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Meteorological records, including precipitation, commonly have missing values. Accurate

imputation of missing precipitation values is challenging, however, because precipitation

exhibits a high degree of spatial and temporal variability. Data-driven spatial interpolation

of meteorological records is an increasingly popular approach in whichmissing values at a

target station are imputed using synchronous data from reference stations. The success

of spatial interpolation depends on whether precipitation records at the target station are

strongly correlated with precipitation records at reference stations. However, the need

for reference stations to have complete datasets implies that stations with incomplete

records, even though strongly correlated with the target station, are excluded. To address

this limitation, we develop a new sequential imputation algorithm for imputing missing

values in spatio-temporal daily precipitation records. We demonstrate the benefits of

sequential imputation by incorporating it within a spatial interpolation based on a Random

Forest technique. Results show that for reliable imputation, having a few strongly

correlated references is more effective than having a larger number of weakly correlated

references. Further, we observe that sequential imputation becomes more beneficial

as the number of stations with incomplete records increases. Overall, we present a

new approach for imputing missing precipitation data which may also apply to other

meteorological variables.

Keywords: precipitation, hydrology and water, imputation, sequential imputation, machine learning, Random

Forest

INTRODUCTION

Precipitation is an important component of the ecohydrological cycle and plays a crucial role in
driving the Earth’s climate. It serves as an input for various ecohydrological models to determine
snowpack, infiltration, surface-water flow, groundwater recharge, and transport of chemicals,
sediments, nutrients, and pesticides (Devi et al., 2015). Numerical modeling of surface flow
typically requires a complete time series of precipitation along with other meteorological records
(e.g., temperature, relative humidity, solar radiation) as inputs for simulations (Dwivedi et al.,
2017, 2018; Hubbard et al., 2018, 2020; Zachara et al., 2020). However, meteorological records
often have missing values for various reasons, such as due to malfunctioning of equipment,
network interruptions, and natural hazards (Varadharajan et al., 2019). Missing values need to
be reconstructed or imputed accurately to ensure that estimates of statistical properties, such as
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mean and co-variance, are consistent and unbiased (Schneider,
2001) because inaccurate estimates can hurt the accuracy of
ecohydrological models. Reconstructing an incomplete daily
precipitation time series is especially difficult since it exhibits
a high degree of spatial and temporal variability (Simolo et al.,
2010).

Past efforts for imputing missing values of a precipitation
time series fall under two broad categories: autoregression of
univariate time series and spatial interpolation of precipitation
records. Autoregressive methods are self-contained and impute
missing values by using data from the same time series that
is being filled. Simple applications could involve using a mean
value of the time series, or using data from 1 or several days
before and after the date of missing data (Acock and Pachepsky,
2000). More sophisticated versions of autoregressive approaches
implement stochastic methods and machine learning (Box
and Jenkins, 1976; Adhikari and Agrawal, 2013). To illustrate
some recent studies, Gao et al. (2018) highlighted methods
to explicitly model the autocorrelation and heteroscedasticity
(or changing variance over time) of hydrological time series
(such as precipitation, discharge, and groundwater levels). They
proposed the use of autoregressive moving average models
and autoregressive conditional heteroscedasticity models. Chuan
et al. (2019) combined a probabilistic principal component
analysis model and an expectation-maximization algorithm,
which enabled them to obtain probabilistic estimates of missing
precipitation values. Gorshenin et al. (2019) used a pattern-
based methodology to classify dry and wet days, then filled in
precipitation for wet days using machine learning approaches
(such as k-nearest neighbors, expectation-maximization, support
vector machines, and random forests). However, an overarching
limitation of autoregressive methods is the need for the imputed
variable to show a high temporal autocorrelation, which is
not necessarily valid for precipitation (Simolo et al., 2010).
Therefore, suchmethods have limited applicability when it comes
to reconstructing a precipitation time series.

Spatial interpolation methods, on the other hand, impute
missing values at the target station by taking weighted averages
of synchronous data, i.e., data at the same time, from reference
stations (typically neighboring stations). The success of these
methods relies on the existence of strong correlations among
precipitation patterns between the target and reference stations.
The two most prominent approaches are inverse-distance
weighting (Shepard, 1968) and normal-ratio methods (Paulhus
and Kohler, 1952). The inverse-distance weighting assumes the
weights to be proportional to the distance from the target,
while the normal-ratio method assumes the weights to be
proportional to the ratio of average annual precipitation at the
target and reference stations. Another prominent interpolation
approach is based on kriging or gaussian processes, which assigns
weights by accounting for spatial correlations within data (Oliver
and Webster, 2015). Teegavarapu and Chandramouli (2005)
proposed several improvements to weighting methods and also
introduced the coefficient of correlation weighting method—
here the weights are proportional to the coefficient of correlation
with the target. Recent studies have proposed new weighting
schemes using more sophisticated frameworks (e.g., Morales

Martínez et al., 2019; Teegavarapu, 2020). In parallel, studies
have also been conducted to account for various uncertainties in
imputation. For example, Ramos-Calzado et al. (2008) proposed
a weighting method to account for measurement uncertainties
in a precipitation time series. Lo Presti et al. (2010) proposed a
methodology to approximate eachmissing value by a distribution
of values where each value in the distribution is obtained via
a univariate regression with each of the reference stations.
Simolo et al. (2010) pointed out that weighting approaches
have a tendency to overestimate the number of rainy days and
to underestimate heavy precipitation events. They addressed
this issue by proposing a spatial interpolation procedure that
systematically preserved the probability distribution, long-term
statistics, and timing of precipitation events.

