, θoff = 0.072 g/g and s =
0.6136) obtained with Equation 11. For comparison the standard deviation

from soil bulk density (σ̺bd ) in units of soil moisture as a function of soil

moisture, assuming 20% uncertainty in bulk density, and the combined

uncertainty from soil bulk density and raw neutron counts in units of soil

moisture as a function of soil moisture, assuming N = 1,000 and 20%

uncertainty in bulk density (Equation 13), is shown.

Experiment a (Fendt Site)
The measurements at the Fendt site (experiment A) were
acquired to illustrate the accuracy of the 3rd order approximation
to estimate measurement uncertainty of actual CRN roving
measurements. The minimum, average and maximum count
rates were 402, 606, and 810 cts/min, respectively, before
correction (N). After correction, we observed a distinct reduction
in neutron count rates, which is mostly attributed to the
atmospheric pressure correction (responsible for an average
reduction of ∼35%). It is important to note that the large
reduction due to the pressure correction occurred because we
normalized to standard pressure (1023.25 hPa). The use of a
different reference value (e.g., the average pressure during the
measurement campaign) would reduce this effect. Minimum,
average and maximum count rates after correction (Ncor) were
246, 372, and 504 cts/min, respectively. The measurement
transect showed a distinct gradient in epithermal neutron count
rates, with increasing environmental water content toward the
east and corresponding decreasing epithermal neutron count
rates (Figure 5A). The gradient in neutron counts was dominated
by the road at the western end and the small stream at the eastern
end of the transect (Figures 5A,B). These additional influences
were considered during calibration and validation by adding
artificial measurement points along the road and the stream
(see Figure 5B). It is perhaps possible to correct neutron counts
for the road influence with the approach from Schrön et al.
(2018b), but this was not tested here because this correction

would not have influenced the error estimation because it is based
on raw neutron counts. To our knowledge, there is currently no
correction approach for nearby water bodies available. Here, we
assumed homogeneous soil moisture equivalent values of 0.07
m3/m3 for the road (Schrön et al., 2018b) and 1.0 m3/m3 for
the stream, respectively, and the density of the artificially added
points to consider roads and water bodies corresponded to the
in-situmeasurements.

To guide the visual analysis of the results, we divided
the measurement transect into 10 sections. The expected and
measured uncertainty of N with increasing aggregation is shown
in Figure 5C. Both showed very similar behavior with increasing
aggregation in most sections. Exceptions were sections 5 and
9, where the measured standard deviation of the counts was
lower than expected. Figure 5D shows the standard deviation
of measured soil moisture calculated with Equations 3 and 4
and the expected standard deviation calculated with Equations
10 and 11 (3rd order Taylor expansion) as a function of spatial
aggregation. With the exception of sections 5, 9 and 10, all
sections showed good agreement between the expected and
measured uncertainty of soil moisture. Generally, the standard
deviation of measured soil moisture was relatively high (>0.05
m3/m3) even after aggregation. This can be explained by the
relatively short maximum aggregation time per section, which
varied between 1.5 and 2.5min. Such short aggregation times
lead to a high measurement uncertainty as shown in Figure 3.
To achieve a measurement accuracy of 0.05 m3/m3 at a soil
moisture content of 0.60 m3/m3 (e.g., section 10), it would be
required to aggregate for more than 10min (cf. Figure 3). To
achieve the same measurement accuracy for a soil moisture of
0.3 m3/m3 (e.g., section 1), an aggregation time of 2.5min would
have been sufficient.

Figure 5E shows the CRN rover derived soil moisture with
increasing aggregation time as well as the mean reference in-
situ soil moisture of each section. In most sections, the mean
reference soil moisture fell within the range of the standard
deviation of soil moisture. We found the largest deviations
between the reference in-situ soil moisture and CRN rover
derived soil moisture in sections 5 and 10 (Figure 5E). A possible
explanation is that within these two sections the environmental
moisture conditions were not constant as assumed in the analysis
approach. This is consistent with earlier results of Schrön
et al. (2018a), who found that small differences in position can
significantly influence soil moisture estimates from CRN probes
in complex environments.

