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In Eastern Africa, increasing climate variability and changing socioeconomic conditions

are exacerbating the frequency and intensity of drought disasters. Droughts pose a

severe threat to food security in this region, which is characterized by a large dependency

on smallholder rain-fed agriculture and a low level of technological development in the

food production systems. Future drought risk will be determined by the adaptation

choices made by farmers, yet few drought risk models … incorporate adaptive

behavior in the estimation of drought risk. Here, we present an innovative dynamic

drought risk adaptation model, ADOPT, to evaluate the factors that influence adaptation

decisions and the subsequent adoption of measures, and how this affects drought

risk for agricultural production. ADOPT combines socio-hydrological and agent-based

modeling approaches by coupling the FAO crop model AquacropOS with a behavioral

model capable of simulating different adaptive behavioral theories. In this paper, we

compare the protection motivation theory, which describes bounded rationality, with a

business-as-usual and an economic rational adaptive behavior. The inclusion of these

scenarios serves to evaluate and compare the effect of different assumptions about

adaptive behavior on the evolution of drought risk over time. Applied to a semi-arid

case in Kenya, ADOPT is parameterized using field data collected from 250 households

in the Kitui region and discussions with local decision-makers. The results show that

estimations of drought risk and the need for emergency food aid can be improved using

an agent-based approach: we show that ignoring individual household characteristics

leads to an underestimation of food-aid needs. Moreover, we show that the bounded

rational scenario is better able to reflect historic food security, poverty levels, and crop

yields. Thus, we demonstrate that the reality of complex human adaptation decisions

can best be described assuming bounded rational adaptive behavior; furthermore, an

agent-based approach and the choice of adaptation theory matter when quantifying risk

and estimating emergency aid needs.

Keywords: agent-based model, drought adaptation, drought risk, adaptive behavior, adaptation decisions,

socio-hydrology
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INTRODUCTION

Droughts regularly affect communities, leading to water and
food shortages, reduced crop yields, loss of livelihood, and
famine (Barron et al., 2003; Ifejika et al., 2008). The impacts
are difficult to quantify because they are often delayed
and may last several years (Wilhite, 2000; United Nations
Development Programme, 2007). Moreover, the magnitude
of these impacts not only depends on the severity of
the drought event and the number of people exposed but
also on how people adapt to periods of reduced water
availability (Mude et al., 2007; Birkmann et al., 2013). Although
several studies have dealt with uncertainties in estimating
drought hazard, the interplay between adaptation and drought
risk has often been neglected (Wens, 2019). Consequently,
vulnerability has typically been included as a static factor,
which assumes a “business-as-usual” level of future adaptation
(Adger et al., 2018; De Pinto et al., 2019; Wens et al., 2019).

In reality, adaptive behavior is highly dynamic (Dobbie,
2013; De Koning, 2019). People implement drought adaptation
measures based on past experiences and changes in their
natural and socioeconomic environment (e.g., Wilhite, 2002;
Stefanovi, 2015; González et al., 2016). Understanding the
dynamic interplay between the physical water system and human
adaptation has sparked the novel socio-hydrology scientific field
(Sivapalan et al., 2012; Baldassarre et al., 2015). Recognizing
this socio-hydrological feedback is found necessary for better
understanding the fluctuations in drought risk over time, driven
by a combination of physical drivers (e.g., climate variability),
socioeconomic developments, and human adaptive behaviors
(e.g., Van Loon et al., 2016; Hagenlocher et al., 2019).

Research has attempted to simulate the adaptive decisions
of individuals facing the harmful effects of hazard events using
recognized economic theories, such as the expected utility theory
(EUT, Von Neumann and Morgenstern, 1945) for economic
rational decision-making under uncertainty (e.g., Haer et al.,
2019). However, human adaptive behavior under uncertain
conditions is rarely rational (Eiser et al., 2012; Holden, 2015), and
people tend to exhibit “bounded rational” logic when deciding
on adaptation measures (Asgary and Levy, 2009; Van Duinen
et al., 2016). For example, research in disaster risk management
has shown people overestimate the probability of rare events,
and adaptive behavior and risk perception are shaped by factors
including worry, past experiences, and socioeconomic conditions
(Tongruksawattana, 2014; Mwongera et al., 2017).

The existence of bounded rational behavior has been
confirmed by studies on agricultural drought risk (e.g., Van
Duinen et al., 2012; Gebrehiwot and van der Veen, 2015;
Elagib et al., 2017), evidenced by low adoption of wells and
irrigation measures among farmers, despite such measures being
economically efficient (Ngigi et al., 2005b; Khisa et al., 2014b;
Bouma et al., 2016; Wambua and Akuja, 2016). It has been
suggested that farmers’ adaptation decisions are influenced by
a biased perception of risk and a lack of trust in their own
control over drought risk (Murgor et al., 2013; Ochieng et al.,
2016; Nkatha, 2017; Khisa, 2018; VanValkengoed and Steg, 2019).
Other factors that have been shown to influence the adoption of

adaptation practices include limited access to financial, human,
social, natural, and physical capital (Kalungu et al., 2013; Matere
et al., 2016; Bunclark et al., 2018). Knowledge dissemination
through social networks and the gaining of required skills
through extension services are increasingly seen as essential
for improving the agricultural drought practices of smallholder
farmers (Kitinya et al., 2012; Van Duinen et al., 2016).

Although the importance of including such complex human
adaptive behavior in risk assessments is increasingly recognized
(Palmer and Smith, 2014; Groeneveld et al., 2017; Schlüter
et al., 2017), identifying the key variables that steer adaptation
decisions is difficult (e.g., Klabunde and Willekens, 2016;
Aerts et al., 2018). Alternative theories for modeling adaptive
behavior—adding psychological and sociological drivers in
addition to economic ones—can be applied to overcome this
challenge. Examples of such complex theories include the
prospect theory (Kahneman and Tversky, 1979; Asgary and Levy,
2009; Holden and Quiggin, 2017), the theory of planned behavior
(Wheeler et al., 2013; Sutton, 2014; Van Dijk et al., 2016),
and the protection motivation theory (Maddux and Rogers,
1983; Grothmann and Patt, 2005). Among these, the protection
motivation theory (PMT) is one that has been successfully
applied to describe farmers’ dynamic drought-adaptive behavior
in multiple studies (Dang et al., 2014b; Gebrehiwot and van der
Veen, 2015; Van Duinen et al., 2015a; Keshavarz and Karami,
2016; Zheng and Dallimer, 2016).

In the present research, we studied the factors that
drive drought adaptation decisions of smallholder farmers by
comparing business-as-usual and economic rational behavior—
the latter modeled following the EUT–, with the more complex,
empirically supported bounded rational behavior—modeled
following the PMT. We developed an innovative dynamic
drought risk adaptation model, ADOPT, which links the physical
crop growth model Aquacrop (FAO, 2009; Vanuytrecht et al.,
2014; Foster et al., 2017b) with a behavioral model capable of
simulating each of the abovementioned scenarios. ADOPT thus
simulates the adaptive actions and interactions of individual
farm households in relation to experienced agricultural drought
risk. It applies an agent-based approach, the primary tool
for modeling individual adaptation decisions and complex
interactions (Railsback and Grimm, 2012). In agent-based
models (ABMs), agents (e.g., government, households) have the
capacity to learn and adapt in response to changes in other
agents and the environment (Matthews et al., 2007; Palmer and
Smith, 2014). ABMs provide a bottom-up method for tracing
behavior over time, and simulate human–human and human–
environment interactions at the local level, which can lead to
the emergence of patterns at the macro-level (Dobbie et al.,
2018; Wens et al., 2019). Such models include probabilistic
functions that describe the individual behavioral dynamics of
heterogeneous decisions-makers with different socio-economic
backgrounds, are actively applied to study farmers’ behavior
in several contexts, such as drought management and farm
innovation (Barreteau et al., 2004; Gunkela and Külls, 2011;
Schreinemachers and Berger, 2011; Van Oel and Van Der Veen,
2011; Van Duinen et al., 2012; Blair and Buytaert, 2016). In
this paper, the ADOPT model framework is showcased for
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subsistence households in semi-arid rural Kenya over the period
1982–2013. Survey data on household behavior in Kitui, Kenya
(Wens, 2019) were used to create a heuristic understanding of
the co-evolution of drought risk and human adaptation decisions
and to initialize the agents (farm households) in the model. The
intent of this study is not to be predictive; but to demonstrate
how an agent-based approach and the choice of behavioral theory
affect the estimation of drought vulnerability and risk over time.

