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Groundwater management policy around the world increasingly seeks to protect

groundwater-dependent ecosystems and associated human uses and values. This

includes uses of ecosystems and agricultural systems linked to natural spring discharge.

Yet, there are few examples of practical tools to balance human groundwater use with

ecological water demand related to spring discharge. Using a simulation optimization

framework, we directly incorporate a spring discharge constraint into the analysis of

sustainable yield for operationalizing groundwater policy in the state of Hawai‘i. Our

application on the island of O‘ahu is a spring discharge-dependent watercress farm with

historical, cultural, and ecological significance. This research provides decision-makers

in Hawai‘i with information regarding the trade-off between groundwater pumping and

spring discharge, which is connected to multiple benefits, including historical and cultural

values in line with codified state beneficial use protections. Because this trade-off

provides an important step in operationalizing sustainable yield policy in Hawai‘i, we

conclude by discussing further conceptual and technical developments necessary to

move groundwater policy in Hawai‘i closer to full incorporation of the public trust

principles of the state water code.

Keywords: groundwater dependent ecosystems, sustainable yield, sustainable groundwater management, spring

discharge, Hawai‘i state water code, water policy, simulation optimization, Pearl Harbor aquifer

INTRODUCTION

Groundwater sustainable yield evaluation is increasingly moving to consider multiple concerns
beyond threats to quantity and quality of the freshwater resource available for extraction (Pierce
et al., 2013; El-Kadi et al., 2014; Owen et al., 2019). While the need to include cultural, ecological,
and social values in sustainable yield quantification is articulated in the literature (Alley and Leake,
2004), many existing definitions of sustainable yield are fairly general, e.g., “the development and
use [of groundwater] in a manner that can maintain an aquifer for an infinite time without causing
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unacceptable environmental, economic, or social consequences”
(Alley et al., 1999). Such broad definitions allow for flexibility in
interpretation when dealing with complex systems and multiple
values, and can be determined based on aquifer performance
factors, governance structures, and societal preferences (Pierce
et al., 2013; Elshall et al., 2020). Yet operationalizing a
groundwater sustainability policy can be challenging in practice
(Elshall et al., 2020). In this paper, we provide an example of
sustainable yield estimation in Hawai‘i, wherein spring discharge
serves as a metric for the continued provision of cultural,
ecological, and social values related to the groundwater resource
of interest.

The value of considering a range of diverse benefits in
estimating sustainable groundwater pumping is particularly
salient in geographically isolated areas like the Hawaiian
Islands, where judicious management of limited local freshwater
resources is essential to sustaining the well-being of residents
and the health of linked ecosystems. Hawai‘i is heavily reliant
on groundwater, with more than 90% of domestic freshwater
sourced from aquifers (Tribble, 2008). There is a long-standing
concern about stress on the state’s groundwater resources (Chun
et al., 2017). Sustainable management of the highly utilized Pearl
Harbor aquifer on O‘ahu, in particular, requires consideration of
multiple competing uses of water (Hutchins, 1946; Mink, 1980)
as it supports a large portion of the population of Honolulu,
as well as military, agricultural, and tourism sectors of the
economy. Estimates of aquifer sustainable yield insofar as they
are currently calculated do not explicitly take into account
competing beneficial uses.

The objective of this paper is to assess the trade-off between
optimal groundwater pumping and protecting the culturally and
historically important spring system in Pearl Harbor aquifer,
Hawai‘i under the state water code (HRS Chapter 174C, 1987).
Groundwater management inHawai‘i operates under the Hawai‘i
State Water Code which specifies a number of protections under
the public trust doctrine, including the maintenance of proper
ecological balance as well as preservation and enhancement of
waters for consumptive and recreational uses (HRS Chapter
174C, 1987). In particular, we consider the protection of
spring discharge to Sumida Farm, an ecologically, socially, and
historically important watercress (Nasturtium officinale) farm on
the island of O‘ahu that is fully dependent on spring discharge
for maintaining crop production. Our approach for estimating
sustainable yield, defined here as optimal groundwater pumping
given the aquifer performance and governance constraints, is
described in detail in the methods section.