Experiment B (Selhausen Site)
The measurements from the Selhausen experiment were used to
compare different aggregation scales and strategies. Minimum,
average and maximum count rates were 450, 654, and 888
cts/min, respectively, before correction (N). After correction,
we observed a moderate reduction in neutron count rates and
the incoming neutron correction had the greatest influence
(responsible for an average reduction of ∼10%). Minimum,
average and maximum count rates after correction (Ncor) were
408, 588, and 798 cts/min, respectively.
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FIGURE 5 | Overview of the results from the Fendt experiment for each of the ten analyzed sections. (A) CRN rover soil moisture without aggregation. (B) In-situ

reference soil moisture. The relative coordinates in panels a and b were calculated from UTM coordinates. (C) Expected standard deviation of raw neutron counts (σ ).

(D) 3rd order approximation of standard deviation of soil moisture from raw neutron counts (σθv ) in comparison to measured standard deviation with the CRN rover. (E)

Soil moisture (θv ) estimated with the CRN rover in comparison with mean reference soil moisture content for each section. Red area indicates ± one measured

standard deviation of the mean.

The estimated soil moisture was very low (< 0.15 m3/m3,
Figure 6) due to the extended drought period before and during
the campaign. The soil moisture estimates of the CRN rover
showed low values in the northeast and high values in the
southwest, which reflects differences in soil texture (Rudolph
et al., 2015; Brogi et al., 2019; Figure 6). Reference soil moisture
measurements were even lower (< 0.1 m3/m3) than the soil
moisture estimates from CRN roving.

A correction for the effect of biomass on the soil moisture
estimates was attempted using two approaches: (1) a linear
regression between N0 and in-situmeasured biomass (e.g., Baatz
et al., 2015), and (2) the thermal-to-epithermal neutron ratio
method (Tian et al., 2016; Jakobi et al., 2018). Both correction
methods did not result in substantial improvements of the soil
moisture estimates. We also attempted to remove road effects
on the measured neutron count rate using the approach of
Schrön et al. (2018b). However, this also did not result in an

improvement, which was perhaps related to the dry conditions.
Soil moisture content was lower than or equal to the soil moisture
equivalents of different road types (grassy pathways, dirt roads,
and asphalt), which is unusual and was not considered in the
development of the correction approach (Schrön et al., 2018b).

Aggregation clearly improved the accuracy of soil moisture
estimates as indicated by the lower RMSE, irrespective of
aggregation strategy (Figure 6). Only minor differences were
found for the aggregation approaches both in the case of three
and nine measurements. In the case of the aggregation of nine
measurements, the most pronounced differences occurred near
crossroads, or for closely separated tracks (Figure 7). If only
three measurements were aggregated, the differences were more
variable due to the high measurement uncertainty, but they
occurred in the same locations for both cases. A drawback of
the nearest neighbor aggregation approach is that the processing
algorithm potentially also takes measurements into account that
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FIGURE 6 | Comparison of four aggregation strategies with the Jülich CRN rover at the Selhausen site with data measured on 11 July 2018. Top panels: moving

window aggregation for three and nine following measurements, respectively. Bottom panels: nearest neighbor aggregation with the nearest two and eight neighbors,

respectively. The scatter plots show the reference soil moisture (θv ) measurements (horizontally averaged according to Schrön et al., 2017) as a function of the

predicted soil moisture from the CRN rover. Base maps: ESRI World Imagery and Contributors.

FIGURE 7 | Difference in soil moisture (θv ) between moving window and nearest neighbor aggregation strategies for three and nine aggregated measurements. Base

maps: ESRI World Imagery and Contributors.

were taken on parallel roads, even though theymay have different
water contents (cf. Figure 7).