The remainder of this paper is organized as follows: section
Case Study Description introduces the semi-arid study area
in Kenya for which the model is calibrated. Section ADOPT
Model Description contains the model description detailing both
agricultural drought simulations using the FAO crop model
Aquacrop, and human decision simulations following three
scenarios: business-as-usual, economic rational (expected utility
theory), and bounded rational (protection motivation theory).
Section Results presents the results of drought risk simulations
using ADOPT, and section Discussion provides the discussion
and conclusions on how different assumptions on adaptive
behaviors influence drought risk estimations.

MATERIALS AND METHODS

Case Study Description
The case study is representative for the rural areas of three semi-
arid counties, Kitui (30.430 km2, 1.136187 citizens), Machakos
(6.043 km2, 1.421.932 citizens), and Makueni (8.008 km2,
987,653 citizens) in south-eastern Kenya (TEGEMEO, 2000;
ILRI, 2006; Rapsomanikis, 2010; Wens, 2018, 2019) (Ilri, data
Tegemeo Institute, 2000, 2004, 2007, 2010; Wens, 2019). They
are characterized by a dry savanna/warm tropical climate
(Njoka et al., 2016). Agriculture in this area is dominated
by rain-fed subsistence production systems with households
largely dependent on crop and livestock production for income
(United Nations Development Programme, 2007; Wambua and
Akuja, 2016). Maize remains the most important food crop,
and drought-induced yield reductions of maize are largely
synonymous with food insecurity and dependence on external
aid (Brooks et al., 2005, 2009; Alessandro et al., 2015). High
temperatures coupled with unreliable rainfall have caused
significant shocks for rural communities in past decades, such as
in 1999/2000, 2004/2005, 2010/2011, and 2017/2019 (Erenstein
et al., 2011b; Kioko, 2013). Furthermore, extreme temperature
and rainfall deficiency events have been occurring on an
increasingly frequently basis (FEWSNET, 2010; Khisa et al.,
2014a; Government of the Republic of Kenya, 2017; Khisa, 2017).

Kenyan households have a long history of adapting to
droughts using traditional and emerging practices (Black et al.,
2012; Recha et al., 2012; KEFRI et al., 2014; Shiferaw et al.,
2014; Kalungu et al., 2015; Kimani et al., 2015; Gbegbelegbe
et al., 2017). An example is the building of fanya juu terraces,
which are a combination of trenches and sand bunds in sloping
cropland to for increase the storage of runoff on horizontally
created terraces (Biamah et al., 1993; Makurira et al., 2011; Hailu
et al., 2012; Muriu et al., 2017; Wolka et al., 2018). Another
method is residue mulching, which involves covering the soil
surface with plant material to retain soil moisture through

reduced evaporation and increased infiltration (Okeyo et al.,
2014; Mo et al., 2016; Mfitumukiza et al., 2017; Mugambiwa,
2018). While the maintenance of these two in-soil water storage
measures can be demanding in terms of labor, implementation
knowledge is available and they do not require large initial
investments (Lasage and Verburg, 2015). Irrigation—although
highly efficient economically (Nakawuka et al., 2018)—is less
popular among smallholder farmers because the implementation
of irrigation techniques requires advanced and often costly
infrastructure, technical knowledge, and institutional support
(Sijali and Okumu, 2002; Ngigi et al., 2005a; Kulecho and
Weatherhead, 2006; Ngigi, 2019). Moreover, the amount of
surface runoff that many areas receive is too small to irrigate
(Barron and Okwach, 2005; Rockström and Falkenmark, 2015).
To provide extra water, cost-effective shallow wells can be
installed, which can be linked to automated irrigation systems,
such as a drip system (Ngigi, 2003; Venzi et al., 2015).

Recently, the authors administered a survey in the case
study area to build an understanding on households’ drought
vulnerability dynamics and changing capacity to cope with
droughts (Wens, 2018, 2019). The data collection method
involved administration of a short questionnaire among
employees of Kenyan national disaster coordination units (n =

10); semi-structured expert interviews (n = 10) with NGOs,
governmental water authorities, and pioneer farmers in the
Kitui district in Kenya; and an in-depth questionnaire among
smallholder farmers in central Kitui (n = 250). While this
questionnaire only provides data about a snapshot in time,
questions were focused on the dynamics of vulnerability. Rather
than asking only questions related to current practices, the
survey was designed to also inquire aspirations, challenges and
intentions to adopt new drought adaptation measures in the
past and the future. Based on this survey, the following on-farm
drought adaptation measures were considered in the present
research: (i) the improvement of in-soil storage using mulch
cover; (ii) the construction of fanya juu terraces; (iii) the digging
of shallow wells on property; and (iv) the installation of drip
irrigation infrastructure. Currently, mulch, fanya juu, well, and
drip irrigation techniques are applied by 15, 45, 15, and 5%
of households interviewed in the area, respectively. The survey
was also applied to create economic household profiles (see
Appendix A), estimate the investment and maintenance costs of
the measures, and drive the utility functions and decision rules of
the ADOPT model.

ADOPT Model Description
ADOPT (Figure 1) works on the resolution of a subsistence
farm managed by one rural household, and consists of two
dynamically linked subroutines: (i) the agricultural model
AquacropOS (Foster et al., 2017a), which simulates maize yield
based on crop characteristics, soil characteristics, daily weather
conditions and farm water management (blue box in Figure 1;
subsection Simulating Annual Maize Yield per Farm); and (ii) a
behavioral model, which can simulate the adaptation decisions
of households assuming either business-as-usual behavior, or
through applying a behavioral theory: the expected utility
theory (EUT, assuming economic rational behavior) or the
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FIGURE 1 | Modeling scheme of the agricultural drought risk adaptation model ADOPT. Seasonal maize crop production is simulated using weather and agronomic

data in AquacropOS at the household scale (Blue). The resulting household maize yield is translated into farm income, which is fed into a behavioral model (Red).

Adaptive behavior is modeled per farm household using one of three scenarios: No adaptive behavior, economic rational adaptive behavior, or bounded rational

behavior. Following expected utility theory, the intention to adapt is modeled to be a function of Adaptation costs, adaptation efficacy, and household assets. Following

protection motivation theory, the intention to adapt is a function of risk perception, self-efficacy, adaptation costs, and adaptation efficacy. The individual farm

households’ intention to adapt leads to the yearly decision whether or not to adopt a new adaptation measure. These adaptation decisions influence their future

on-farm water management, thus establishing a feedback. Survey, weather, and agronomic data used as input to the model (Green), whereas yearly risk indicators

(household assets, poverty, food insecurity, and food aid) and the adoption rate of drought adaptation measures are outputs of the model (purple).

protection motivation theory (PMT, assuming bounded rational
behavior) (red box in Figure 1; subsection Simulating the
Adaptive Behavior of Subsistence Farmers). This setup allows
for the assessment of socio-hydrological feedbacks between farm
decisions concerning the level of drought adaptation measures
and the drought impacts they experienced (purple arrows;
subsection Simulating Annual Drought Impact for Subsistence
Farmers): in ADOPT, it is explicitly modeled how drought
adaptationmeasures influence crop yield, which impacts the farm

income thus household food security and financial assets, which
ultimately alters farmers’ risk perception and capacity to adopt
new adaptation measures (as detailed impact assessments are
highly location-specific and effective adaptation depends on the
understanding of drought risk at scales close to which decisions
are made, the spatial resolution of the model is at the field scale
of the farm households (on average 0.6 ha). A complete model
description including an overview, design concepts, details, and
decision making, as well as a summary of the input data can
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be found in Appendix A, following the ODD + D protocol for
ABMs (Müller et al., 2013).