While returning spring discharge to historical pre-
development levels is likely an unrealistic goal, we begin
with this target and work backward to current levels of discharge
to provide a clear description of tradeoffs for decision makers
regarding the balance between sustainable yield and spring
discharge. Working within the confines of existing water
infrastructure, we use a simulation optimization method to
estimate sustainable yield for varying levels of spring protection
while maintaining the quality of pumped water. We then
compare those values to existing estimates of sustainable yield,
as well as current levels of pumping in the Pearl Harbor aquifer.

Our framework allows us to infer an implied value of spring
protection using a “tradeoff curve” between groundwater
pumping and spring discharge. Our integrated groundwater
management framework aims to improve integration and
interlinkages of science, policy, and practice in a manner that is
sufficiently protective of ecological, environmental, and cultural
needs now and into the future.

The manuscript is organized as follows. The Materials
and Methods section provides an overview of groundwater
sustainable yield policy in Hawai‘i and how spring protection
may be accounted for in this policy framework. It then
introduces the Pearl Harbor aquifer study site and our modeling
framework to estimate sustainable yield under different spring
discharge thresholds. The Results section presents the results,
and the Discussion section summarizes our findings and provides
suggestions for groundwater sustainable yield policy applications
in Hawai‘i.

MATERIALS AND METHODS

Groundwater Policy in Hawai‘i
Hawaiian culture and history play an influential role in
contemporary water management, policy, and conflict (see
Figure 1 for a description of three eras of water management in
Hawai‘i). The current State Water Code was established in 1987,
after a mandate for the creation of a state water management
agency (Commission on Water Resource Management, or
CWRM) was established during the 1978 Constitutional
Convention. In addition to defining sustainable yield and
outlining the State’s obligation to manage water resources for the
benefit of its people (i.e., per the public trust doctrine), the water
code established the process for creating a Hawai‘i Water Plan as
a guide for continued comprehensive water resources planning.
The Water Resources Protection Plan component of the Hawai‘i
Water Plan is prepared by CWRM and provides the overall legal
and policy framework that guides the development, conservation,
and use of water resources.

The state water code defines a number of protections under
the public trust doctrine to balance with beneficial use: (1)
the protection of traditional and customary Hawaiian rights,
(2) the protection and procreation of fish and wildlife, (3) the
maintenance of proper ecological balance and scenic beauty,
and (4) the preservation and enhancement of waters of the
state for consumptive and recreational uses. The legacy of water
management structures that were put into place during the
Plantation Era continues to lead to disputes and litigation to
define the bounds of protections under the public trust nature
of the state water code, especially with regards to traditional
and customary Hawaiian rights (Beamer, 2004; Sproat, 2014).
The placement under the law of water in the public trust
itself is a reaffirmation of the indigenous Hawaiian tradition
of resource management (MacKenzie, 2010). The water code
further defines groundwater sustainable yield as “the maximum
rate at which water may be withdrawn from a water source
without impairing the utility or quality of the water source as
determined by the commission.” The definition of sustainable
yield in the water code does not provide quantitative measures
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FIGURE 1 | History of water management in Hawai‘i in three major eras.

FIGURE 2 | Study area. The location of four (sub-) aquifer units (Ewa-Kunia, Waipahu-Waiawa, Waimalu, and Moanalua), Sumida Farm (within Kalauao spring

complex) and other coastal springs situated in the Pearl Harbor aquifer of O‘ahu.

for “utility” and “quality,” nor does the code quantify baselines
toward which “protection,” “maintenance,” and “preservation”
should be aiming. This is consistent with the concept of the public
trust doctrine allowing the community members to manage the
aquifer as a common pool resource, according to societal values
and preferences.

The Robust Analytical Model (RAM) (Liu et al., 1981; Mink,
1981) was used to establish the values of sustainable yield
per aquifer system that were included in the inaugural Water
Resources Protection Plan in 1990. As a lumped analytical
function type model, RAM requires only estimates of aggregate
recharge and an estimate of the initial average head level of
the aquifer, with saltwater intrusion as a driving constraint,
to generate an estimate of sustainable yield. While the model
has the benefit of being a simple management tool, state water
management agencies recognized many of RAM’s limitations,
including the abstraction from a thick brackish transition
zone that occurs at the freshwater-saltwater interface and the
lumped (i.e., not spatially distributed) nature of the estimated

