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High-quality and high-resolution precipitation products are critically important to many

hydrological applications. Advances in satellite remote sensing instruments and data

retrieval algorithms continue to improve the quality of the operational precipitation

products. However, most satellite products existing today are still too coarse to be

ingested for local water management and planning purposes. Recent advances in

deep learning algorithms enable the fusion of multi-source, high-dimensional data for

statistical learning. In this study, we investigated the efficacy of an attention-based, deep

convolutional neural network (AU-Net) for learning spatial and temporal mappings from

coarse-resolution to fine-resolution precipitation products. The skills of AU-Net models,

developed using combinations of static and dynamic predictors, were evaluated over a

3 × 3◦ study area in Central Texas, U.S., a region known for its complex precipitation

patterns and low predictability. Three coarse-resolution satellite/reanalysis precipitation

products, ERA5-Land (0.1◦), TRMM (0.25◦), and IMERG (0.1◦), are used as part of

the inputs, while the predictand is the 1-km PRISM data. Auxiliary predictors include

elevation, vegetation index, and air temperature. The study period includes 18 years of

data (2001–2018) at the monthly scale for training, validation, and testing. Results show

that the trained AU-Net models achieve different degrees of success in downscaling the

baseline coarse-resolution products, depending on the total precipitation, the accuracy

of large-scale patterns captured by the baseline products, and the amount of information

transferable from predictors. Higher precipitation rate tends to affect AU-Net model

performance negatively. Use of the attention mechanism in the AU-Net models allows for

infilling of multiscale features and generation of sharper images. Correction using gauge

data, if there is any, can further improve the results significantly.

Keywords: PRISM, TRMM, deep learning, convolutional neural net, global precipitation measurement (GPM)

satellite, precipitation downscaling, attention-based U-net

1. INTRODUCTION

Precipitation is a primary driver of water and energy cycle (Trenberth et al., 2007), providing
essential inputs to many water, food, and energy applications including, but not limited to,
global and regional climate variability assessments, land surface-atmosphere interactions, natural
hazard prevention, crop yield management, hydrological forecasting, and surface and groundwater
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resources planning (Hong et al., 2007; Seneviratne et al., 2010;
Becker et al., 2013; Schewe et al., 2014). To a large degree,
the effectiveness of many disaster response and water resources
management decisions hinge on the quantity and quality, as well
as the spatial and temporal resolution of precipitation products.
Currently available precipitation products may be classified
into ground-based, satellite-based, reanalysis, and hybrid multi-
source/multi-sensor products.

Ground-based products are derived from rain gauges and
weather radar. However, the spatial coverage of rain gauge
networks is often limited, also varying significantly across
different countries owing to temporal sampling resolutions,
periods of operation, data latency, and data access (Kidd et al.,
2017). At the global scale, ground-based products are only
available at a relatively coarse resolution (≥0.5◦) and updated
rather infrequently (Sun Q. et al., 2018). High-resolution gridded
products are only available in a few developed counties that
have extensive gauge network coverage. For example, in the
U.S., the Parameter-elevation Regressions on Independent Slopes
Model (PRISM) gauge-based product (4-km resolution, 1895–
present), developed by the Oregon State University (Daly et al.,
1997), is widely used for operational planning and validation
of satellite products. Similarly, the Stage IV radar-based, gauge-
adjusted precipitation data (4 km, 2002–present) available from
the National Center for Environmental Prediction (NCEP) is also
commonly used as a reference dataset inmany conterminous U.S.
(CONUS) precipitation product comparisons (Lin and Mitchell,
2005).

Satellite precipitation products are derived from passive
and active microwave (MW) sensors onboard low Earth
orbiting satellites, and visible/infrared (VIS/IR) sensors onboard
geostationary satellites (Hou et al., 2014). So far, the raw
satellite precipitation data has been mainly retrieved from three
spaceborne precipitation radars: the Ku-band precipitation radar
onboard the Tropical Rainfall Measuring Mission (TRMM)
satellite that was in orbit from 1997 to 2015, the W-band
Cloud Profiling Radar (CPR) onboard the CloudSat operating
from 2006 to the present, and the Dual-frequency Precipitation
Radar (DPR) onboard the Global Precipitation Measurement
(GPM) Core Observatory operating from 2014 to the present
(Tang et al., 2018b). Unlike ground-based products, satellite
products provide spatially homogeneous coverage with low
latency. Some of the currently available satellite products, such
as the Integrated Multi-satellite Retrievals for GPM (IMERG)
(Huffman et al., 2015) and TRMM Multi-satellite Precipitation
Analysis (Huffman et al., 2007), not only assimilate information
from multiple MW/IR sensors, but also are corrected by ground
observations. Currently, the most common resolution of satellite
precipitation products is 0.25◦ per 3 h (Sun Q. et al., 2018).