Simulating Annual Drought Impact for Subsistence

Farmers
To simulate individual crop yield and adaptation decisions over
time, a heterogeneous sample of 1,000 farm households in an
area of 100 km2, representative for the case of Kitui, Makueni,
or Machakos, was chosen to be initialized (Tegemeo Institute,
2000, 2004, 2007, 2010; Wens, 2018, 2019). These households
have several characteristics that influence their annual harvest,
adaptation decisions, and drought vulnerability, including family
and farm size, social network, access to extension services,
possible adaptation measures, and off-farm income sources.
All household characteristics were stochastically derived from
the averages and standard deviations of different household
characteristics in previous research and a questionnaire (n= 250)
by Wens (2019) performed as part of this study (Appendix A).
The average farm size is 0.6 ha, heterogeneously distributed
among the households. Other spatial characteristics, such as
proximity to a river of town were omitted, as they do not
influence the model variables. To simulate seasonal market
volatility in response tomaize availability, the averagemaize price
of Kitui Town market (US$0.35/kg) was weighted by comparing
the percentage of total seasonal harvest with the average (30
years) harvest in the study area. From this, maize prices
fluctuate between US$0.2/kg (favorable seasons) and US$0.5/kg
(seasons with drought-induced crop losses; (Winter-nelson and
Amegbeto, 1998; Nyoro et al., 2005; FEWSNET, 2018).

ADOPT runs as follows:

For each season and household, maize production is simulated
using AquacropOS (subsection 2.2.2) based on daily weather
conditions as well as the drought adaptation measures applied
by the households. This maize harvest is partly allocated to
account for the households’ food needs—estimated as 103 kg
per year per adult (DTMA, 2015) and any additional harvest
is sold (farm income, increasing the households’ financial
assets). Shortages are made up through purchasing (reducing
the households’ financial assets) at the maize price of the
simulated season.
Each year, all households spend money on non-food and farm
input (expenditure), reducing their financial assets, and have a
potential off-farm income source (e.g., casual labor, livestock
breeding, private business, and brick making) that increases
their financial assets. Moreover, based on demographic data,
a household could increase or decrease in size over the
simulation period, altering its food demand (demographic
numbers are based on Wens, 2019).
Each year, all households evaluate their intention to adopt
a new drought adaptation measure. This intention is
influenced by the household’s financial assets and the
behavioral rules of the scenario applied (subsection
Simulating the Adaptive Behavior of Subsistence
Farmers). The adoption of such measures influences
the households’ individual maize production in the
following years.

To express the direct and indirect effects drought risk, it is chosen
to track, in addition to agricultural production, the following
metrics in ADOPT:

Poverty (households) is calculated per household assuming a
poverty line of US$ 1 per day.
Food insecurity (households) occurs if households’ food needs
exceeds their maize production.
Food aid (US$) is estimated as the food shortage of all
households multiplied by the maize price.

The cumulative amount of food shortage (kg) is estimated
following two procedures. The first excludes the agent-based
approach, assuming all farm households have the same farm
area, number of family members, and are equally wealthy (and
rich enough to buy their food needs). In this procedure, food
shortage is calculated by examining how many households the
total regional food supply (sum of the harvest for all households)
could feed. Food shortage is thus the difference between supply
and needs. The second includes the agent-based approach and
food shortage is calculated on an individual household level.
Food shortage occurs if households are in food insecurity, and
if they do not have the financial means to meet their needs or
if the regional food supply does not allow them to buy the extra
maize required to fulfill their food needs. The difference between
the two procedures helps exemplifying the added value of an
agent-based approach.

Simulating Annual Maize Yield per Farm
The open source version of the FAO crop-water model Aquacrop,
AquacropOS (Steduto et al., 2009, 2012; Foster et al., 2017a;
Foster and Brozović, 2018), was used to simulate biomass
and harvestable yield responses of maize to water availability
(Vanuytrecht et al., 2014). The model is designed for regions with
water-limited agricultural production, such as semi-arid Kenya.
By explicitly modeling the plant growth up to harvestable yield,
AquacropOS enables the assessment of the effects of water and
agricultural management on crop production (Heng et al., 2009).
It has been used by numerous studies in Kenya (e.g., Ngetich
et al., 2012; Wamari et al., 2012; Omoyo et al., 2015).

Historical weather data (1981–2013; Figure 2) for Kitui were
used as input for AquacropOS, which includes the daily gridded
CHIRPS rainfall dataset (Funk et al., 2015b), which combines
0.05◦ resolution satellite imagery with in-situ station data.
Furthermore, daily minimum and maximum temperature (◦C),
relative humidity, wind speed (m/s), and solar radiation (s)
from the Kitui area were obtained from the Climate Forecast
System Reanalysis (CFSR) dataset from the National Center
for Environmental Prediction of the United States National
Oceanic and Atmospheric Administration (Dile and Srinivasan,
2014). These data were employed to calculate reference
evapotranspiration using the Penman–Monteith equation (Allen,
2004; Ayugi et al., 2020).

Maize-specific parameters, such as the duration of flowering
and number of plants per hectare were derived from Ngetich
et al. (2014) and Wamari et al. (2012), who conducted an
extensive study on the calibration and validation of Aquacrop for
Katumani maize in Kenya. Remaining factors were calibrated to
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FIGURE 2 | Standardized Precipitation Evaporation Index (SPEI) calculated using CHIRPS Precipitation data and CFSR Evaporation data for 1982–2013. An

accumulation time of 3 months was used to show the seasonal climate variability. Values below 0 indicate conditions dryer than average. If such dryer than average

conditions are prolonged and occur during the crop growing cycle, drought impacts on agricultural production can be expected.

obtain realistic crop yield in the range (700–1,200 in good years)
reported by Brooks et al. (2009). The period of cropping (growing
period of 75–180 days) is limited to the rainy seasons (May–
June and October–February) (Government of Kenya, 2007; Black
et al., 2012; Mo et al., 2016). The hydraulic properties of the soil
were adopted from the case study in semi-arid Kenya executed by
Ngetich et al. (2014).

To simulate the effect on crop yield for the four drought
adaptation measures discussed, AquacropOS was run for all
possible combinations of these measures: It is possible for a
household to have a well, perform manual or drip irrigation,
and/or have fanya juu terraces, and/or apply mulch to fields
simultaneously (see section Case Study Description). Here it was
assumed that households who apply mulch to their fields were
assumed to have a year round 50% coverage of mulch, which
AquacropOS converted to a lower evaporation from the soil
by 0.6 (Raes et al., 2012). Households with fanya juu terraces
were assumed to have contour pits and bunds with a height of
60 cm (Wolka et al., 2018). Households with a shallow well are
assumed to manually water their crops in times of deficit; the
maximum irrigation depth was set at 12mm, the wetted area was
set at 30%, and the soil moisture target was set at 40% depletion
(Filho and de Trinchera Gomez, 2018). Since no distributed
hydrological model was included, wells are assumed to provide
enough water for irrigation at any time, not influenced by the
digging of other wells in their surroundings or by long-lasting
droughts. In our AquacropOS setup, we assumed that manual
watering was a soil moisture-based technique: households would
water their field if it feels dry (below 50% of total plant available
water). Furthermore, the application efficiency was assumed to
be rather low: 45% for manual watering (Howell, 2003). Drip
irrigation infrastructure allows for daily irrigation but can only be
implemented if a shallow well is already installed. The application
efficiency was set to 90% (Kenya Ministry of Environment,
Water and Natural Resources and Kenyan Water Resources
Management Authority, 2013). Results of the AquacropOS pre-
runs showed that crop yields averaged to 0.5 (±0.25) t/ha under

TABLE 1 | Scenario’s used in the ADOPT model.