sustainable yield outputs. Consequently, sustainable yield values
published in the 2008 version of the WRPP (Wilson Okamoto
Corporation, 2008) were updated based on a review of the
original RAM SY estimates, RAM SY with updated recharge
estimates, and RAM2 (Liu, 2006, 2007) SY estimates. While
RAM2 more explicitly accounts for the brackish transition zone,
it is still a lumped type model that cannot account for the
effects of different pumping patterns at the individual well
level. In 2019, CWRM updated the Water Resources Protection
Plan (Townscape Inc., 2019), this time considering both RAM
and RAM2 estimates with updated recharge information. In
addition to improving the accuracy of existing methods to
calculate sustainable yield values, the report emphasizes the
importance of better understanding groundwater and surface
water interactions, impacts to submarine groundwater and spring
discharge, and the spatial distribution of water use impacts to the
water supply. Our approach addresses many of those concerns
by integrating a spring discharge constraint and spatially
distributed pumping into a groundwater simulation optimization

Frontiers in Water | www.frontiersin.org 3 July 2020 | Volume 2 | Article 14

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Burnett et al. Spring Discharge and Groundwater Management

model for the estimation of sustainable yield in the Pearl
Harbor aquifer.

Methods
Our research objective is to operationalize groundwater
management by directly incorporating elements of the state
water code, with particular focus on the protection of historically
and culturally important spring resources. Our framework
incorporates a simulation optimization procedure to estimate
optimal maximum pumping given a spring discharge threshold,
and salinity and drawdown constraints.

Description of the Study Site
The Pearl Harbor aquifer is the state’s most heavily utilized
aquifer, and has spurred both the sustainable yield policy
and methodology that is currently being used by groundwater
managers in the state (Mink, 1980; Liu et al., 1981; Oki,
2005; Liu, 2006). The aquifer consists of a highly permeable
stack of sub-aerial lava flows extending from land surface to
approximately 1,800 meters below sea level, below which are
less-permeable pillow lavas. Several geologic barriers, consisting
of vertical dikes and post-erosional valley-fill deposits constrain
lateral regional groundwater flow. The volcanic rift zones
contain thousands of nearly vertical, low-permeability dikes
that cut across existing lava flows, impounding water in
numerous “dike compartments” (Takasaki and Mink, 1985; Oki,
2005). Vertical dikes act as subsurface dams that block lateral
groundwater flow to great depths through the otherwise highly-
permeable layered sub-aerial lavas, creating large differences
in groundwater levels across the barrier. Low-permeability
valley-fill deposits and weathered volcanic rocks beneath the
valley-fill deposits impede shallow groundwater movement
and create smaller differences in groundwater levels across
the valley.

This aquifer is designated as a “groundwater management
area” by the state. As such, the groundwater resource is protected
by managing pumping rates through a permitting process.
For management purposes, the Pearl Harbor Aquifer Sector is
divided into three hydrologically connected systems, namely,
the Ewa-Kunia system, the Waipahu-Waiawa system, and the
Waimalu system (Figure 2). Our study site also includes the
Moanalua aquifer system, which is part of Honolulu Aquifer
Sector. Historical records have led to concerns regarding
potential saltwater-intrusion effects due to large pumping rates
from the Waimalu management system. Recharge to the Pearl
Harbor aquifer is from direct infiltration of rainfall and irrigation
water, as well as discharge from upgradient ground water bodies
(for a figure of groundwater flow fields, see Oki, 2005, Figure 11)
including the high-level dike compartments and the Schofield
Plateau in central O‘ahu. Recharge estimates for this work were
taken from Engott et al. (2017). Mean annual rainfall in the
Pearl Harbor area ranges from 25 to 120 inches per year (Engott
et al., 2017). Further details of the study site, including geological
factors, land use and cover, and climate are described in detail by
Oki (2005).

Within the Pearl Harbor aquifer, there is a set of four
inland springs near the margin of the caprock (Figure 2).