Reanalysis products are generated by assimilating irregular
observations into earth system models to generate a synthesized
estimate of the state of the system (e.g., precipitation)
across a uniform model grid, with spatial homogeneity and
temporal continuity (Sun Q. et al., 2018). The commonly used
reanalysis products include the NCEP/NCAR Reanalysis system
(1.875◦, 1979–2010) (Kistler et al., 2001), European Center for
Medium-RangeWeather Forecasts (ECMWF) reanalysis systems

(0.25/0.75◦, 1979–present) (Dee et al., 2011), and the NCEP
Climate Forest System Reanalysis system (CFSR, 38 km, 1979–
2010) (Saha et al., 2010).

Recent trends in precipitation product development are
geared toward merging multi-source and multi-sensor data
to leverage information existing at multiple scales. Examples
include the Multi-Source Weighted-Ensemble Precipitation
(MSWEP, 0.1/0.5◦, 1979–present) (Beck et al., 2017) and
Modern-Era Retrospective Analysis for Research andApplication
system (MERRA-2) (Rienecker et al., 2011), both combining
gauge, satellite, and reanalysis data. These products typically
adopt an optimal weighting scheme to merge information. In
MSWEP, for example, weights assigned to the gauge-based
data are determined from the gauge network density, while
weights assigned to the satellite and reanalysis-based estimates
are calculated from their comparative performance at the
surrounding gauges (Beck et al., 2017).

Notwithstanding the tremendous effort dedicated to
developing various products, precipitation forcing remains a
major source of uncertainty in global hydrological and land
surface models (Wood et al., 2011; Scanlon et al., 2018) because
of its inherent high variability in space and time, especially in
topographically complex, convection-dominated, and snow-
dominated regions (Tang et al., 2018a; Beck et al., 2019). The
accuracy of rain gauge data may be affected by a number of
environmental factors, such as wind, wetting and evaporation
loss, and undercatch (Sun Q. et al., 2018; Tang et al., 2018a).
The uncertainty in satellite precipitation data may stem from
different sources, including algorithms used for retrieving,
downscaling, and merging multi-sensor data, as well as from the
acquisition instrument itself (Sorooshian et al., 2011).

Recently, Sun Q. et al. (2018) reviewed 30 currently available
global precipitation datasets, including gauge-based, satellite-
related, and reanalysis datasets. They found that the magnitude
of annual precipitation estimates over global land deviated by as
much as 300mm/yr among the products. They also noted that the
degree of variability in precipitation estimates varied by region,
with large differences found over tropical oceans, complex
mountain areas, northern Africa, and some high-latitude regions.
Beck et al. (2019) evaluated the performance of 26 gridded daily
precipitation products over the CONUS for the period 2008–
2017. Among the 15 uncorrected datasets considered, they found
that ERA5-HRES (the 5th global reanalysis product released by
ECMWF, 0.28◦, 2008–present) gives better performance than
others across most of CONUS, especially in the west; among
the 11 gauge-corrected products, MSWEP V2.2 gives the best
performance, which was attributed to applying daily gauge
corrections and accounting for gauge reporting times during
product development. Both product reviews suggest that the
reliability of precipitation datasets depends on the number and
spatial coverage of surface stations, the accuracy of satellite data
retrieval algorithms, as well as the data assimilation models used.
Most data assimilation and bias correction methods, in turn,
rely on the understanding and characterization of precipitation
error distributions, which are typically non-stationary and
product dependent. AghaKouchak et al. (2012) investigated
the systematic and random errors in several major satellite
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precipitation products against the NCEP Stage IV data. A
major finding of their study is that the spatial distribution of
the systematic error had similar patterns for all precipitation
products they considered, for which the error is remarkably
higher during the winter than in summer; the error was also
found to be proportional to rain rates, with larger errors tending
to be associated with higher rain rates. Parameterization of
the precipitation error model is thus critically important for
improving precipitation products, but remains a challenging task,
partly because of the strong spatial and temporal variability in
rainfall patterns (Sorooshian et al., 2011; AghaKouchak et al.,
2012).