BAU scenario

Section 2.2.3.1

EUT scenario

Section 2.2.3.2

PMT scenario

Section 2.2.3.3

Adaptive

behavior

Business as

usual

Economic

rational

Bounded rational

Theory Expected utility

theory

Protection

motivation theory

Adaptation

decisions

No

implementation

of new

adaptation

measures; static

representation of

vulnerability

Implementation

based on net

present value of

adaptation

costs, and

benefits (yearly

gains) over ten

year

Implementation

influenced by risk

appraisal, perceived

self-efficacy,

perceived

adaptation efficacy

and adaptation

costs

no adaptation measures; 0.6 (±0.25) t/ha under mulching or
terraces; 0.8 t/ha using manual irrigation; and 1 t/ha using
drip irrigation.

Simulating the Adaptive Behavior of Subsistence

Farmers
In ADOPT, three different behavioral scenarios were explored:
(1) business as usual (BAU); (2) economic rational behavior
(following expected utility theory, EUT); and (3) bounded
rational behavior [following the Protection Motivation
theory, PMT (e.g., Grothmann and Patt, 2005; Dobbie,
2013; Dang et al., 2014a,b; Gebrehiwot and van der Veen,
2015; Stefanovi, 2015; Van Duinen et al., 2015a,b, 2016;
Keshavarz and Karami, 2016; Zheng and Dallimer, 2016)]
(see Table 1). the BAU and EUT scenarios reflected the
common assumptions of no or full economic rational adaptive
behavior in drought risk models, and helped to position
the more complex, empirically observed bounded rational
behavior (PMT).
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Business as usual: no new adaptation
To represent the case of risk negligence, no additional adaptation
decisions are made by households in the BAU scenario. This
suggests that households do not perceive any change in risk or see
no benefit in adaptation, and hence will act independently from
it. Households have an initial level of drought adaptation (see
Appendix A) which does not change over time. It was assumed
that these farmers take loans to maintain the measures if needed.
The use of this scenario helps position the dynamic-adaptation
approach in drought risk assessments.

Economic rational behavior: expected utility theory
The EUT assumes that people seek to maximize their preferences
for safety or risk, evaluating the value ascribed to the outcomes
(“the utility”) of different adaptation actions and the probability
that each will occur (Haer et al., 2016a; Schlüter et al., 2017).
Applied to the Kenya case of drought management, rational
households are fully self-interested, have full information about
expected gains and losses, and always choose the adaptation
option that gives the highest utility within their budget
constraint. Households evaluate costs (e.g., possible yield loss
and installation costs of drought adaptation measures) and
benefits (e.g., reduction in possible yield loss) and their associated
probabilities objectively, and attempt to maximize their expected
utility given these costs and benefits (Shaw and Woodward,
2008). Social behavior, habits, and norms are ignored and
suboptimal choices are not taken into account (Gigerenzer and
Goldstein, 1996). It was also assumed that these farmers (as in
BAU) cannot lose measures as they take loans to maintain them
if required. The use of this scenario helps position the bounded
rational adaptation approach in drought risk assessments.

Based on the AquacropOS pre-runs for all combinations
of each of the four adaptation measures, the yield gains (B)
calculated as the difference in losses between situations with- and
without additional measures as well as the drought probability
(p) were derived. Wealth (W) is an individual household variable
tracked over time. Implementation and maintenance costs (C)
of the adaptation options were obtained from experts in the
fields (Appendix A). Assuming a slight risk adversity among the
households, the general utility function applied in model is U (x)
= ln x, which is a function with constant relative risk aversion.
As is generally done in studies applying the EUT (e.g., Haer et al.,
2016b), Every year, households adopt the adaptation measure
with the highest expected utility (Equation 1), if its action utility
proved higher than the utility of no action over a period of 10
years and if they can afford the initial implementation costs.

ExpectedUtilityaction = p ∗ LN ( W − C + Bd ) +
(

1− p
)

∗ LN (W − C + Bn) (1)

ExpectedUtilityno action = p ∗ LN ( W ) +
(

1− p
)

∗ LN(W)

where

• p, the probability of a drought season—defined as a season
with SPEI-3 value < −1.

• W, the wealth (total assets in USD) of the household.
• C, the cost of the adaptation measure in USD.

• B, the benefits (yield gain) in drought years (Bd) and non-
drought years (Bn) in USD.

Bounded rational behavior: protection motivation theory
the EUT has been recognized as having limitations because of the
assumptions of full information and the lack of social interactions
(Van Duinen et al., 2012). Bounded rational behavior, influenced
by social, economic, and psychological factors, can be included
either by adding it to the utility maximization functions or
by choosing alternative theories. the use of the PMT, which
has been proven to be a valuable tool for understanding the
adaptation decisions of individuals under drought risk, backed
up by stakeholder surveys in lower-income countries (subsection
Bounded rational behavior: protection motivation theory). This
socio-cognitive model of bounded rational private adaptation
integrates the effect of available resources and perceived climate
risks into one framework for explaining the determinants of
individual adaptation (Floyd et al., 2000; Grothmann and Patt,
2005). Indeed, the inclusion of socioeconomic and cognitive
factors has been supported by a number of local case studies,
which have found off-farm employment, group membership,
labor availability, access to extension services, and farm
experiences, to be the main drivers for the adoption of drought
adaptation measures (e.g., Mutune et al., 2011; Jager and Janssen,
2012; Oremo, 2013; Mutua-Mutuku et al., 2017; Mutunga et al.,
2017; Shikuku et al., 2017). Furthermore, a recent survey in
Kitui confirmed that the factors included in PMT are indeed key
determinants for the adaptive behavior in the face of agricultural
drought risk (Wens, 2019).

PMT states that a person’s intention to adapt is formed
through the risk appraisal process, and coping appraisal process
(Grothmann and Patt, 2005; Bubeck et al., 2012). While the PMT
is a qualitative theory, in ADOPT we have formalized this theory,
assigning a value between 0 and 1 to all factors of the theory, while
allowing room for uncertainties in the form of varying weights
for all the factors. In ADOPT, all the individual households form
an intention to adapt (Equation 2), a certain adaptation measure
(m), on an annual basis (t) as follows:

IntentionToAdaptt,m = α ∗ RiskAppraisalt

+ β ∗ CopingAppraisalt,m (2)

If a household has the financial capacity to pay for a considered
measure (Stefanovi, 2015), the intention to adapt is translated
into the likelihood the household will adopt this measure in
the following years. Whether the household actually adopts the
measure is stochastically determined for each household, each
year, based on this likelihood. When households have adopted a
measure, they will keep the measure. They are assumed to take a
loan if they cannot pay then maintenance costs: not maintaining
a measure is assumed to double the maintenance costs for the
following year.

Although Stefanovi (2015), Van Duinen et al. (2015a), and
Keshavarz and Karami (2016) have found positive relationships
between the factors of PMT and observed protective behavior,
a level of uncertainty exists related to the relative importance
of risk appraisal and coping appraisal in the specific context
of smallholder households’ adaptation decisions in semi-arid
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Kenya. Therefore, the α and β parameters were introduced as
weights for the two cognitive processes. To address the associated
uncertainty, they were widely varied (α, β ǫ [0.334:0.666]) in a
sensitivity analysis.

Risk appraisal (Equation 3), in our model-application a value
between 0 (not aware of any risk) and 1 (frequently exposed to
risk and lost all crop yield last year due to drought), is formed
by combining the perceived risk probability and perceived risk
severity, shaped by rational and emotional factors (Deressa et al.,
2009, 2011; Van Duinen et al., 2015b).Whereas, risk perception is
based in part on past experiences, several studies have suggested
that households place greater emphasis on recent harmful events
(Gbetibouo, 2009; Rao et al., 2011; Eiser et al., 2012). To
include this cognitive bias, each household has a drought disaster
memory, defined as follows (Viglione et al., 2014).