According to Visher and Mink (1964), the main spring
discharge is from areas where volcanic rocks are exposed at
a break in slope of the land surface. Water also discharges
as diffuse seeps throughout the aquifer area (Oki, 2005).
Historically, the spring discharge was used for wetland crops
such as rice, and is currently utilized for watercress cultivation
and industrial purposes. Available data for spring discharge,
which were utilized in model calibration, are displayed in
Figure 26 of Oki (2005). Given the importance of Pearl
Harbor aquifer, we selected it as a case study to present
a transdisciplinary groundwater management framework that
better aligns the operationalization of sustainable yield to its
definition in the state water code. The approach and framework
are general and can be applied to other sites even utilizing other
simulation models.

We focus on a particular site within the Pearl Harbor aquifer,
Sumida Farm, to demonstrate the importance of incorporating
aspects such as spring discharge into sustainable yield evaluation.
Sumida Farm is a ten-acre watercress farm and the only
significant green space in the otherwise heavily urbanized Pearl
City area. The third and current generation of owners now
manages the farm with 11 full-time employees. Sumida Farm is
the largest watercress producer in Hawai‘i, producing 70 percent
of the watercress grown in the state. The crop is hand planted,
harvested, and washed, delivering 4–5 tons per week to the O‘ahu
market alone.

There are about a dozen watercress farms within the Pearl
Harbor study area, including the Sumida farm, with a crop
that can only be grown in free-flowing spring water. A defining
characteristic of such a location is the access to abundant and
naturally flowing fresh spring water from Kalauao Spring in
the highly urbanized Pearl Harbor aquifer (Figure 2). Spring
discharge at the farm has decreased by roughly 50% since
the farm began in 1928, from 10 million gallons per day
(MGD) to approximately 5 MGD by the 1990s (David Sumida,
personal communication). During this period of decreasing
spring discharge, the Sumida family observed lower yields,
watercress “rot” in the hotter summer months, and increased
levels of salinity within the plots. While there are likely
several factors driving the decline in spring discharge, one
possibility is the increase in groundwater pumping from the
Pearl Harbor aquifer, especially the increasing quantities being
withdrawn and delivered to the urban core of Honolulu to
the east.

Aside from being the State’s largest producer of watercress,
Sumida Farm is a historically and culturally important resource
to the local community, providing valuable green space in
this highly urbanized area (Figure 3) as well as educational
opportunities (Engels et al., in press). An average of 2,000
people visit Sumida every year, particularly children and
senior citizens, to tour the farm, learn about local agriculture,
and interact with the birds, crawfish, and other wildlife
found within the plots. Sumida Farm provides and supports
historical and community values (Figure 4). We use Sumida
Farm as a case study to examine how protection of spring
discharge to preserve such values may impact sustainable
yield evaluation.
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FIGURE 3 | Sumida Farm (orange outlined area) in the highly urbanized Pearl Harbor area.

FIGURE 4 | Multiple benefits associated with 100% spring-fed Sumida Farm. (A) Important habitat for birds, fish, and insects. (B) Cultural and community

importance: Barbara and David Sumida, third-generation Sumida siblings and farmers. Moriichi and Makiyo Sumida, Barbara and David’s grandparents started the

farm in 1928. (C) Provision of goods: Bushels of fresh watercress bundled for delivery. (D) Employment: Sumida farmworker tending to the fields.

Identification and Quantification of Management

Objectives and Constraints
Keeping in mind the definition of sustainable yield and the
requirements of the state water code, we identified the top
three groundwater management objectives in collaboration with
water management agencies as: (1) reduction of salinization
risk to protect the resilience of the aquifer systems to saltwater

intrusion, (2) minimization of drawdown to avoid over-drafting
and upconing, and (3) conservation of spring discharge to restore
or maintain traditional cultural Hawaiian sites and natural
terrestrial ecosystems.

Quantifying constraints to address objectives (1) and (2)
were fairly straightforward. For the simulation optimization
procedure (described below), maximum salinity thresholds were
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set at 250 mg/l and 1,000 mg/l chloride at basalt and caprock
wells, respectively. The basalt wells salinity threshold follows
the U.S. Environmental Protection Agency’s (EPA) secondary
standard for drinking water. The caprock salinity threshold was
recommended by the state’s primary regulators, the Commission
onWater ResourceManagement (CWRM), and is also consistent
with the state’s calculation for sustainable yield. A 5m drawdown
from the pre-development head-level was also enforced at all
wells, where the head level is the groundwater table relative to
the mean sea level.