The advent of deep learning (DL) algorithms in recent years
has revolutionized the field of statistical pattern recognition,
enabling machines to achieve human-like classification accuracy
(Goodfellow et al., 2016). Precipitation product development
represents a research domain that can readily benefit from
the DL because of the explosive growth of multiscale, multi-
source Earth observation data (Ma et al., 2015; Sun and Scanlon,
2019). Pan et al. (2019) recently presented a convolutional
neural network (CNN)method for precipitation estimation using
numerical weather model outputs. The CNN model architecture
follows an end-to-end design, in which a fully connected dense
layer is used at the output layer to recover the dimensions of
the input images. The input predictors they used include 3-
h geopotential height and precipitable water at 500, 850, and
1,000 hPa, which were taken from the NCEP regional reanalysis
at 32 km (~0.29◦) resolution; and the predictand is the total
precipitation. Their results show CNN obtained better skills in
the northwest and east parts of CONUS, but performed poorer
than the reference Climate Prediction Center (CPC) gauge-based
dataset in the mid-U.S. Tang et al. (2018b) applied a four-layer,
deep multilayer perceptron network to predict precipitation rates
(at single locations), by mapping passive microwave data from
GPM and MODerate resolution Imaging Spectroradiometer
(MODIS) to spaceborne radar data. Kim et al. (2017) used
ConvLSTM, a combination of convolutional neural nets and
long short-term memory (LSTM) neural net (Shi et al., 2015),
for precipitation nowcasting using weather radar data. Their
results showed ConvLSTM was able to obtain better results than
the simple linear regression method. Similarly, ConvLSTM was
recently used for precipitation estimation based on atmospheric
dynamical fields simulated by ERA-Interim (a predecessor of
ERA5) (Miao et al., 2019).

Tremendous interests exist in using machine learning
techniques for statistical precipitation downscaling, which has
long been studied even before the DL era to refine coarse-
resolution precipitation products and global climate model
projections for local water management and hydrological
modeling needs (Maraun et al., 2010; Jia et al., 2011; Duan and
Bastiaanssen, 2013; Chen et al., 2018). To correct biases arising
during downscaling, two types of traditional methods may be
identified, quantile mapping (Li et al., 2010; Shen et al., 2014;
Yang et al., 2016) andmultiplicative/additive correction (or linear
scaling) (Vila et al., 2009; Jakob Themeßl et al., 2011). In the realm
of DL, Vandal et al. (2018) introduced DeepSD, which is a stacked

superresolution CNN for statistical downscaling of climate and
Earth system model simulations. In their experiments, Vandal
et al. (2018) upsampled the 4-km PRISM data progressively to
1◦, and then tried to restore the original high-resolution data by
training a CNN model. He et al. (2016) used the random forest
algorithm to downscale the precipitation forcing field used in
North-American Land Data Assimilation System Project Phase
2 (NLDAS-2). Their main research question was whether the
upsampled NLDAS-2 precipitation forcing (in spatial resolutions
of 0.25, 0.5, and 1◦) could be restored to its native resolution
(0.125◦) by using additional dynamic and static information (e.g.,
air temperature, wind speed, elevation, slope) as auxiliary inputs.

So far, however, few studies have attempted to directly
map coarse-resolution precipitation products (e.g., satellite or
reanalysis products) to fine-resolution, gauge-based precipitation
products using DL. As mentioned previously, gauge products
tend to have higher resolutions but are often created using
proprietary data processing algorithms that may not be readily
accessible to local users. Inconsistencies in data release times may
also prevent end users from accessing the information when they
need it the most. The main motivation of this research was thus
to investigate a data-driven, DL-based statistical downscaling
procedure by learning covariational patterns between the coarse-
and fine-resolution precipitation products. A novel, attention-
based, deep convolutional neural network model was adopted
to help capture multiscale spatial and temporal patterns. Once
trained, end users may apply the DL-based model to generate
downscaled high-resolution precipitation maps using only
coarse-resolution products, which are available operationally.
Ultimately, such a DL-based downscaling procedure may be
applied to regions without high resolution products through
transfer learning, in which models trained for data-rich domains
are “transferred” to inform models for data-sparse domains
(Pan and Yang, 2009; Goodfellow et al., 2016; Jean et al., 2016;
Sun and Scanlon, 2019). Like in all regression studies, a main
hypothesis underneath this research is that certain spatial and
temporal covariational patterns exist between the predictand and
its predictors, which has been confirmed to a certain degree
by previous validation studies (Beck et al., 2017), but is also
shown to vary significantly across space and time (AghaKouchak
et al., 2012), creating a major challenge for the pattern-based
learning algorithms.