RiskAppraisalt = RiskAppraisalt−1 + (Droughtt ∗ Damaget )

− 0.125 ∗ RiskAppraisalt−1 with Damaget

= 1− exp
(

−harvestlosst
)

(3)

The drought occurrence in year t is a binary value with a value
of 1 if the SPEI-3 value falls below −1. The disaster damage of
a household is related to their harvest loss during the drought
year, which is defined as the difference between their current and
average harvest over the last 10 years.

Coping Appraisal (Equation 4, in our model-application a
value between 0 (no appreciation of the adaptation options at
all, no ability to pay for the measures) and 1 (full trust in
own capacity, in the efficiency of the measures and easily able
to pay for it) represents a households’ subjective “ability to
act to the costs of a drought adaptation measures, given the
adaptationmeasures’ efficiency in reducing risk” (Stefanovi, 2015;
Van Duinen et al., 2015a). In ADOPT, coping appraisal is a
combination of the households’ perceived Self-Efficacy (financial,
labor, and knowledge capacity of the farming households),
adaptation efficacy (or response efficacy) of the measure, and its
adaptation costs (or response cost):

CopingAppraisalt,m = γ ∗ SelfEfficacyt + δ ∗ AdaptationEfficacyt,m

+ ε ∗ (1− Adaptationcostst) (4)

Although Stefanovi (2015), Van Duinen et al. (2015b), and
Keshavarz and Karami (2016) quantified the relationships
between the factors driving the subjective coping appraisal
of individuals, a level of uncertainty remains related to the
relative importance of these drivers in the context of smallholder
households’ adaptation decisions in semi-arid Kenya. Therefore,
weights (γ, δ, ε ǫ [0.25:0.50]) were introduced and varied in a
sensitivity analysis using different ADOPT model runs.

The Adaptation Costs of the possible measures (see
Appendix A) were expressed in terms of a percentage of
the households’ assets (value between 0 and 1, with a maximum
of 1 as this reduces the intention to adapt to 0).

The Adaptation Efficacy (value between 0 and 1) of each
measure was calculated as the percentage of yield gain, with a
maximum of 100%. Because a lack of information is a significant
barrier to the adoption of drought adaptation measures (Deressa

et al., 2009; Ifejika, 2010; Below et al., 2012), this expected yield
gain was estimated for two types of households: those that receive
regular extension services (training in farm practices by the
government or NGOs) and those that do not:

For households that receive extension services (randomly
assigned during model initialization), the expected yield gains
were calculated as the change in annual average yield after the
adoption of the drought adaptation measure, using estimates
from pre-runs of AquacropOS. Therefore, this assumed prior,
unbiased knowledge about the efficacy of adaptation measures.
Households without access to extension services had to rely
on their neighbors to obtain information on adaptation
efficacy, and their expected yield gain was estimated as the
difference between the yields of neighboring households that
had already adopted a specific measure and the households’
own current yield. These households thus have a biased
adaptation efficacy.

A meta-analysis of factors motivating climate change adaptive
behavior found that perceived self-efficacy was strongly
associated with adaptation decisions (Van Valkengoed and Steg,
2019). In this research, we assumed that younger household
heads, household heads with a higher education (human
capacity), larger households (labor), and female household heads
have a higher self-efficacy (value between 0 and 1) and thus are
more likely to adopt the adaptation measures (Oremo, 2013;
Charles et al., 2014; Tongruksawattana, 2014; Muriu et al., 2017).

Model Sensitivity
ADOPT was run 50 times per adaptive behavioral scenario in a
Monte-Carlo simulation to average the effect of the initialization
of household characteristics (household size, farm-size, age,
education, off-farm income, and expenditures). To support
generalizability and simplicity, these household characteristics
were stochastically determined at the start of each run, assuming
a normal distribution, with the averages and standard deviations
of household characteristics reported in the survey datasets
(Wens, 2019). Moreover, the bounded rational scenario in
ADOPT was run 48 × 50 times, with 6 × 8 differentiating
combinations of weights for the Risk Appraisal and Coping
Appraisal factors (α, β ǫ [0.334:0.666], sum always equals
1) and the Self-Efficacy, Adaptation Efficacy, and Adaptation
Costs factors (γ, δ, ε ǫ [0.25:0.50], sum always equals 1).
Since it was not possible to calibrate the weights of all
PMT factors (this would require more surveys over a long
period of time), this sensitivity assessment where each factor
was halved or doubled in importance, was conducted to
explore the possibility space when accounting for bounded
rational behavior.

Besides, it was also investigated what the effect of the share of
households receiving extension services on the outcome would
be. This is done because the survey results (60%) and the
literature (often estimated around 30%, e.g., TEGEMEOdatasets)
strongly disagreed on the amount of households who have a
correct idea about the costs and benefits, and do not rely on their
neighbors to show how measures should be implemented).
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FIGURE 3 | Adoption of different drought adaptation measures over time, for three behavioral scenarios—economic rational (EUT, green), bounded rational (PMT,

blue), and business as usual/no adaptation (red)—and for four different drought adaptation measures (fanya juu terraces, mulching, manual irrigation, and drip

irrigation). Shaded blue areas show the variance across 48 bounded rational model runs, a result of the variety in weights of the PMT factors.

RESULTS

In this section, the results of the ADOPT model runs are
presented to explore the difference in adoption rate of drought
adaptation measures under BAU, economic rational behavior
(EUT), and bounded rational (PMT) behavior (section Adoption
of Drought Adaptation Measures). Moreover, we investigate the
difference in maize harvest and financial assets of the households
in the three scenarios (section Maize Harvest and Financial
Assets), and the consequences of this on the evolution of drought
risk over time in the form of poverty rates, household food
insecurity, and food aid needs (section Drought Risk).

Adoption of Drought Adaptation Measures
Using the three behavioral theories, ADOPT simulated the
intention to adopt and the resulting adoption rate of adaptation
measures over time. Based on a pre-run in Aquacrop, it is
clear that a combination of all four measures is the most
effective way to reduce negative impacts of droughts on crop
yield, while a combination of a well with irrigation is the most
economic efficient solution. Figure 3 shows the adoption rate of
the four different drought adaptation measures by the modeled
households. Applying mulch to the fields was a cheap and
economic efficient adaptation option, and therefore its adoption

in the economic rational scenario reaches 81% after 5 years
(Figure 3, upper left panel). In contrast, a gradual adoption
was found in the bounded rational simulation, reaching 34%
(11–49%) adoption by the end of the simulation period. The
adoption in this scenario is influenced by the households’ risk
perception as can be seen in the steep increase in the application
of mulch during and after the 1999–2000 drought. Fanya Juu
terraces, an indigenous technique already applied by 25% of
the farmers at the start of the simulation, were very popular
(Figure 3, upper right panel). An immediate adoption of 85%
was seen in the economic rational simulation, and a gradual
adoption up to 43% (35–53%) after 30 years was seen in the
bounded rational simulation. The installation of a shallow well is
economically efficient but expensive, which led to less overall and
more gradual adoption in the economic rational and bounded
rational scenarios. Households prefer to install a well and then
install drip irrigation (Figure 3, bottom panels): first they apply
manual irrigation, and after saving money they are able to buy
drip irrigation infrastructure. Overall, 44 and 10% (3–20%) of the
economic rational and bounded rational households were able to
install a well, which could drastically increase their crop yields. In
general, the households with a larger farm were the ones able to
adopt this technique. Furthermore, 43% of all economic rational
households and 5% (1–11%) of the bounded rational households
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FIGURE 4 | Average annual maize harvest of the modeled households in kg/year for three behavioral scenarios: no adaptation decisions (BAU), economic rational

(EUT), and bounded rational (PMT). Drought years (SPEI3 value in crop season < −1) are visualized as vertical orange bars. The shaded blue area show the variance

among 48 bounded rational model runs, a result of the variety in weights of the PMT factors.

were able to then further reduce their drought vulnerability by
adopting drip irrigation by 2010.