Together, these constraints ensured an acceptable quality
of pumped groundwater for potable uses. The third objective
proved more challenging because the utility of spring discharge
for cultural uses and natural ecosystems is not as clearly
quantifiable without more specific definitions of “conservation”
and “utility.” Ultimately, we conducted multiple simulation
optimization runs for different levels of spring discharge
constraints to generate a pumping-discharge tradeoff curve.
More specifically, a range ofminimum allowable spring discharge
rate constraints was specified as percentages of the pre-
development discharge rate (Oki, 2005).

Using data provided to CWRM by well operators, we initially
identified 98 pumping wells in the Pearl Harbor groundwater
area (Figure 5A). However, to reduce the problem ill-posedness
and reduce the computational cost, we elicited feedback from
CWRM on how best to reduce the number of decision variables.
Many of the smaller wells (< 1 MGD) are privately-owned
(yellow circles in Figure 5A) and are a relatively small share of
current aggregate pumping. Coordinating the management of
pumping from many small privately-owned wells in accordance
with an aquifer-scale optimization solution would be challenging.
Thus, for both computational and practical reasons, the analyses
were restricted to major wells with current pumping rates greater
than or equal to 1 MGD: 27 key pumping wells (22 municipal
wells, 3 federal wells, and 2 private wells). Pumping from
wells currently pumping <1 MGD were held constant in all
simulations. Current pumping for each well (Figure 5B) was
estimated as the average pumping over the period 2001–2015
using data provided by CWRM.

Simulation Optimization Procedure
Reflecting the importance of the aquifer as a resource, numerical
models have been utilized in Hawai‘i in addressing management
questions regarding groundwater sustainability. Such models
integrate available information with various water flow and
chemical transport processes into a conceptual model and a
suitable numerical (simulation) model is then chosen that is
able to simulate the processes of concern (see, e.g., Souza and
Voss, 1987, 1989; Voss and Souza, 1987; Voss, 1999; Gingerich
and Voss, 2002, 2005; Oki, 2005). Although such models
utilize a scenario simulation approach in answering management
questions, they are not able to explicitly identify optimal policies.

We used a simulation optimization method to estimate
sustainable yield in Pearl Harbor aquifer for a range of constraints
designed to maintain spring discharge at the Kalauao spring
complex, which includes Sumida Farm. Simulation optimization
is a technique that uses simulation models and an optimization

algorithm to maximize or minimize an objective function aimed
at identifying optimal management solutions. We used the finite
element groundwater SUTRAmodel of the Pearl Harbor Aquifer
(Oki, 2005) to simulate groundwater flow and chloride transport.
This model is based on a modified version of SUTRA 2.0
(Voss and Provost, 2002), which was designed to simulate three-
dimensional, variable-density ground-water flow and solute
transport in heterogeneous anisotropic aquifers. Themodel mesh
consists of 306,432 nodes and 292,875 elements, covering the
freshwater-lens system of the Pearl Harbor area and the adjacent
Moanalua groundwater area to the east. The model’s domain
extends vertically 1,800m below mean sea level to coincide
with an assumed aquifer bottom and is laterally defined by
no-flow, recharge, or specified-pressure boundaries. Pumping
wells were represented in the model by the nearest vertical
column of nodes, and discharge from the Pearl Harbor spring
complex was modeled as a function of simulated head levels
(Oki, 1998). Oki (2005) provides a detailed description of the
density dependent groundwater SUTRA model of Pearl Harbor.
The Oki (2005) model was calibrated by using published data
to constrain values for permeability, storage, and dispersivity.
The calibration was aimed at matching measured with simulated
values of water levels, spring flows, and salinity profiles at wells
in the modeled area. Because the distributions of parameter
values were kept simple and some of these parameter values
were not known, Oki cautions that additional pumping data
in conjunction with water-level drawdown and recovery data is
needed for complete calibration of the model. Still, we rely on
this model as one trusted by the broader hydrological and water
management stakeholder community in Hawai‘i. For the 50-year
design period from 2021 to 2070, the simulation optimization
scheme estimates the maximum allowable pumping in the Pearl
Harbor aquifer without violating the salinity, head drawdown,
and spring discharge constraints.