At first sight, the results from this experiment looked
satisfying because of the relatively low reported RMSEs.
However, the expected soil moisture estimation uncertainty
using Selhausen site conditions (Figure 8) were similar to the

overall uncertainty as expressed by the RMSE when only 3
measurements were used (0.032 m3/m3). This is undesirable
and suggests the need for more aggregation. When nine
measurements were aggregated, the average uncertainty due
to uncertain neutron measurements decreased to 0.017 m3/m3

irrespective of aggregation strategy. Also, the patterns of soil
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FIGURE 8 | Comparison of soil moisture uncertainty from neutron counts (σθv ) estimation with four aggregation strategies with the Jülich CRN rover at the Selhausen

site with data measured on 11 July 2018. Top panels: moving window aggregation for three and nine following measurements, respectively. Bottom panels: nearest

neighbor aggregation with the nearest two and eight neighbors, respectively. Base maps: ESRI World Imagery and Contributors.

moisture uncertainty distribution varied minimally between the
aggregation strategies (Figure 8).

This measurement campaign illustrates the required
compromise between aggregation time and spatial resolution
that is sometimes necessary for CRN rover measurements. In
order to achieve lower uncertainty, the driving speed would have
to be much lower. However, the vehicle did not allow lower
driving speeds. Alternatively, one can increase the aggregation
scale, with the drawback of less spatial resolution of the resulting
soil moisture map. However, this led only to a slight reduction
in RMSE (e.g., aggregation of 36 measurements led to a RMSE
of 0.018 m3/m3). Since further aggregation only had a minor
influence on the RMSE, we attribute the remaining part of the
RMSE to other influences. Important additional sources of error
were the spatial variability in bulk density, the heterogeneous
vegetation, roads of different size and nature, as well as the
inconsistency between in-situ and CRN rover measurements
(both in time and depth).

Experiment C (Oklahoma Site)
Figure 9 provides an overview of the data from Dong and
Ochsner (2018) with 800, 1,600, and 2,400m aggregation length
for soil moisture content, expected standard deviation as well
as the relative standard deviation (

σθv
θv
). Using the original

aggregation to 800m, the mean soil moisture was 0.19 m3/m3

and the estimated mean standard deviation for all CRN rover
measurements was 0.039 m3/m3, which is still below the error
benchmark of 0.04 m3/m3 defined for the soil moisture active
passive (SMAP) satellite mission (Chan et al., 2014). However,
both soil moisture and the estimated standard deviation were
spatially and temporally variable (Figure 9, upper and middle
panel). As expected, the soil moisture and standard deviation of
soil moisture showed a very similar pattern (Figure 9, upper and
middle panel), while the relative standard deviation showed a
different pattern (Figure 9, lower panel). There were two reason
for this difference. First, some high relative standard deviation
values were related to locations with only a few measurements
within one pixel, which appear as red stripes across most
measurement days in the lower panel of Figure 9. Second,
measurement days with low soil moisture content and relatively
low standard deviation nevertheless showed high relative errors.
This is in line with the high relative uncertainty we found for
the Selhausen site (Experiment B). Measurement days with high
soil moisture and relatively high standard deviation nevertheless
showed lower relative errors (Figure 9, compare driest and
wettest measurement date). With increasing aggregation length,
sharp transitions in soil moisture estimates of neighboring pixels
are reduced (Figure 9, top panel) and both the absolute (Figure 9,
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FIGURE 9 | Soil moisture (θv ), uncertainty of soil moisture from neutron counts (σθv ) approximated using a 3rd order Taylor expansion approach and relative standard

deviation (
σθv

θv
) using 800, 1,600, and 2,400m aggregation along the measurement transects in Oklahoma. White patches are areas not covered during a

measurement date due to road closures (Dong and Ochsner, 2018). Blue and red dates indicate the wettest and driest measurement dates, respectively.
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FIGURE 10 | Percentage of pixels with soil moisture uncertainty from neutron

counts (σθv ) ≤ 0.02, 0.03, 0.04, and 0.06 m3/m3 standard deviation as a

function of aggregation length.

middle panel) and relative standard deviation of soil moisture
(Figure 9, lower panel) are reduced.