For demonstration, we focus on Central Texas, which is a
region of low hydrometeorological predictability (AghaKouchak
et al., 2012; Sun et al., 2014; Beck et al., 2019; Pan et al., 2019),
and yet, is frequented by flooding and drought events (Lowrey
and Yang, 2008; Long et al., 2013; Sun A. Y. et al., 2018).
PRISM data is used as the high-resolution training target. The
performance of three coarse-resolution satellite and reanalysis
products, along with other auxiliary variables, are evaluated.
This paper is organized as follows. Section 2 describes the study
area and datasets used. Section 3 presents the design of the
deep CNN model. Results are provided in section 4, followed
by discussion and conclusions. For reference, a table of major
abbreviations and acronyms used this paper is provided in the
Appendix.
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2. STUDY AREA AND DATA USED

2.1. Study Area
Central Texas represents the fastest-growing region in the U.S.
among metros with at least 1 million people (Austin Statesman,
2019). The region is also known for its severe precipitation
events, resulting from a juxtaposition of meteorological factors,
including moisture influx from the Gulf of Mexico, easterly wave
moving across the area, and orographic uplift from the Balcones
Escarpment (a physiographic feature of steep elevation gradient
at the boundary between the Edwards Plateau and the Gulf Coast
Plain) (Hirschboeck, 1987; Nielsen-Gammon et al., 2005; Lowrey
and Yang, 2008; Sun A. Y. et al., 2018).

The area of study is a 3× 3◦ region bounded between latitudes
29–32◦N and longitudes 100–97◦W (Figure 1). It encompasses
two major Central Texas cities, Austin and San Antonio, as
well as their surrounding regions. Central Texas is part of the
Texas Hill Country, which is within the Edwards Plateau, a
geographic region known by its rugged karstic terrains and
thin top soils (Mace et al., 2000). Major land cover types
include forest lands, rangeland, agricultural lands, urban, barren
land, and wetlands (Omranian and Sharif, 2018). Elevation is
highest (736 m) near the west boundary of the study area
and gradually decreases toward the east boundary to 42 m
(Figure 1A). Climate in the region is humid subtropical, and
precipitation exhibits a distinctive bimodal pattern: spring is
the wettest season, with April and May the wettest months; a
secondary peak of rainfall occurs in September and October
(Slade and Patton, 2003). Spatially, the annual rainfall in the 3
× 3◦ region ranges from 575 to 1,005 mm, which is the highest
in the east and decreases toward the west (Figure 1B). Tropical
cyclones (hurricanes and tropic storms) typically occur in late
summer or early fall, bringing the largest amount of rainfall.
Moreover, Balcones Escarpment acts as a major mechanism
of localization and intensification of rainfall (Nielsen-Gammon
et al., 2005).

Hydrology wise, the study area is part of two major river
basins, the Lower Colorado River Basin that drains to Lower
Colorado River and its major tributaries (San Saba River, Llano
River, and Pedernales River), and the Brazos River Basin. The
former includes a cascade of surface reservoirs (e.g., Lake
Buchanan, Lake Travis) that provide surface water supply to the
City of Austin. In addition to flooding, severe drought is a major
concern, often causing significant loss to the regional economy
(Long et al., 2013). The accuracy and reliability of precipitation
estimate is thus of paramount importance to local water agencies,
for continuously evaluating flood/drought potential, as well as
for quantifying groundwater recharge, reservoir storage, and
water availability. For those reasons, the Lower Colorado River
Authority (LCRA), the primary water management agency of
the area, has established a dense gauge network in recent
years to provide continuous rainfall data at relatively high
spatial and temporal resolutions (open circles in Figure 1A).
The in situ data offers important additional information for
precipitation downscaling in this study, as discussed below in
section 4.

2.2. Datasets
The study period is from Jan 2001 to Dec 2018, which was
chosen based on the common period of coverage of all products
considered. Themonthly scale was chosen because of our interest
in downscaling precipitation for supporting subseasonal water
management activities. In the following, the gridded and gauge
data used are described in details, and a summary of all data used
is also provided in Table 1, including the data URLs.

2.2.1. Gauge Data
Monthly gauge precipitation data was obtained from Texas
Mesonet. Figure 1A shows the locations of rain gauges as
of Jan 2017 (the first month of our test period), which are
distributed more densely within the LCRA boundary than in the
surrounding areas. The number of valid gauges increased from
361 in Jan 2017 to 532 in Dec 2018. As mentioned before, the
number of rain gauges only increased in recent years in light
of the severe 2012–2013 Texas drought. Before that event, the
number of in situ data was generally much smaller. For example,
the number of gauge data available in Jan 2003 was 24 and in Jan
2013 it was 53. Thus, the quality of the PRISM data evolved with
time. In other words, patterns used for the training period may
be less constrained than the patterns used during validation.

In this study, the gridded, gauge-based precipitation product
PRISM is the training target or predictand. The Stage IV data
from NCEP was used for cross-examining the PRISM patterns.
Stage IV data includes merged operational radar data and rain
gaugemeasurements in hourly accumulations. Both datasets have
a spatial resolution of 4 km andwere temporally aggregated to the
monthly scale.