In the bounded rational scenario, adoption occurred gradually
since households that do not receive extension services cannot
adopt measures they do not see in use in their neighbors’
fields. Bounded rational farmers also adopted less economically
efficient measures as their limited information reduced their
ability to calculate the costs and benefits of all adaptation options.
Given the observed adoption rates (Wens, 2019) of fanya juu
terraces (45%), mulching (12%), well construction (16%), and
drip irrigation techniques (6%), we find that the economic
rational scenario largely overestimated the adaptation of all
measures. Besides, in this scenario, we see that after 30 years,
42.5% of the households adopted one measure, 19.5% adopted
two, 3% households adopted three and only 0.5% households
adopted all four measures. From the survey, it is reported that
42.3% of the respondents adopted one measure, 12.3% adopted
two, 1.5% adopted three and 0.7% adopted all four measures.
The estimated adoption rates using bounded rational scenario
thus best reflected the observations, except in the case of mulch
application. The inclusion of PMT behavior is thus better able
to capture some of the variability in adoption decisions, but is
nevertheless still not a complete explanation of the observed
adaptive behavior of households in semi-arid Kenya.

Maize Harvest and Financial Assets
Figure 4 presents the ADOPT average maize harvest results (in

kg, based on two growing seasons) for the three behavioral

scenarios. These maize harvests were affected by drought events
(orange bars) and the adoption of drought adaptation measures

over time. The results showed that the historical drought disasters
registered in EMDAT (1984, 1991/1992, 1994, 1999/2000, and
2008/2009) were also apparent in our modeled harvest, boosting
confidence in the capacity of ADOPT to simulate maize harvest
variability. The highest harvest numbers were achieved by
economic rational households, which proactively invest in the
most economically efficient adaptation measures. Economic
rational droughtmanagement leads to amore efficient adaptation
strategy, and thus lower vulnerability to water shortage and
higher average maize production compared with bounded
rational drought management. When comparing the bounded
rational and BAU scenarios, the bounded rational households
yielded greater harvests over time. They adopted adaptation
measures mostly after experiencing droughts, thereby gradually
moving away from the BAU scenario.

The average harvest varied by ∼1,467 kg under economic
rational conditions, 992 kg (935–1,062 kg) under bounded
rational conditions, and 919 kg under BAU conditions. The
average crop yield was 614 kg/ha (591–644 kg/ha) under the
bounded rational scenario, whereas it elevated to 805 kg/ha when
assuming economic rational households and decreased to 583
kg/ha when assuming BAU households. The bounded rational
simulation numbers were close to the observed values in Kitui of
680 kg/ha (605 kg/ha with outliers (biased answers of the survey)
removed) (Wens, 2019).

The adoption of drought adaptation measures and resulting
yield gains has a prominent effect on the household’s wealth over
time (Figure 5). Although adaptation initially required a large
investment, thereby reducing financial assets, it is economically
efficient in the long turn. This is most clear in the economic
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FIGURE 5 | Households’ financial assets (in US$/year) over time. Visualized is the median assets stock of all households modeled for three scenarios: no adaptation

decisions (BAU), economic rational (EUT), and bounded rational (PMT) adaptive behavior. Drought years (SPEI value in crop season < −1) are visualized as vertical

orange bars. The shaded blue area shows the variance among 48 bounded rational model runs, a result of the variety in weights of the PMT factors.

rational scenario, where a high initial adoption happens in
1981, and a return on investment after ∼12 years, resulting in
much wealthier households compared with the business-as-usual
rational scenario. The more gradual adoption in the bounded
rational scenario only results in an initial decrease, then a slight
increase in average wealth, as compared to the BAU scenario.
Besides, also droughts have a pronounced effect on a household’s
wealth over time, as illustrated by the sharp decline in wealth
during and following the consecutive droughts of 1983–1984,
1999–2000, and 2004–2005. The increased frequency of severe
droughts, starting with the millennium drought, had a distinct
effect on the households in the bounded rational and BAU
scenarios. The economic rational scenario households proved
more resilient to these shocks, as majority of the farmers are able
to adopt irrigation infrastructure resulting in an almost constant
increase in wealth over time.

Drought Risk
As expected, droughts have a negative effect on household food
security (Ifejika et al., 2008; Erenstein et al., 2011a), whereas
drought adaptation measures have a neutralizing effect. Figure 6
shows that the peaks in food insecurity in the economic rational
scenario were significantly lower than those of the BAU scenario,
the food insecurity rate in the bounded rational scenario slightly
reduced over time compared with BAU. This highlights that
economic rational households are less food insecure compared
with bounded rational households because of their relatively large
uptake of adaptation measures before a drought event. However,
the resilience to droughts of bounded rational households was
higher compared with the BAU scenario; that is, they were

less food insecure during and after drought years. On average,
44, 39 (36–43%), and 30% of the households lived in food
insecurity in the BAU, bounded, and economic rational behavior
scenarios, respectively. Food insecurity rates in the bounded
rational scenario aligned with (Ulrich et al., 2012) who reported
a food insecurity rate of 15% in normal years (on average 17%
in the bounded rational scenario)—with a sharp outlier to 91%
in the 1999–2000 drought and subsequent years (87% in the
bounded rational scenario).

The ADOPT results presented in Figure 7 show averages of
35, 45 (41–49%), and 49% of the households in poverty under
the economic rational, bounded rational, and BAU scenarios,
respectively. These estimates were similar to the 46% reported in
rural areas by the (Kitui County, 2013). Drought shocks have a
profound effect on the poverty level, as can be clearly seen during
the recent drought of 2008–2009, when 80% of all households fell
into poverty conditions after being hit. The effect of droughts
on poverty was also observed by (Few et al., 2006; Mwongera
et al., 2013). Notably, our results exhibited an overall increase
in poverty while the average financial assets increased through
time. The standard deviation of households’ maize harvest and
financial assets widened over time, which could be a sign that
inequality in wealth increased.

Tracking individual households over time, ADOPT showed
that it was predominantly the rich households that were able
to optimize their drought management, produce more, become
richer over time, and thus be able to adopt even more drought
adaptation measures. By contrast, less wealthy households did
not succeed in adopting sufficient drought adaptation measures,
suffered more from large drought impacts, and thus stayed poor.
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FIGURE 6 | Share of households in food insecurity over time. Variability over time visualized for three behavioral scenarios: economic rational (EUT), bounded rational

(PMT), and no adaptation decisions (BAU). Drought years (SPEI value in crop season < −1) are visualized as vertical orange bars. The shaded blue area shows the

variance among 50 bounded rational model runs, a result of the variety in weights of the PMT factors.

FIGURE 7 | Share of households in poverty. Variability over time is visualized for three behavioral scenarios: economic rational (EUT), bounded rational (PMT), and no

adaptation decisions (BAU). Drought years (SPEI value in crop season < −1) are visualized as vertical orange bars. The shaded blue area shows the variance among

50 bounded rational model runs, a result of the variety in weights of the PMT factors.

This is clear from Figure 7 where, although gradual adoption
happens, poverty levels do not decrease over time: This can be
attributed to the “poverty trap effect” (Muyanga, 2004; Mango

et al., 2009) as identified by (Ifejika et al., 2008; Ulrich et al.,
2012). This is also evident when evaluating the average assets
of households with zero, one, two, three or four measures,
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equaling on average US$600, US$850, US$2600, US$4,800, and
US$5,400 by the end of the running period, and while evaluating
households’ start income, start assets and end assets (Table 2).
There appears to be a significant difference (one,-sided t-test,
alpha= 0.05) between the start income of all groups and between
the end assets of all groups of Table 1. This shows that existing
inequalities between households are exacerbated over time as a
result of a path-dependent Matthew effect. The ability to adopt
measures at an early stage reduces the vulnerability to droughts
and thereby increases financial capacity to further increase
resilience. Conversely, a lack of capacity to adapt translates to a
progressively diminishing lack of capacity, a poverty trap.