A critical review of the literature shows that, in general, spatial
interpolation techniques have two fundamental shortcomings: (i)
how to optimally select neighbors, i.e., reference stations, and
(ii) how to assign weights to selected stations. While selecting
reference stations is typically done using statistical correlation
measures, assigning weights to selected stations is currently an
ongoing area of research. The methods reviewed so far are based
on the idea of specifying a functional form of the weighting
relationships. The appropriate functional form may vary from
one region to another depending on the prevalent patterns of
precipitation as influenced by local topographic and convective
effects. Using a functional form that is either inappropriate or
too simple could distort the statistical properties of the datasets
(such as mean and covariance). Some researchers have proposed
to address these shortcomings by using Bayesian approaches (e.g.,
Yozgatligil et al., 2013; Chen et al., 2019; Jahan et al., 2019).
These fall under the broad category of expectation-maximization
and data augmentation algorithms, thus yielding a probability
distribution for each missing value.

An alternative approach for imputing missing data is the
application of data-driven or machine learning (ML) methods
which are becoming increasingly prominent for imputing using
spatial interpolation. These methods do not need a functional
form to be specified a priori and can learn a multi-variate
relationship between the target station and reference stations
using available datasets. Studies have found that the performance
of ML methods tends to be superior to that of traditional
weighting methods (e.g., Teegavarapu and Chandramouli, 2005;
Hasanpour Kashani and Dinpashoh, 2012; Londhe et al., 2015).
In addition, studies have been conducted to identify an optimal
architecture for ML-based methods (Coulibaly and Evora, 2007;
Kim and Pachepsky, 2010). In this work, we use a Random
Forests (RF) method. The RF is an ensemble learning method
which reduces associated bias and variance, making predictions
less prone to overfitting. In addition, a recent study showed
that RF-based imputation is generally robust, and performance
improves with increasing correlation between the target and
references (Tang and Ishwaran, 2017).

Regardless of the imputation technique, an inherent limitation
of spatial interpolation algorithms is the need for reference
stations to have complete records during the time-period
of interest. This limitation is critical for ML algorithms
where incomplete records preclude data-driven learning of
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multi-variate relationships. The success of spatial interpolation,
therefore, depends on whether precipitation at the target station
is highly correlated with precipitation at stations with complete
records. A station with an incomplete record is typically excluded
from the analysis even though that station may have a high
correlation with the target station. In this work, we hypothesize
that stations with incomplete records contain information that
can improve spatial interpolation if they are included in the
analysis. We propose a new algorithm, namely sequential
imputation, that leverages incomplete records to impute missing
values. In this approach, stations that are imputed first are also
included as reference stations for imputing subsequent stations.
We implement this algorithm in the context of imputing missing
daily values of precipitation and demonstrate its benefits by
incorporating it in an RF-based spatial interpolation.

In what follows, we start by describing our study area
and data sources and follow this with a brief introduction
to the Random Forests (RF) method. We then describe all
our numerical experiments, starting with a baseline imputation
that helps evaluate the performance of sequential imputation.
This is followed by a description of the sequential imputation
algorithm, along with an outline of different scenarios to
evaluate sequential imputation. We compare the results of
sequential imputation with a non-sequential imputation in which
incomplete records are not leveraged for subsequent imputations.
Finally, we discuss the implications of our results and provide
some concluding thoughts.

METHODOLOGY

Study Area and Data Sources
We conducted this study using data from the Upper Colorado
Water Resource Region (UCWRR), which is one of 21
major water resource regions classified by the United States
Geological Survey to divide and sub-divide the United States
into successively smaller catchment areas. The UCWRR is the
principal source of water in the southwestern United States
and includes eight subregions, 60 sub-basins, 523 watersheds,
and 3,179 sub-watersheds. Several agencies have active weather
monitoring stations in UCWRR. For our study, we considered
the weather stations maintained by the Natural Resources
Conservation Service (NRCS). Table 1 summarizes the various
networks that comprise the NRCS database.

TABLE 1 | Summary of NRCS stations in UCWRR.