Spring discharge was among the management objectives that
were identified by stakeholders as important (Chun et al., 2017)
and directly in line with the Hawai‘i StateWater Code. Therefore,
to better understand the tradeoff between spring discharge
protection and pumping, we ran the simulation optimization
under four different scenarios regarding spring discharge:
maintaining current spring discharge, and spring discharge
constrained at 80%, 60%, and 40% of the pre-development level.
The simulation optimization procedure utilizes the covariance
matrix adaptation-evolution strategy (CMA-ES, Hansen et al.,
2003), with parallel computing implementation (Elshall et al.,
2015). CMA-ES is a stochastic derivative-free optimization
algorithm that numerically estimates a covariance matrix
of the decision variables to learn about the underlying
objective function.

We use CMA-ES to link the objective function (see the
Appendix for details) to the groundwater SUTRA model
(Figure 6). Figure 6 illustrates the connection between
the optimization and simulation modules. The decision
variables (i.e., pumping wells with variable pumping rates)
and constraints (i.e., reducing salinization risk, minimizing
drawdown, conserving spring discharge) for the optimization
problem were selected based on feedback from the state water
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FIGURE 5 | Maps of the Pearl Harbor aquifer showing: (A) wells categorized by aquifer formation, aquifer management unit, and owner; (B) current pumping of

pumping wells to identify potential decision variables) and current spring discharge; (C) optimal solution with 27 decision variables.

FIGURE 6 | Simulation optimization procedure.

management agency, CWRM. With the objective function in
place, the CMA-ES optimization algorithm starts by generating a
candidate spatial pumping setting, which is fed into the SUTRA

groundwater model. SUTRA then simulates density dependent
flow, and the SUTRA model outputs (i.e., head, salinity, and
spring discharge) are evaluated against the set of constraints to
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FIGURE 7 | Simulation optimization results with spring discharge constrained at: (A) 80%, (B) 60%, (C) 40%. (D) Estimated spring discharge-SY tradeoff curve.

Current pumping within the Pearl Harbor aquifer (117 MGD) allows for approximately 77 MGD of total spring discharge (marked with a diamond) given optimum

pumping.

calculate the objective function. The spatial setting of pumping
rates is then adjusted given the objective function, and the
process is repeated to determine optimal pumping.

RESULTS

Over a 50-year period with salinity, drawdown, and current levels
of spring discharge constraints, the optimal maximum allowable
pumping is 127 MGD (Figure 7C). For comparison, the current
pumping rate of 117 MGD is already near the estimated optimal
maximum, while the current designated sustainable yield value of
182 MGD using RAM2 is notably higher.

Given the requirements of the State Water Code, the next
step was to incorporate spring discharge in the simulation
optimization scheme. We then defined additional constraints as
different percentages of that pre-development discharge level.
Our simulation optimization results suggest that the estimated

optimal maximum allowable pumping changes from 127 MGD
to between 45 and 150 MGD, depending on the severity of
the spring discharge constraint (Figure 7). As the discharge
constraint is relaxed (shifting from Figures 7A–C), maximum
allowable pumping rates increase and are more uniformly
distributed across the aquifer. Given that the current pumping
rate from the Pearl Harbor aquifer is 117 MGD, which is more
than twice that required to restore 80% of the pre-development
spring flow or higher, imposing such a strict constraint is
likely infeasible in practice. We, therefore, estimated a “tradeoff
curve” to illustrate different combinations of spring discharge
constraints and optimal maximum allowable pumping estimate
(Figure 7D).

If the relationship between spring discharge and socially,
culturally, economically, and historically important resources
within the Pearl Harbor aquifer could be more precisely
quantified, then the tradeoff curve could be truncated. In
the case of watercress production, for example, if data were
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available on the relationship between spring discharge quality or
quantity and farm productivity, then we could focus on feasible
discharge-pumping combinations that support a minimum level
of production. In general, we believe that this type of approach
could be extended to other situations in which pumping rates
from the aquifer reduce the amount of discharge available for
competing uses.

The simulation optimization results presented here are
subject to several limitations, including objective function
stability, potential interactions between state variables, solution
convergence and repeatability, and others, as discussed in Elshall
et al. (2015). The limitations of the numerical groundwater model
are discussed in detail by Oki (2005).