Figure 8 depicts the amount of food aid (US$) required to
ensure food security per 1,000 households as modeled through
ADOPT. Food aid was calculated as the sum of US$ required for

TABLE 2 | Economic profile households.

Measures adopted at Start income Start assets End assets

simulation end

No measures 1,232 358 602

Mulch 1,344 369 1,250

fanya juu 1,300 371 1,071

Well 1,564 390 5,274

Drip Irrigation 1,599 381 6,536

Average 1,295 366 1,146

all households to fulfill their food requirements, accounting for
a variable food price. Thus, ADOPT can be used to calculate the
average annual costs of droughts (i.e., the direct economic loss for
a government assuming it provides full food aid to all households
in need; see Table 3). In the BAU, bounded rational, and
economic rational scenarios, the annual average losses caused
by droughts (costs to governments) equaled US$ 71.1k, 48.0k,
and 19.9k per 1,000 households, respectively, on an annual basis.
These estimates are a result of food supply shortages in the study
area caused by droughts as well as the limited possibilities for
households to buy food because of extreme poverty. Differences
were significant between the three scenarios, as the bounded
rational scenario estimated needs 32.5% lower and the economic
rational scenario estimated needs 72.0% lower than the business
as usual scenario where no additional adaptation happened.
There is a clear decrease in drought vulnerability in the economic
rational scenario, with emergency needs reduced to almost zero.
The high total production, due to the large amount of households
which adopted irrigation techniques, results in ample food supply
even in times of drought. This is not the case in the BAU and
bounded rational scenario, where the regional food supply is
insufficient during drought years.

Furthermore, Table 3 shows the ADOPT estimation of the
average annual cost of droughts for a government (US$ per
thousand households) for providing all the food needs for
households in food insecurity in case of a heterogeneous and
homogeneous set of households. When the total harvest in
the study area was assumed to be equally distributed among
all households and all households could afford to buy their

FIGURE 8 | Food aid required per thousand households. Food aid was calculated as the cumulative amount of food shortage of all individual households multiplied by

the maize price, accounting for a variable food price. Variability over time is visualized for three behavioral scenarios: economic rational (EUT), bounded rational (PMT),

and no adaptation decisions (BAU). Drought years (SPEI value in crop season < −1) are visualized as vertical orange bars. The shaded blue area shows the variance

among 50 bounded rational model runs, a result of the variety in weights of the PMT factors.
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TABLE 3 | Average annual simulated cost of droughts (US$ per thousand

households).

Behavioral scenario Estimated average annual

aid need (USD) assuming

Heterogeneous set Homogeneous set

of households of households

Business-as-usual scenario 71.4K 34.7K

Bounded rational scenario 56.9K 27.6K

Economic rational scenario 16.0K 7.7K

food need equivalents, average annual food aid needs over
this period would be US$ 34.7k, 27.6k, and 7.7k USD for
the BAU, bounded rational decision, and economic rational
decision scenarios, respectively. This method of calculating aid
needs, through excluding the agent-based approach, yielded
underestimations of food aid needs by 51% as compared to the
respective heterogeneous, multi-agent-based estimations. This
showcases the added value of evaluating risks and the needs for
food aid on an individual household basis.

Moreover, comparing food aid numbers for the severe
droughts of 1984, 2000, and 2009, the influence of the different
adaptive behaviors on the drought disaster impact can be
observed. In the ’83–’84 drought, a food aid peak of US$ 745k
could be observed in the bounded rational scenario, whereas
BAU assumptions resulted in an estimate of US$ 758k and
the economic rational scenario yielded an estimate of only
US$ 256k. This is 66% less than the BAU scenario, which
means the sudden adoption of drought adaptation measures
in the economic rational scenario is immediately effective in
disaster risk reduction. During the 1999–2001 drought, the BAU,
bounded rational, and economic rational scenarios exhibited
emergency aid needs of US$ 820k, US$ 428k, and US$ 0,
respectively, and the 2009 drought ends up with emergency aid
needs of US$ 490k, US$ 205k, and US$ 0 in the BAU, bounded
rational and economic rational scenarios, respectively. For the
bounded rational scenario, this translates to a reduction in the
disaster impact of 47.8% in 2000 and 58.1% in 2009, as compared
to the BAU conditions. For the economic rational scenario, this
translates to a full reduction in the disaster impact, resilience
is achieved. These vast differences reveal the large influence of
adaptation, and the assumptions about the dynamics of it, on
drought risk assessments.

DISCUSSION

In this contribution, we present a socio-hydrological, agent-based
model, ADOPT, which integrates the crop model AquacropOS
with a behavioral model to apply different decision theories. The
ADOPT model framework is capable to be calibrated for any
drought-prone area dominated by smallholder farmers. Here,
ADOPT is deployed to model subsistence farmers in Kitui,
Kenya. Our model highlights the importance of accounting
for the behavior of individuals and households who, through

adaptive decision-making, influence the drought risk they are
subjected to. A failure to account for behavior in drought risk
models leads to an underestimation of required food aid. While
results should be interpreted with care given the assumptions
and simplifications made, the use of various behavioral models
show the range of possible behavioral effects as they emerge from
an integrated social-hydrological feedback. The ADOPT model
is thus useful as a first step in integrating adaptive behavior
in drought risk modeling, while more work is required to
parameterize the complex behavioral rules needed to accurately
predict future drought risk scenarios. The following paragraphs
discuss the differences between the applied model scenarios,
model calibration, and validation and sensitivity analysis.

Model Scenarios
Insights into the co-evolution of human adaptation and drought
risk are vital to the assessment of future drought risk and the
development of any disaster risk reduction strategy. However, the
assumptions about adaptive behavior, implemented through the
use of different decision theories, highly influence the estimations
of future risk (De Koning, 2019). Through comparing complex
behavioral dynamics against a BAU and an economic rational
scenario, we were able to show the relative influence of empirical
adaptive behavior (and its uncertainty) on general food security
and poverty indicators in a Kenya-based case study.

While economically rational farmers implement affordable
adaptation measures at a fast rate, thereby increasing their
maize yield, the adoption of drought adaptation measures occurs
more gradually under bounded rational conditions. This slower
uptake is influenced by the occurrence of droughts, which
have a negative effect on the financial assets of households,
thus reducing their coping appraisal. However, the frequency of
droughts in the study area keeps their risk appraisal rather high.
The intention to adopt for bounded rational farmers is therefore
almost never zero, which is also confirmed by empirical evidence
(Wens et al., 2019). The bounded rational scenario leads to
more realistic estimations of the adoption of drought adaptation
measures, except for the estimations on mulching. This labor-
intensive technique, which also limits the feeding of unharvested
crop residue to livestock, is potentially undervalued in the model.

Furthermore, the ADOPT results clearly shows the ability to
simulate the dynamics of a poverty trap: smallholder farmers
can be impoverished due to drought shocks, disabling them
from adopting drought adaptation measures, and consecutive
droughts can be a reason for remaining poor and increasing
food insecurity. The adoption of drought adaptation measures by
bounded rational households reduced drought-related economic
loss by 30% compared with the BAU scenario; economic rational
households exhibited a reduction of 78% compared with BAU.
From this estimation, it is evident that the choice of adaptation
theory matters when estimating risk.