Network # Of stations # Of complete records # Of incomplete records

SNOTEL 134 94 40

SCAN 12 1 11

ACIS 5 2 3

SNOLITE 1 0 1

All 152 97 55

SNOTEL: Snowpack Telemetry; SCAN: Soil Climate Analysis Network; ACIS: Applied

Climate Information System; SNOLITE: SNOTEL with Iridium Satellite System.

Figure 1 shows the spatial distribution of NRCS stations in
UCWRR. Ninety-seven stations have complete records which
primarily belong to the Snowpack Telemetry (SNOTEL) network.
We considered data spanning the 10-year window from 2008
to 2017. Over this period, NRCS had 152 active stations in
UCWRR which report daily precipitation data. For this study,
our dataset is restricted to the 97 stations with complete records.
We downloaded the data through the NRCS Interactive Map and
Report Generator1 (accessed Jan 16, 2020).

Spatial Interpolation Method: Random
Forests (RF)
RF is an ML-method based on an ensemble or aggregation of
decision-trees (Breiman, 2001). A decision-tree is a flowchart-
like structure that recursively partitions the input feature
space into smaller subspaces (Figure 2). Recursion is carried
out till the subspaces are small enough to fit simple linear
models on them In regression problems, the decision rules
for partitioning are determined such that the mean-squared
error between the tree output and the observed output is
minimized. The RF model trains each decision-tree on a
different set of data points obtained by sampling the training
data with replacement (or bootstrapping). Furthermore, each
tree may also consider a different subset of input features
selected randomly. The final output of the random forest
is obtained by aggregating (or ensembling) the results of
all decision trees. For regression problems, aggregation is
done by taking the mean. Figure 2 shows a schematic of an
RF regressor.

The ensemble nature of RF leads to several benefits (Breiman,
2001; Louppe, 2015). First, it makes RF less prone to overfitting,
despite the susceptibility of individual trees to overfitting (Segal,
2004). For regression problems, overfitting refers to low values of
mean-squared error on training data, and high values of mean-
squared error on test data. Second, it enables an evaluation of
the relative importance of a variable (which, in this work, refers
to a reference station) for predicting the output. This is typically
done by determining how often a variable is used for partitioning
the input feature space, across all trees. Third, the ensemble
nature of RF makes it possible to not set aside a test set. Since
the input for each decision tree is obtained by bootstrapping,
the unsampled data can be used to estimate the generalization
error. In addition, RF does not require extensive hyperparameter
tuning compared to other ML approaches (Ahmad et al.,
2017).

In this study, we implement RF using Python’s scikit-learn
module (Pedregosa et al., 2011). Precipitation data from reference
stations acts as input, and precipitation data at the target station
is specified as the output. Unlike typical spatial interpolation
approaches, we do not specify distances between the reference
and target stations. Distances are static variables and their
influence on dynamic precipitation relationships gets learnt as a
constant bias, regardless of whether they are explicitly specified
or not.

1https://www.wcc.nrcs.usda.gov
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FIGURE 1 | Spatial extent of UCWRR, along with the layout of stations in the NRCS database (comprising of 97 complete and 55 incomplete records).

FIGURE 2 | Schematic of a Random Forest regressor, adapted from Stockman et al. (2019).

Overview of Numerical Experiments
To investigate if stations with incomplete records contain
information that can improve spatial interpolation, we designed
three sets of numerical experiments: baseline, sequential, and
non-sequential imputation. In baseline imputation, each station
in our dataset is modeled using the remaining stations as
reference stations. This represents an upper bound on the
performance of sequential imputation when we have multiple
stations with incomplete records. The baseline imputation
provides statistics to help evaluate the performance of sequential

imputation. In sequential imputation, a subset of stations in
our dataset is marked as artificially incomplete. For each
station in the artificially incomplete subset, 20% of the values
are randomly marked as “missing.” The missing values are
imputed by leveraging other artificially incomplete stations in the
subset, in addition to using stations outside the subset. Finally,
in non-sequential imputation, the same artificially incomplete
subset as sequential imputation is considered, and missing
values are imputed using just the stations that are outside the
subset. We describe the three sets of numerical experiments in
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detail in sections Numerical Experiments: Baseline Imputation
and Numerical Experiments: Sequential and Non-sequential
Imputation. Before describing each of these experiments, it
would be instructive to discuss our performance criterion for
evaluating imputation.

Evaluating Imputation: Nash-Sutcliffe
Efficiency (NSE)
We evaluated the overall performance of imputation by
computing the Nash-Sutcliffe Efficiency (NSE) on test data
given by

NSE = 1−

∑N
i=1

(

yoi − ymi
)2

∑N
i=1

(

yoi − yo
)2

(1)

where N is the size of the test set, yoi is i-th observed value, ymi
is the corresponding modeled value, and yo is the mean of all
observed values in the test set.