DISCUSSION

This paper provides a framework for calculating optimal
water pumping rates (here, “sustainable yield”) given a
state water policy requiring the consideration of specific
protections to social and ecological uses beyond meeting potable
uses. In-so-doing, we provide a practical way to implement
growing calls to incorporate valued groundwater dependent
ecosystems into groundwater sustainability policies (Elshall
et al., 2020). Although the process described here was borne
out of local decision support needs identified through an
initial engagement process, the framework is generalizable
to other areas. The results of the simulation optimization
method illustrate the impact and benefits of including spring
discharge into groundwater allocation calculations. This
approach provides an enhancement over the current method
of calculating sustainable yield, which does not account for
this component.

We developed a tradeoff curve between spring discharge
and pumping to advance sustainable yield policy. The next
steps would include further narrowing down preferences on
where along the tradeoff curve the community is willing to
be. That is, how much spring discharge is society willing
to trade off for increased levels of pumping? A number of
other targets are possible: protection of (measurable) ecological
health, restoration of traditional wetland agriculture, other
historical standards, or maintaining a percentage of pre-
development levels. Alternatively, because it may not be realistic
to maintain a target discharge level indefinitely given current
and projected drying trends across the Hawaiian Islands (Elison
Timm et al., 2014; Frazier and Giambelluca, 2017) and other
external factors, another possibility is an adaptive target that
evolves in response to changes in water supply and demand.
Regardless of the target, the protection of spring discharge
benefits should be balanced with consumptive and recreational
uses in mind.

Without reducing total water demand, reducing total
pumping to maintain a desired rate of spring discharge generally
increases costs to other water users. With a constraint in place,
a combination of behavioral, policy, and technological changes
would be required to increase water use efficiency to some
degree. Any remaining demand in excess of the maximum

allowable pumping of groundwater would have to be met by
an alternative, likely more expensive, water source. This would
put upward pressure on water prices for all customers of
the municipal water system, including domestic, commercial,
industrial, and some agricultural users. At the same time,
however, maintenance of spring discharge generates a number
of benefits beyond those related to spring-dependent agriculture.
Many coastal ecosystems, both terrestrial and marine, depend
on groundwater discharge to some extent. Coral reef, algae,
and fish health, for example, can be affected by changes in
salinity or nutrient concentrations carried into the nearshore
by groundwater (Duarte et al., 2010; Delevaux et al., 2018;
Taniguchi et al., 2019). These ecosystem impacts can, in turn,
affect social systems like commercial or subsistence fisheries
and recreational activities for both residents and visitors. The
latter of which is of particular concern for a location like
Hawai‘i, where tourism accounts for a relatively large share of
the economy.

While the analysis presented here did not attempt
to quantify the many types of linkages between spring
discharge and spring-dependent ecosystems, the illustrative
tradeoff curve provides a practical way to visualize the
tradeoff between aboveground groundwater uses and
spring discharge quantities. We believe that this approach
has broad relevance for stakeholders in the Pearl Harbor
aquifer and beyond and can be used to initiate an iterative
process of stakeholder-engaged science and scientifically
informed policy.
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APPENDIX

The object function
∑2

i= 1 fi is to maximize allowable pumping
without violating the constraints. For any m decision
variables (pumping wells), we used a pumping-dependent
objective function

f1 =
∑m

i= 1 ri × qi × pi

{

pi = − 1 ∀Wi,obs > Wi,threshold

pi = 1 ∀Wi,obs ≤ Wi,threshold
(1)

such that the solution will be penalized if the chloride
concentration or drawdown, Wi,obs, in any pumping well i
exceeds its chloride concentration or drawdown threshold,
Wi,threshold; qi is pumping from well i; and pi is a penalty term.
The weighting term, ri, represents the relative importance of
pumping well i, and we assume equal weighting for all decision
variables. We observe the chloride concentration and drawdown,
Wi,obs, for each well at the end of the simulation period (50
years). The spring objective function is a hard penalty constraint

f2 = 4000× p

{

pi = − 1 ∀Sobs < Sthreshold
pi = 0 ∀Sobs ≥ Sthreshold

(2)

such that Sobs is the total spring discharge observed at the
end of the simulation period (50 years); Sthreshold is the spring
discharge threshold for all springs combined; and p is a penalty
term for total spring discharge.
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