Model Validation
The validation of a complex behavioral model is challenging
because of unique feedbacks and a lack of empirical data
(Claessens et al., 2012; Brown et al., 2017). Hence, this study
must be seen as a sensitivity analysis for assessing the influence
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of behavioral dynamics on drought risk rather than an attempt
to reproduce the correct absolute estimates on yield and risk.
However, to derive realistic results, we followed some of the
recommendations described by Cirillo and Gallegati (2012) to
establish the model, and used observed data to initialize and
calibrate ADOPT. For example, (1) we used reanalysis climate
data from CHIRPS (Funk et al., 2015a); (2) AquacropOS is
specifically designed for semi-arid areas, such as Eastern Africa
(Vanuytrecht et al., 2014) and was calibrated to the specific
geographical characteristics of Kenya (based on Ngetich et al.,
2012); and (3) we undertook a survey in the region (Wens,
2019; n= 250) to obtain the empirical socioeconomic parameters
to initialize ADOPT. While this data was complemented with
existing household survey data from 2000, 2004, 2007, 2010
(Tegemeo Institute, 2000, 2004, 2007, 2010), it remains a
limitation to represent 30 years of model dynamics by data from
a few snapshots in time

The calibration of Aquacrop was done based on research
done by other authors, who calibrated Aquacrop for this region.
A dedicated experiment of crop yield under different weather,
soil and management circumstances would have decreased this
uncertainty, but this was beyond the scope of this research.
However, A validation of ADOPTmodel results against historical
average maize yields showed that simulated yields of 0.6 t/ha
(±0.25) matched the peaks and averages for the Kitui region
of 0.6 t/ha (±0.4) (e.g., Hansen and Indeje, 2004; Barron and
Okwach, 2005; Aylward et al., 2015; Mumo et al., 2018; Ayugi
et al., 2020). Furthermore, the simulated range of people in food
insecurity and people in poverty fitted the observed ranges and
variance over time: Ifejika et al. (2008) reported that 91% of rural
households experienced food insecurity during the 1999–2000
drought, which is similar to the modeled peak using ADOPT.
Peaks in poverty in 2000, around 2004, and 2009–2010 were also
observed by (Nyariki and Wiggins, 1997; Johnson and Wambile,
2011; Oluoko-Odingo, 2011).

Sensitivity Analysis
A sensitivity analysis was performed to evaluate the effect
of assumptions in PMT on the uptake of adaptive measures
and related effects on yields. Sensitivities were visualized by
shaded uncertainty ranges in the graphs found in section
Results. Changing the initialization values of the households
did not significantly affect the average maize harvest nor
average aid needed over time. When varying the share of
households receiving extension services between 10 and 90%,
estimates on average household maize harvest varied between
971 and 1,000 kg per year, respectively. When varying the PMT
weights α and β, changing the relative importance of risk
appraisal and coping appraisal (subsection 2.2.3, Adaptation
Intention Equation 2), between 66 and 33%, the resulting
household maize harvest estimates ranged between 993 and
987 kg per year, respectively. Varying the weights in the coping
appraisal equation, changing the relative importance of self-
efficacy, adaptation-efficacy and adaptation costs (γ, δ, and ε,
subsection Simulating the Adaptive Behavior of Subsistence
Farmers, Equation 4) between 25 and 50%, household maize
harvest estimates ranged between 982 kg (when adaptation costs

have a weight of 50%) and 1,003 kg (when adaptation efficacy has
a weight of 50%).

The estimated average food aid needs over the 30 years of
simulations varied between US$ 61.544–53.584 when changing
the share of households receiving extension services between 10
and 90%; between US$ 57.152 and 57.391 when changing the
relative influence of risk perception from 66 to 33% (Equation
2); and between US$ 54.360 and 58.955 when altering the
weights of self-efficacy, adaptation efficacy, and adaptation costs
(Equation 4). It is clear that the weights used to estimate the
intention to adopt did influence the final outcome: Increasing
the influence risk perception or giving more importance to
adaptation efficacy increased the average maize harvest, while
it decreased the average aid needed. assumptions about an
external factor—the extension services—are shown to have a
larger impact on the results: raising the share of households
receiving this form of training increased the average maize
harvest and reduced the aid needed more than any of the
changes in weight of the PMT factors. This indicates that
increasing the frequency of extension services in addition to
raising households’ risk perception or thrust in the adaptive
efficacy, can positively influence the adoption rate hence decrease
drought risk. However, the variability introduced by the different
behavioral scenarios, and thus the assumptions of BAU (static
vulnerability) and economic rational behavior (full information),
are highlighted as the largest influencing factors on the results,
proving the importance of correctly including human adaptive
behavior in drought risk models.

Scope for Further Research
Not all possible adaptive behaviors could be included in our
modeling setup. For example, Kenyan households often cope
with droughts by increasing livestock sales, serving as a buffer
against absolute poverty in times of failed harvests (Few et al.,
2006; Ifejika, 2010; Oluoko-Odingo, 2011). In ADOPT, livestock
trade is not included, explaining the relatively high peaks in
poverty during droughts. Furthermore, the potential application
of different drought tolerant seeds and/or varieties can be
included, which would require detailed information about the
varieties agronomic sensitivity to water stress. Another way to
reduce modeling uncertainty in future applications is including
a changing planting date based on weather predictions, as is
reported on the field (Wens, 2019) but currently impossible
in AquacropOS. Future research could work to include these
drought adaptation strategies to create a broader picture of
smallholder adaptive behavior in the face of droughts in semi-
arid Kenya. Besides, while now only precipitation was seen
as a source of water, a follow up study could couple the
ADOPT model to a spatially distributed hydrological model
and investigate the influence of water abstractions on the water
availability in rivers or groundwater. As such, proximity to the
river and other geographic drivers for adaptation can be included.

Concluding Remarks
Smallholder farms in Africa are increasingly affected by droughts,
which are expected to intensify with climate change and
socioeconomic trends. However, while these farmers have a
critical role regarding efficient use of water and the production
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of food (e.g., UN Water Action decade 2018–2028, UN Decade
of Family Farming 2019–2029), their individual decision-making
is often neglected in drought risk assessments (Moran et al.,
2007). Disentangling the role of emergent adaptation decisions
improves the understanding of current and future drought
risk (Aerts et al., 2018; Wens et al., 2019). Aiming to address
this modeling gap, we developed a socio-hydrological, agent-
based drought risk model, ADOPT, which couples a physically
based crop growth model (AquacropOS) with an adaptation
decision model. Designed using socio-hydrological and agent-
based modeling approaches, ADOPT simulates the two-way
interaction between rain-fed agricultural production variability
and the emergence of drought adaptation measures. Initialized
with new survey data from households in central Kitui, the
model showcased its ability to analyze historical yield losses
caused by droughts, the impact of these losses on smallholder
farmers, and the adaptive response of farmers to droughts. Three
different behavioral scenarios were tested: one where households
could not adopt new adaptation measures (business as usual),
one where they behaved economically rationally (following the
expected utility theory), and a more realistic approach where
they followed a bounded rational logic (using the protection
motivation theory).

Results highlight that current estimations of drought risk and
the need for emergency food aid can be improved using an agent-
based approach. Besides, we show that working with an “average
household”—thus not accounting for the existing inequality—
underestimates the number of aid needs. Furthermore, our
study finds that assumptions about the adaptive behavior of
households highly influence drought risk estimations. ADOPT
simulations show how the dynamics of adaptive decision-
making, which emerge from interactions between individual
agents and their environments, influence yields and other risk
indicators. Accounting for bounded rational decision-making,
a significant difference in annual average yield loss could be
seen in comparison to the more conventional BAU or economic
rational scenarios. Moreover, the magnitudes estimated while
assuming bounded rational households were found to be closest
to observed data. By incorporating the effects of bounded rational
adaptive behavior, we conclude that ADOPT is better able to
better simulate drought risk over time than classic assumptions
with respect to adaptation behavior.

Following recent research in socio-hydrology, the ADOPT
model can be seen as an experimental setup for improving
our understanding of the socioeconomic and environmental
factors that influence drought risk and management over time.
While now, it shows how different drivers steer household’s
adaptation decisions and how these affects their personal
and community drought risk, it could also be used to
assess future drought risk and to evaluate the effect(iveness)
of specific NGO or governmental actions and policy. The

ADOPT framework can be applied to study food insecurity

in other case studies, or used to answer questions about
other adaptation strategies, aiming at improved livelihoods
and reduced drought risk. Besides, it can be employed to
study the effect of certain governmental policies on households’
drought risk behavior or, coupled to a spatially distributed
hydrological model, it can enable us to study trade-offs between
drought risk for different water users up- and downstream
catchments. This work represents an important next step
in drought risk modeling and toward enhanced agricultural
water management.
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