The NSE is a normalized statistical measure that determines
the relative magnitude of the residual variance (or noise) of
a model when compared to the measured data variance. It is
dimensionless and ranges from −∞ to 1. An NSE value equal to
1 implies that the modeled (in our case, imputed) values perfectly
match the observations; an NSE value equal to 0 implies that the
modeled values are only as good as the mean of observations;
and a negative NSE value implies that the mean of observations
is a better predictor than modeled values. Positive NSE values
are desirable, and higher values imply greater accuracy of the
(imputation) model.

Two other common statistical measures for evaluating the
overall accuracy of prediction are Pearson’s product-moment
correlation coefficient R, and the Kolmogorov-Smirnov statistic.
While the former evaluates the timing and shape of the modeled
time series, the latter evaluates its cumulative distribution.
Gupta et al. (2009) decomposed the NSE into three distinctive
components representing the correlation, bias, and a measure
of relative variability in the modeled and observed values. They
showed thatNSE relates to the ability of a model to reproduce the
mean and variance of the hydrological observations, as well as the
timing and shape of the time series. For these reasons, the use of
NSE was preferred over other statistical measures to evaluate the
accuracy of imputation.

We also evaluated the performance of sequential imputation
for predicting dry events and extreme wet events. This is
because spatial interpolation approaches tend to overpredict
the number of dry events and underestimate the intensity of
extreme wet events (Simolo et al., 2010; Teegavarapu, 2020). A
common practice is to consider a day as a dry event if the daily
precipitation does not exceed a threshold of 1mm (Hertig et al.,
2019). We considered a threshold of 2.54mm since that is the
resolution of our dataset. We considered a day as an extreme
wet event if the daily precipitation exceeded the 95th percentile
of the entire precipitation record for a given station (Zhai et al.,
2005; Hertig et al., 2019). To evaluate prediction accuracy for
dry events, we computed the percentage error, or the percentage
of days that were correctly modeled as dry days. To evaluate

prediction accuracy for extreme wet events, we computed NSE
values exclusively for days that exceeded the 95th percentile
of daily precipitation values; this enabled us to evaluate the
predicted magnitude. In what follows, we use the acronym NSEE
to denote NSE for extreme events.

Numerical Experiments: Baseline
Imputation
For our first set of numerical experiments, we conducted baseline
imputations where each station in our dataset is modeled using
the remaining stations as reference stations. Our dataset consists
of 97 stations with complete records (as outlined in Figure 1 and
Table 1). This set of numerical experiments is a test of the RF-
based imputation method and provides an upper bound on the
performance of the sequential imputation algorithm discussed in
the section Sequential Imputation Algorithm. More importantly,
it provides estimates of the variance for modeling each station,
which will be used to evaluate the performance of the sequential
imputation algorithm. Specifically, each station in our dataset was
considered, in turn, to be a target station (or model output), with
the rest of the stations acting as references (or input features). For
each target station, 80% of the data were randomly selected for
training, and the remaining 20% were used for testing. The test
set effectively acted as missing data to be imputed. We conducted
this exercise 15 times for each station. Prior to these runs, we
also conducted an independent set of baseline runs to tune the
hyperparameters of RF.

Sequential Imputation Algorithm
ML-based spatial interpolation learns multi-variate relationships
between the reference stations and the target station. Studies have
noted that for imputation results to be reliable, data at reference
stations should be strongly correlated to data at the target station
(e.g., Teegavarapu and Chandramouli, 2005; Yozgatligil et al.,
2013). However, ML-based spatial interpolation excludes stations
that have incomplete records, even though they may be strongly
correlated with the target station. Here, we develop a technique
(i.e., sequential imputation) where stations that are imputed first
are used as reference stations for imputing subsequent stations.
In what follows, we refer to a station with a complete record as
a “complete station,” and a station with an incomplete record
as an “incomplete station.” The sequential imputation algorithm
involves the following steps:

1. Add all complete stations to the list of reference stations.
2. Calculate correlations between incomplete stations and

reference stations.
3. Pick the incomplete station having the highest aggregate

correlation with reference stations.
4. Impute missing values for the station picked in Step 3, using

all the reference stations.
5. Add the imputed station to the list of reference stations.
6. Repeat steps 2–4 till missing values of all the stations

are imputed.

In this study, correlation refers to Pearson’s product-moment
correlation coefficient, hereafter denoted by R. We chose this
measure for its simplicity. Step 3 requires calculating an aggregate
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correlation of each incomplete station with the reference stations.
This step assumes that the incomplete station having the highest
aggregate correlation with reference stations will have the most
accurate imputation.Wewill verify this assumption in the Results
section. To determine an appropriate aggregate correlation
measure for Step 3, we implemented the following procedure:

i. Compute correlations of a target station with each of the
reference stations.

ii. Sort the correlation values in descending order (highest
to lowest).

iii. Calculate the cumulative sum of the sorted correlations.
Denote each partial sum as Si, where subscript i refers to the
first i sorted correlations.

i varies from 1 to N, and N is the number of reference stations
in the dataset. Each Si is an aggregate measure of correlation
between a target station and the reference stations. For instance,
S2 refers to the sum of first two sorted correlations, S3 refers
to the sum of first three sorted correlations, and so on. We
computed values of Si for all the 97 stations in our dataset
and compared their values with NSE determined from baseline
imputations. The Si having the highest correlation with NSE
was picked to quantify aggregate correlation (for Step 3 of
sequential imputation). For practical applications, the above
procedure to determine an appropriate aggregate correlation
may be implemented using non-sequential imputations. Note
that other aggregate measures may be envisioned (e.g., mutual
information, spearman’s correlation), but we sought to pick one
that is relatively simple to keep our focus on the sequential
imputation approach.