2.2.2. Satellite and Reanalysis Data
Three coarse-resolution satellite and reanalysis precipitation
products, TRMM, ERA5-Land, and IMERG, were tested for
generating PRISM like data. The TRMM data used in this
study is 3B43 v7 (0.25◦, 1998–2019), which is a post-real-
time, gauge-correctedmonthly product that merges precipitation
estimates from multi-sensors, as well as monthly precipitation
gauge analysis from the Global Precipitation Climatology Center
(https://www.dwd.de) (see also Table 1). The main motivation
behind developing the 3B43 algorithm was to produce the best
estimate of precipitation rate from sensors onboard TRMM,
as well as from other satellites including Advanced Microwave
Scanning Radiometer for Earth Observing Systems (AMSR-
E), Special Sensor Microwave Imager (SSMI), Special Sensor
Microwave Imager/Sounder (SSMIS), Advanced Microwave
Sounding Unit (AMSU), Microwave Humidity Sounder (MHS),
and microwave-adjusted merged geo-infrared (IR) (Huffman
et al., 2010). After TRMM was decommissioned in 2015,
TRMM data continued to be produced using the climatological
calibrations/adjustments until 2019 (Bolvin and Huffman, 2015).

ERA5 is the latest generation of reanalysis data from ECMWF.
It is produced using the 4D-variational data assimilation system
in ECMWF’s Integrated Forecast System, and features several
improvements over its predecessor (i.e., ERA-Interim), including
an updated model and data assimilation system, higher spatial
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FIGURE 1 | (A) Study area boundary (lat: 29–32◦N, lon: 100–97◦W) and the shaded relief map (open circles correspond to the existing rain gauges as of Jan 2017);

(B) 30-years precipitation normal extracted from PRISM, where color and contour lines represent total rain amount in mm.

resolution (0.28 vs. 0.75◦) and temporal resolution (1 vs. 6-
h), more vertical levels (137 vs. 60), and assimilation of more
observations (Hennermann and Berrisford, 2017). Currently,
the ERA5 dataset includes a high-resolution realization (HRES,
~0.28◦) and a reduced-resolution, 10-member ensemble, and are

available at both sub-daily and monthly intervals (Hennermann
and Berrisford, 2017). For this study, the ERA5-Land data (0.1◦)
was used and was downloaded from the Climate Data Store (see
Table 1). The grid resolution of ERA5-Land is higher than the
native ERA5 resolution of 0.28◦. Thus, during processing, the
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input air temperature, air humidity, and pressure used to run
ERA5-Land were corrected to account for the altitude difference
between the grid of the forcing and the higher resolution grid of
ERA5-Land (Hennermann and Berrisford, 2017).

IMERG supersedes the TRMM 3B42 product as the next-
generation precipitation product developed using the GPM
data. The original purpose of IMERG was to calibrate,
merge, and interpolate all satellite microwave precipitation
estimates, together with microwave-calibrated infrared (IR)
satellite estimates, precipitation gauge analyses, and potentially
other precipitation estimators at fine temporal (30 min) and
spatial resolution (0.1◦) over the entire globe (Huffman et al.,
2015). Previously, Tang et al. (2016) compared Day-1 IMERG
with TRMM 3B42V7 over a well-gauged, mid-latitude basin in
China, and concluded that theDay-1 IMERGproduct could be an
adequate replacement of TRMM products, both statistically and
hydrologically. Probably more relevant to this study, Omranian
and Sharif (2018) compared the quality and accuracy of Day-
1 IMERG product over the entire Lower Colorado River Basin.
They showed the Day-1 IMERG product can be potentially used
at small basin scales with errors comparable to those of weather
radar products, provided that gauge-based real-time adjustment
algorithms are available for correction. For this study, monthly
IMERG V06 data (0.1◦, 2000–present) was downloaded from
NASA’s data repository (see Table 1).

In addition to exploring temporal and spatial correlation
in precipitation itself, other auxiliary predictors commonly
considered during precipitation downscaling include elevation,
vegetation index, and air temperature (Duan and Bastiaanssen,
2013; He et al., 2016; Vandal et al., 2018). For this study,
elevation, slope, and aspect were tested as possible static auxiliary
variables. The elevation data (DEM) was extracted from the
Global Multi-resolution Terrain Elevation Data (GMTED2010)
developed by U.S. Geological Survey and National Geospatial-
Intelligence Agency (15 arc s or ~450 m). Slope and aspect were
derived from the DEM using the Python package, RichDEM
(Barnes, 2018). Monthly enhanced vegetation index (EVI) was
also evaluated as a dynamic auxiliary variable. The response of
vegetation to precipitation can have a lag time of 2–3 months in
semi-arid areas (Quiroz et al., 2011). Previous studies utilizing
the vegetation index were done at both monthly (López López
et al., 2018) and annual (Duan and Bastiaanssen, 2013) scales.
For this study, EVI was extracted from the Level-3 vegetation
index product derived fromMODIS, MOD13C2 (0.05◦). Finally,
the 2-m air temperature data was extracted from the ERA5-Land
forcing data available from the Climate Data Store.