To evaluate the trade-off between aggregation length
and expected standard deviation for the Oklahoma CRN
rover data, we determined the proportion of pixels with an
expected measurement uncertainty below 0.02, 0.03, 0.04,
and 0.06 m3/m3 for different aggregation lengths (Figure 10).
With increasing aggregation lengths, the number of pixels
with valid information increased and this increase became
stronger with increasing uncertainty thresholds. Less than
40% of the pixels had a measurement uncertainty below 0.03
m3/m3 for the original aggregation length of 800m solely
due to the neutron count uncertainty. This is consistent with
the analysis of Dong and Ochsner (2018), who estimated
the average measurement uncertainty for 800m aggregation
length as 0.03 g/g, which corresponds to ∼0.044 m3/m3.
Only at locations with low soil moisture content (< ∼0.14
m3/m3), the expected measurement uncertainty was lower
than 0.02 m3/m3. If all CRN rover locations were required
to have a measurement uncertainty below 0.04 m3/m3, an
aggregation length of more than 5 km would be necessary.
However, already with 2,400m aggregation length, the
measurement uncertainty in the drier part of the measurement
transect was lower than this (Figure 9, top and middle
panel: km 110–150).

Although we cannot recommend a universal aggregation
length, we believe that the presented uncertainty approximation
approach can serve as a tool for assessing the best possible
compromise between measurement accuracy and spatial
resolution. It should be noted that it is not possible to determine

the uncertainty without taking into account site conditions
and rover specifications and that the presented uncertainties
are best possible estimates as other sources of uncertainty have
not yet been taken into account. In general, the aggregation
length should be carefully tailored to the needs of users, the
capabilities of the CRN rover and the site conditions. In
addition to the uncertainty in the neutron count rate, further
uncertainties in the soil moisture estimation with the dataset
from Dong and Ochsner (2018) are worthwhile mentioning.
First, the influence of vegetation on soil moisture estimates
was not considered. Promising approaches for removing these
influences are the use of airborne (e.g., Fersch et al., 2018) or
satellite (e.g., Avery et al., 2016) derived biomass estimates.
Second, the influence of roads was not considered, which most
likely resulted in underestimation of soil moisture content in
most measurement locations (Schrön et al., 2018b). Third,
the derivation of lattice water (θoff ) and soil bulk density
from uncertain soil maps, such as the SSURGO database, will
introduce uncertainty in soil moisture estimation. However, this
has been demonstrated in several other studies (e.g., Avery et al.,
2016; McJannet et al., 2017) and is challenging to overcome.
Fourth, soil organic carbon is an additional hydrogen pool
in soils that should be considered for accurate soil moisture
estimation (Franz et al., 2013). Regarding the influence of some
of those environmental factors and their uncertainty, the reader
is referred to Baroni et al. (2018).

CONCLUSION AND OUTLOOK

In this study, we quantified the uncertainty in soil moisture
estimation with cosmic ray neutron measurements with an
easy to use 3rd order Taylor expansion approach. The
performance was evaluated using Monte Carlo simulations
and experimentally determined measurement uncertainty and
we found good agreement. Because of the typically short
aggregation time and thus a low amount of neutron counts,
soil moisture estimates obtained with cosmic ray neutron rover
measurements are typically more uncertain than those obtained
using stationary measurements. The proposed approach to
approximate measurement uncertainty in soil moisture estimates
has great potential for the planning and evaluation of rover
experiments. It was shown that such uncertainty estimates can be
used to find a suitable trade-off between measurement accuracy,
aggregation, and the associated spatial resolution of the resulting
soil moisture products.

The approach can also be used to design surveys with
the cosmic ray neutron rover according to given accuracy
requirements. We applied our error estimation approach to
three cosmic ray neutron rover experiments and the major
findings were:

- Measured and expected uncertainty matched well even with
short aggregation periods.

- Uncertainty in soil moisture estimation from uncertainty in
cosmic ray neutron counts can be reduced to only a fraction of
the total measurement uncertainty if appropriate aggregation
is used.
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- The aggregation length of an experiment needs to be
carefully selected based on the needs of the user, taken into
account the site characteristics, and the cosmic ray neutron
rover specifications.
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