Numerical Experiments: Sequential and
Non-sequential Imputation
To investigate the benefits of sequential imputation, we divided
our dataset of 97 complete stations into five (almost) evenly sized
subsets and labeled them 1 through 5, as shown in Figure 3.
The division into subsets was random. We then considered four
different scenarios, each of which marked certain subsets as
artificially incomplete. These are shown in Table 2.

Precipitation records typically have missing values resulting
from randommechanisms such as malfunctioning of equipment,
network interruptions, and natural hazards. In other words, the
probability that a precipitation value is missing does not depend
on the value of precipitation itself. These random mechanisms
also assume that the location or physiography of a weather station
has no bearing on whether its record is complete or incomplete.
This missing at random mechanism (Schafer and Graham, 2002)
is reflected in our decision to create subsets randomly, and
enables us to evaluate the sequential imputation approach in a
more generic setting.

Figures 4A–D shows the division of our dataset into complete
and artificially incomplete subsets for each of the scenarios
listed in Table 2. Scenario 1 had 77 out of 97 records marked
as artificially incomplete. Each subsequent scenario had fewer
records marked as artificially incomplete, culminating with
Scenario 4 which had only 19 such records. These scenarios

FIGURE 3 | Division of complete stations (see Figure 1) into five subsets.

TABLE 2 | Scenarios for sequential and non-sequential imputation.

Artificially incomplete subsets Complete subsets

Scenario 1 2, 3, 4, 5 1

Scenario 2 3, 4, 5 1, 2

Scenario 3 4, 5 1, 2, 3

Scenario 4 5 1, 2, 3, 4

were designed to investigate how the proportion of incomplete
records affects imputation. We expected sequential imputation
to be more beneficial as the proportion of incomplete records
increased in the dataset.

The stations belonging to the artificially incomplete subsets
had 20% of their data marked as missing. Previous studies on
imputation have considered two broad mechanisms for marking
missing values. One approach involves marking missing values
randomly (e.g., Teegavarapu and Chandramouli, 2005; Kim and
Pachepsky, 2010), while the other approach assumes that missing
values form continuous gaps in time (e.g., Simolo et al., 2010;
Yozgatligil et al., 2013). Since spatial interpolation assumes no
temporal autocorrelation and is agnostic to the timestamp of the
data, the mechanism for marking missing values is not relevant.
For simplicity, we assumed that values were missing completely
at random. The missing values were imputed using sequential
and non-sequential imputations; both these imputations were
compared and enabled us to highlight the benefits of sequential
imputation. Specifically, we calculated NSE corresponding to
both sequential and non-sequential runs and computed the
change (or increase) 1 in NSE for each station as follows:

1NSE = NSEsequential − NSEnon−sequential (2)
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FIGURE 4 | Artificially incomplete and complete datasets for different scenarios of sequential and non-sequential imputation. Note: Colormap for elevation is same as

Figures 1, 3. (A) Scenario 1. (B) Scenario 2. (C) Scenario 3. (D) Scenario 4.

To evaluate improvement in prediction of extreme wet events,
NSE in Equation 2 was replaced by NSEE. To evaluate
improvement in prediction of dry days, we computed the
percentage error (i.e., the percentage of days that were correctly
modeled as dry days) corresponding to both sequential and non-
sequential runs. We then computed the change (or decrease) 1

in percentage error (PE) as follows:

1PE = PEnon−sequential − PEsequential (3)

RESULTS

Baseline Imputation
We performed baseline imputation to estimate statistics to
evaluate the performance of the sequential imputation algorithm.
Figures 5A–C show results of baseline imputations on missing
data for all stations. Each station was modeled 15 times, with
different splits of training and testing (missing) data, and
the accuracy of each model for imputation was quantified by
computingNSE on test data. This provided us with a distribution
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FIGURE 5 | Results of baseline imputations on missing data. (A) Distribution of mean NSE (µs), (B) scatter of mean (µs), and standard deviation (σs) of NSE, (C)

geospatial distribution of mean NSE (µs).

of NSE values (instead of just one value) for reconstructing each
station, from which we estimated the mean µ and standard
deviation σ of NSE for each station. For clarity, we denote the
mean and standard deviation of a particular station s, by µs and
σs, respectively. Figure 5A compiles theµs for all the stations and
shows them as a histogram. Approximately 95% of the stations
have a mean NSE >0.5, and approximately two-thirds of the
stations have a mean NSE >0.65. Figure 5B compiles the µs

and σs for all stations and shows them as a scatter plot. We
see that for each station, the NSE values have a small standard
deviation relative to their mean. Figure 5C shows the geospatial
distribution of µs.