3. METHODOLOGY

3.1. Problem Formulation
Here a regression model is sought to relate a pair of low-
and high-resolution precipitation maps that are created from
different types/sources of data. Formally, the problem may be
stated as the following statistical learning problem (Goodfellow
et al., 2016)

κ :X → Y , (1)

where domain X represents the input space, including the low-
resolution precipitation data and any auxiliary information, as
explained later in section 3.3; and domain Y represents the high-
resolution target space. In reality, the true mapping operator
κ is not accessible. Thus, we seek an approximation to κ ,
namely, finding y = f (X,2), where y ∈ Y , X ∈ X , f is
a statistical mapping that is trained using the labeled training
dataset {X(i), y(i)}Ni=1 consisting of input samples X(i) ∈ R

H×W×C

and output samples y(i) ∈ R
H×W (H, W, and C denote the

height, width, and channel dimensions of inputs) and 2 is a
set of trainable parameters of f . In this work, we adopt an
attention-based, U-Net model (AU-Net) for f .

3.2. Attention-Based Deep Convolutional
Neural Net
Deep CNN models consist of a cascade of convolution blocks,
each including one or more convolutional layers that perform
convolution operations on inputs from the previous layer
(Goodfellow et al., 2016)

xlc = σ

(

∑

c′

Wl
c′ ,c ⊗ xl−1

c′ + blc

)

,

xli,j,c = σ

(

∑

m

∑

n

∑

c′

wl
m,n,c′ ,cx

l−1
i+m,j+n,c′ + blc

)

,

i = 1, . . . ,H, j = 1, . . . ,W, c = 1, . . . ,Cf (2)

where xl−1 and xl are the input and output tensors of the l-th
layer; subscripts m, n denote indices along the width and height
dimensions of a kernel, c′ is the index along channel dimension;
c represents the index of output channel dimension Cf , which
is equal to the number of kernels used for convolving the l-th
layer; ⊗ is a convolution operator as defined in the second line
of the above equation; Wl

c′,c = {wl
m,n,c′ ,c} represents the weight

matrix of the c-th kernel for the input channel c′, and bl = {blc}
represents a bias vector, both are trainable parameters; and σ

represents the activation function. In practice, a number of other
types of layers, such as batch normalization and pooling, are
used in the convolution block to increase the learning efficiency
while keeping the number of trainable parameters manageable
(Goodfellow et al., 2016).

U-Net is a type of deep CNN and more specifically, an
image-to-image autoencoder that was originally introduced in
biomedical image segmentation (Ronneberger et al., 2015).
Unlike some early deep CNN model designs that use dense
(or fully connected) layers at the output end, U-Net is fully
convolutional (i.e., consisting of only convolutional layers).
The downsampling step (encoder) is designed to capture fine-
scale image contexts by using repeated convolutional blocks
to progressively extract downsampled feature maps, while the
upsampling step (decoder) is designed to progressively enlarge
the feature maps until the original image dimension is restored.
In the final step, a 1× 1 (kernel size) convolutional layer is used to
condense the stack of feature maps along the channel dimension
and generate a single output image, completing the image-to-
image regression process (Figure 2). For this work, the rectified
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TABLE 1 | Summary of datasets used in this study, where P–precipitation, T–temperature, DEM–elevation, EVI –enhanced vegetation index.

Data (Variable) Format (resolution) Source

Texas Mesonet (P) Gauge https://www.texmesonet.org

PRISM (P) Gridded (4 km) http://www.prism.oregonstate.edu

Stage IV (P) Gridded (4 km) https://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4

TRMM3B43 V7 (P) Gridded (0.25◦) https://earthdata.nasa.gov

ERA5 (P,T) Gridded (0.1◦) https://cds.climate.copernicus.eu

IMERG V06 (P) gridded (0.1◦) ftp://arthurhou.pps.eosdis.nasa.gov

GMTED2010 (DEM) Gridded (450 m) https://www.usgs.gov/land-resources

MOD13C2 (EVI) Gridded (0.05◦) https://modis.gsfc.nasa.gov/data/dataprod/mod13.php

FIGURE 2 | Model architecture of attention-based U-Net (AU-Net), which consists of a pair of encoder and decoder for end-to-end learning. Green blocks are

convolutional blocks, for which the number of kernels used is labeled on top of each block. Red blocks are attention gate blocks, the design of which is shown in the

callout on bottom right. Dashed arrow lines are skip connections. Most hidden convolutional layers use 3× 3 kernels and the ReLU activation function, except in the

attention block and in the output layer, where 1× 1 kernels and tanh are used. Meanings of other symbols are explained in the legend shown at bottom left.

linear unit (ReLU) is used as the activation function for all hidden
layers except in the output layer, where the hyperbolic tangent
function (tanh) is used. The pooling size is 2 so that the input
layer dimension is halved after each pooling operation.