Figure 6 shows sample scatter plots of true and predicted
precipitation on test data using baseline imputations. The dotted
line shows the 45-degree line which corresponds to a perfect

match (i.e., NSE = 1) between true and predicted values.
Note that our dataset has a resolution of 0.1 inch or 2.54mm,
which results in visible jumps in the abscissa (or “true values”).
Subfigure (a) corresponds to a relatively high value ofNSE (∼0.8),
and subfigure (b) corresponds to a relatively low value of NSE
(∼0.5). We see from these plots that for a high value of NSE, the
relative scatter is smaller and closer to the dotted line.

Aggregate Correlation Between Target
Incomplete Stations and Reference
Stations
To identify an appropriate aggregate correlation measure
for sequential imputation, we analyzed results of baseline
imputations. Specifically, we computed values of Si for all
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the target stations (i.e., Ssi) and compared their values with
the corresponding µs. Since strong correlations with reference
stations lead to more accurate imputation, we expect Si to
be positively correlated with µ, regardless of the value of i.
As defined in the section Sequential Imputation Algorithm, Si
for a target station is the sum of first i sorted correlations
with reference stations. For clarity, we denote Ssi to refer to
Si for a particular target station s. Figure 7A shows a scatter

plot of Ss2 and µs for all the stations in our dataset (as
outlined in Figure 1 and Table 1). The correlation coefficient
was 0.95. Similarly, we computed correlations between Ssi and
µs for all values of i [denoted as Corr(µs, Ssi)], and plotted
them in Figure 7B. These results show that the correlation
between Ssi and µs is higher for lower values of i. On the
basis of Figure 7, we used S2 as the similarity measure for
sequential imputation. For practical applications, an appropriate

FIGURE 6 | Sample scatter plots of true and predicted precipitation on test data using baseline imputations: (A) NSE = 0.79, (B) NSE = 0.52. Note that the jumps in

true values are due to the coarse resolution (of 2.54mm) of the dataset.

FIGURE 7 | Quantifying similarity between target and reference stations: (A) scatter plot between Ss2 and µs (mean value of NSE) with a linear fit, (B) correlations

between µs and Ssi as a function of i (annotation: maximum value of the correlation).

FIGURE 8 | Sequential imputation results for Scenario 1. (A) NSE obtained during sequential imputation plotted as a function of increment in sequence and

superimposed over baseline NSE values, (B) Change 1NSE for each increment in sequence, when compared to a non-sequential imputation. Orange dots are

considered significant improvements (i.e., 1sNSE > σs).
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FIGURE 9 | Sequential imputation results for Scenario 2; captions of (A,B) are same as in Figure 8.

FIGURE 10 | Sequential imputation results for Scenario 3; captions of (A,B) are same as in Figure 8.

FIGURE 11 | Sequential imputation results for Scenario 4; captions of (A,B) are same as in Figure 8.

similarity measure may be determined by analyzing results of
non-sequential imputations.

Sequential Imputation
To implement the sequential imputation algorithm, the
artificially incomplete subsets in each of the four scenarios
were reconstructed using sequential and non-sequential
imputation (see section Numerical Experiments: Sequential and
Non-sequential Imputation). For a given station, sequential
imputation was considered to have made a significant
improvement if the corresponding 1sNSE (i.e., 1NSE for
station s computed using Equation 2) was greater than σs

estimated from baseline runs. This was done to ensure that
the change in NSE during sequential imputation may not be
attributed to noise.

Figures 8A–11A show the results of sequential imputation
for Scenarios 1–4, respectively, with values of NSE for each
station corresponding to sequential imputation. The values
are plotted in the order of sequential imputation and are
superimposed over the baseline values of NSE. The baseline

NSE curve is centered at its mean and the thickness represents

its standard deviation (as shown in Figure 5B). The baseline
curve provides an upper bound on the performance of the
sequential imputation algorithm. Figures 8B–11B show change
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in NSE for each increment in sequence, when compared to a
non-sequential imputation.

Results for the scenarios are summarized in Table 3.
Figure 12 shows scatter plots of true and predicted

precipitation on test data for a station that showed significant
improvement during sequential imputation in Scenario 1.
Subfigure (a) shows the scatter for non-sequential imputation,
and subfigure (b) shows the scatter for sequential imputation.
The dotted line shows the 45-degree line which corresponds to a
perfect match (i.e., NSE = 1) between true and predicted values.
Recall that our dataset has a resolution of 0.1 inch or 2.54mm,
which results in visible jumps in the abscissa (or “true values”).