A key feature of the U-Net design is the skip connection,
which is a combination of copy and concatenation operations
to merge the fine-scale features from the downsampling step
with the upsampled coarse-scale feature maps to better learn
representations (dashed arrow lines in Figure 2) (Ronneberger
et al., 2015). Mao et al. (2016) showed that the use of skip
connections helps the training process to converge much faster
and attain a higher-quality local optimum. So far, U-Net and its
variants have been used in a large number of DL applications
in geosciences (Sun, 2018; Arge et al., 2019; Karimpouli and
Tahmasebi, 2019; Mo et al., 2019; Sun et al., 2019; Zhong et al.,
2019; Zhu et al., 2019).

In CNN design, the size of the receptive field (e.g., kernel
dimensions) directly affects the learning performance. If a single,
fixed-size kernel is used to scan the inputs, global information
may be missed, especially when the resolution of the input image
is high. In the literature, several methods have been proposed
to circumvent the issue. The skip connection used in U-Net is
one example. As another example, Ren et al. (2016) proposed a
multiscale CNN model consisting of a pair of coarse-scale and
fine-scale autoencoders, the former uses a 11 × 11 kernel, while
the latter uses a 7 × 7 kernel; the output of the coarse network
is fed to the fine network as additional information to refine
the coarse prediction with details. In recent years, self-attention
has emerged as yet another alternative for capturing multiscale
contexts in an image.

Simply speaking, attention refers to the biological capability
of certain animals, including humans, to direct their gaze
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rapidly toward objects of interest in a visual environment,
transforming the understanding of a visual scene into a series
of computationally less demanding, localized visual analysis
problems (Itti and Koch, 2001). Significant interests exist in
computational neuroscience to replicate such capability in
pattern recognition algorithms. In machine translation (natural
language processing), for example, self-attention has been
proposed as a mechanism for relating different positions of
a single sequence in order to compute a representation of
the sequence (Vaswani et al., 2017). In image processing,
attention has been used to model the image as a sequence
of regions, allowing for better capturing of large-scale features
while producing sharper local details, thus leading to improved
performance in object tracking, object detection, and image
caption generation applications (Xu et al., 2015; Oktay et al.,
2018; Bello et al., 2019; Hou et al., 2019). For this study, we
hypothesize that the same attention mechanism that helps to
capture multiscale spatial and temporal interactions may also be
useful in learning the covariational patterns between high- and
low-resolution precipitation products.

In general, attention-based algorithms work by suppressing
the irrelevant background and enabling salient features to
dynamically come to the forefront (Xu et al., 2015). We adopt
the attention-gate module proposed by Oktay et al. (2018),
which has the advantage of being compatible with the standard
CNN models (e.g., U-Net) and can be added as an additional
block without incurring significant computational overhead. As
illustrated in Figure 2, the attention block is attached to the
upsampling step of the U-Net (i.e., red blocks in Figure 2). For
the l-th layer, the inputs to the attention block are outputs from
the coarse-scale decoder (gl) and that from the encoder (via the
skip connection) (xl). Inside the attention block, the inputs are
passed through separate 1×1 convolutional layers, concatenated,
and then passed through another 1× 1 convolutional layer (with
activation) to arrive at an attention map. In essence, the attention
blockmay be regarded as a sub-network and its role is to suppress
irrelevant features from the skip connections using information
from the decoder. Mathematically, the series of attention gate
operations may be described as (Oktay et al., 2018)

ql = Ws ⊗
(

σ1

(

Wx ⊗ xl + bx +Wg ⊗ gl + bg

))

+ bs, (3)

α
l = σ2

(

ql
(

xl, gl;2
))

, (4)

where 2 = {Wx,Wg , bg , bx, bs} represents a set of trainable
weight matrices and bias terms, σ1 is ReLU activation function,
σ2 is sigmoid activation function, αl is the resulting attentionmap
for weighting different regions in the input.