Figures 13, 14 show the results of sequential imputation
for predicting dry [subfigures (a)] and extreme wet [subfigures

TABLE 3 | Summary of results for Scenarios 1–4 for sequential and

non-sequential imputation.

# Of imputed stations # Of stations where 1sNSE > σs

Scenario 1 77 49

Scenario 2 57 16

Scenario 3 38 4

Scenario 4 19 0

(b)] events for Scenarios 1, 2. The values are plotted in the
order of sequential imputation and denote the change in PE or
NSEE during sequential imputation when compared to a non-
sequential imputation. The 1 values are color-coded according
to results of Figures 8–11. The results for Scenarios 3, 4 are not
shown for the sake of brevity.

DISCUSSION

Figure 5A shows the mean NSE (µs) for all the stations as a
histogram. As noted earlier, approximately 95% of the stations
have µs >0.5, and approximately two-thirds of the stations have
a µs >0.65. Moriasi et al. (2007) reviewed over twenty studies
related to watershed modeling and recommended that for a
monthly time step, models can be judged as “satisfactory” if
NSE is >0.5; a lower threshold was recommended for daily time
steps. Therefore, our spatial interpolation technique for imputing
missing values can be considered to be effective.

The geospatial distribution of mean NSE in Figure 5C

suggests that lower values of NSE tend to arise when there
is a lower density of reference stations in close proximity.
This is because distant stations tend to experience dissimilar
precipitation patterns than the target station, making them less
likely to be reliable predictors of precipitation at the target

FIGURE 12 | Scatter plots of true and predicted precipitation on test data for a station that showed significant improvement during sequential imputation in Scenario

1: (A) non-sequential imputation, (B) sequential imputation. Jumps in true values are due to the coarse resolution (of 2.54mm) of the dataset.

FIGURE 13 | Sequential imputation results for predicting dry (A) and extreme wet (B) events for Scenario 1. Orange dots correspond to significant improvements in

overall predictions as shown in Figure 8.
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FIGURE 14 | Sequential imputation results for predicting dry (A) and extreme wet (B) events for Scenario 2. Orange dots correspond to significant improvements in

overall predictions as shown in Figure 9.

FIGURE 15 | Geospatial distribution of mean NSE (µs) with a red arrow

marking a station that has a low NSE.

station. This observation is why the inverse-distance weighting
method is popular.

Although proximity of reference stations may be considered
necessary for accurate imputation of precipitation values, it is
not sufficient (e.g., Teegavarapu and Chandramouli, 2005). We
show an example of this in Figure 15, which is a modified
version of Figure 5C with an arrow marking a station. The
marked station has a low NSE despite having reference stations
that exist in close proximity. This is because the reference
stations closest to it have significantly different values of

elevation (for reference, the marked station has an elevation
of 2,113m, while the closest station has an elevation of
3,085m). For accurate spatial interpolation at a target location,
the reference stations should have physiographic similarity
with the target. Factors influencing physiographic similarity
are location, elevation, coastal proximity, topographic facet
orientation, vertical atmospheric layer, topographic position, and
orographic effectiveness of the terrain (Daly et al., 2008). Note
that it is not known a priori how these different factors interact
with each other and subsequently influence the physiographic
properties of target and reference stations. Selecting reference
stations based on predefined physiographic criteria may result in
an unintentional exclusion of stations that have a high correlation
with the target station. Overall, any predefined physiographic
criterion will lack the flexibility in selecting stations and may not
result in the best imputation performance.

Figure 6 shows sample scatter plots of true and predicted
precipitation on test data using baseline imputations. We see
from these plots that for a high value of NSE, the relative scatter
is smaller. In addition, we can also observe that even for a high
value of NSE, there is a tendency to overpredict the number of
dry days and underestimate the intensity of extreme wet events.
For subfigure (a), the 95th percentile threshold is at 15.24mm,
and for subfigure (b), it is at 12.7mm. Recall that we define events
beyond the 95th percentile threshold as extreme wet events.

Figures 8–11 demonstrate the benefits of sequential
imputations when compared with non-sequential imputations.
In what follows, we will use the phrase “incomplete station” to
refer to an artificially incomplete station. Figures 8–11 show
that as the proportion of incomplete stations increases, there
is a higher percentage of stations benefitting from sequential
imputation. 1NSE values that correspond to significant
improvements (i.e., 1sNSE > σs) tend to be higher than
those that do not. A value of 1NSE that does not correspond
to a significant improvement (i.e., 1sNSE ≤ σs) implies that
the previously imputed stations do not add extra information
for spatial interpolation. This can be for two reasons: (i) the
previously imputed stations are weakly correlated to the target
station, or (ii) the previously imputed stations show strong
correlations with the target station, but also show strong
correlations with stations already in the complete subset. The
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FIGURE 16 | Comparisons between S2 for sequential and non-sequential imputations: (A) Scenario 1 and (B) Scenario 2.

second reason could happen if there is a cluster of stations that
have similar physiography and experience similar precipitation
patterns. Sequential imputation of stations in a cluster may not
add new information if other stations in the cluster already
have complete records. For instance, consider Scenario 4 where
the proportion of incomplete stations is small and sequential
imputation does not provide any benefits. Figure 4D shows
that the incomplete stations in Scenario 4 are either isolated
(and could be weakly correlated to other incomplete stations)
or are a part of a cluster with multiple complete records.
Figures 3, 4 show that the stations in our dataset tend to form
clusters; these figures help us understand why we observe
a smaller percentage of stations benefitting from sequential
imputation as the proportion of incomplete stations decreases.
The clustering tendency implies that when there is a small
subset of incomplete stations, there is a high probability that
previously imputed stations do not add any extra information
for spatial information.

Figure 12 shows scatter plots of true and predicted
precipitation on test data for a station that showed significant
improvement during sequential imputation in Scenario 1. As
noted for Figure 6 as well, these plots help visualize that as
the NSE value increases during sequential imputation, the
relative scatter decreases demonstrating improved spatial
interpolation. Figures 13, 14 demonstrate that the benefits of
sequential imputation also carry over to predicting dry events
and extreme events despite the underlying limitations of spatial
interpolation as noted in the section Evaluating Imputation:
Nash Sutcliffe Efficiency (NSE). We observe a general trend
that the improvements (or values of 1) tend to be higher for
stations that correspond to significant overall improvements
(i.e., 1sNSE > σs) as discussed above.

Results for aggregate correlations (Figure 7B) show that
the correlation between Si (i.e., partial sum of first i sorted
correlations) and NSE is high for lower values of i, and
gets progressively weaker as i increases. This implies that for
reliable imputation, having a few references that are strongly
correlated is more important than having many references that
are weakly correlated. This highlights why sequential imputation
is a powerful technique, since leveraging even one incomplete
station that is highly correlated to the target station can make a
significant improvement. We illustrate this further in Figure 16,

where we show values of S2 for all stations at the time
of sequential imputation in Scenarios 1 and 2. As expected,
values of S2 during sequential imputation are higher than those
during non-sequential imputation, which is consistent with
improved imputations.

It is important to note that stations imputed earlier during
sequential imputation tend to have a higher NSE, indicating a
more reliable imputation. NSE values tend to decrease along
the imputation sequence. This is primarily a consequence of
the order in which we pick stations for sequential imputation.
Stations that are imputed earlier in the sequence have a higher
aggregate correlation with reference datasets, implying that
missing data would be modeled with greater accuracy. This can
be verified by observing the trend of the baseline NSE curve in
Figures 8A–11A, which also shows a reduction in NSE values
along the imputation sequence. Stations that are imputed later
in the sequence will tend to have a lower value of NSE because
they have a lower baseline NSE to begin with; they could still
exhibit significant improvements during sequential imputation
when compared to non-sequential imputation (as shown in
Figures 8B–10B).

Finally, we note that the performance of sequential imputation
could be negatively impacted if the data gaps among stations
occur synchronously. In particular, this could happen if a
station earlier in the sequence was poorly imputed and
has a high correlation with a station imputed later in the
sequence. However, the proposed sequential approach can still
be implemented, and this approach will outperform or equally
match the non-sequential approach.

CONCLUSIONS

Spatial interpolation algorithms typically require reference
stations that have complete records; therefore, stations with
missing data or incomplete records are not used. This
limitation is critical for machine learning algorithms where
incomplete records preclude data-driven learning of multi-
variate relationships. In this study, we proposed a new algorithm,
called the sequential imputation algorithm, for imputing missing
time-series precipitation data. We hypothesized that stations
with incomplete records contain information that can be used
toward improving spatial interpolation. We confirmed this
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hypothesis by using the sequential imputation algorithm which
was incorporated within a spatial interpolation method based on
Random Forests.

We demonstrated the benefits of sequential imputation as
compared to non-sequential imputation. Specifically, we showed
that sequential imputation helps leverage other incomplete
records for more reliable imputation. We observed that as the
proportion of stations with incomplete records increases, there
is a higher percentage of stations benefitting from sequential
imputation. On the other hand, if the proportion of stations
with incomplete records is small, there is a high probability
that sequential imputation does not add any extra information
for spatial information. We also observed that the benefits
of sequential imputation carry over to improved predictions
of dry events and extreme events. Finally, results showed
that for reliable imputation, having a few strongly correlated
references is more important than having many references that
are weakly correlated. This highlights why sequential imputation
is a powerful technique, since including even one incomplete
station that is highly correlated to the target station can make a
significant improvement in imputation.

Although we demonstrated sequential imputation using
Random Forests, it can be implemented using other ML-
based and spatial interpolation methods found in the literature.
Furthermore, we presented a new but generic algorithm for
imputing missing records in daily precipitation time-series that
is potentially applicable to other meteorological variables as well.
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