3.3. Network Training and Performance
Metrics
Monthly data from 2001/01 to 2018/12 were divided into three
parts, training (Nr = 168), validation (Nv = 24), and testing
(Nt = 24). After preliminary analyses, four predictor groups
were considered, including coarse-resolution satellite/reanalysis

precipitation products (P), enhanced vegetation index (EVI), air
temperature (T), elevation (DEM), slope, and aspect,

M1 : Pt−2 : t , EVIt−1 : t , DEM, Slope, Aspect, (5)

M2 : Pt−2 : t, DEM, Slope, Aspect, (6)

M3 : Pt−2 : t, DEM, (7)

M4 : Pt−2 : t , Tt−2 : t , (8)

where the subscript t denotes the month index, and the target
is PRISM data at month t. Models M1 to M3 include both static
and dynamic variables, whileM4 only includes coarse-resolution
dynamic variables. All AU-Net models are developed at the 128×
128 grid resolution, which is about 2.6 km/pixel for the current
problem. The lags for the dynamic variables are chosen based on
preliminary analyses. Higher-resolution grids are tested as part of
the sensitivity study. Before training, all inputs are resampled to
the same grid resolution through bilinear interpolation, and then
normalized before passing to the DL model for training.

All models were developed in the PyTorch (v1.1) machine
learning framework. The loss function used in training the AU-
Net models is the mean square error (MSE) defined as

MSE =
1

Nr

Nr
∑

i=1

‖yi − ŷi‖
2
2, (9)

where y and ŷ represent the true precipitation data used for
training and the predicted data, respectively. The ADAM solver
(Kingma and Ba, 2014) was used to train the neural nets, with a
learning rate α = 5 × 10−4, first moment decay rate β1 = 0.5,
and second moment decay rate β2 = 0.999. During training
and validation, the data samples were randomly shuffled to
improve generalization. Training of the AU-Net was carried
out on a dual-processor computing node equipped with 128Gb
RAM and Nvidia 1080-TI GPU. A total of 100 epochs were
used for each model and the batch size (i.e., number of samples
used in each solver iteration) was set to 10. Early stopping
was implemented by monitoring the validation loss to mitigate
overfitting. Training time depends on the model size and grid
resolution and generally takes about 15 min for each model at
the 128× 128 grid resolution.

Model performance evaluation includes comparison with
both in situ gauge data and PRISM data for the testing period. For
comparison with in situ data, three metrics are used, namely, the
root mean square error (RMSE), bias, and correlation coefficient
(CC),

RMSE =

√

√

√

√

1

NG

NG
∑

i=1

(yg,i − ŷi)2, (10)

BIAS =
1

NG

∑

NG

(

ŷi − yg,i
)

∑

NG

(

yg,i
) × 100, (11)

CC =
1

NGσyσg

NG
∑

i

(yg,i − µg)(ŷi − µy), (12)
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FIGURE 3 | Correlation maps between PRISM and (A) ERA, (B) TRMM, and (C) GPM over the entire study area. Correlation at each grid cell is calculated as the

Pearson correlation coefficient between pairs of time series for that cell.

FIGURE 4 | Convergence history of AU-Net training and validation: (A) ERA5, (B) TRMM, and (C) GPM.

where yg and ŷ are measured and predicted data at a gauge
location, NG is the number of usable gauge data for a month, and
µ and σ denote mean and standard deviation. If multiple gauges
exist in a grid cell, we used the average of gauge values for that
cell. Mean metric values were then obtained by averaging over all
months in the testing period.

For image-to-image comparison, RMSE is calculated over
all grid cells. In addition, the structural similarity index metric
(SSIM) is calculated, which is a metric widely used in computer
vision to measure similarity between two images (Wang et al.,
2004). Specifically, for two sliding windows u and v operating
separately on the testing and reference images (grayscale), SSIM
is defined as

SSIM(u, v) =
(2µuµv + c1)(2σuv + c2)

(µ2
u + µ2

v + c1)(σ 2
u + σ 2

v + c2)
, (13)

where µ and σ represent the mean and standard deviation of
image patches falling in the sliding windows, and c1 and c2 are
small constants introduced to avoid numerical instability (Wang
et al., 2004). The global SSIM is obtained by averaging the patch
SSIM values and is in the range [−1, 1], with higher values
indicating better pattern matches. The sizes of sliding windows
used are 11× 11.

3.4. Residual Correction
Residual correction is commonly used in the final step
of downscaling to fuse gauge observations (Haylock et al.,
2006; Duan and Bastiaanssen, 2013; Chen et al., 2018). We
experimented with both kriging and inverse distance weighting
(IDW), and found that the latter gave better results. Thus, the
IDW scheme was adopted to interpolate the residual errors
between AU-Net results and gauge observations, ei, to the
entire grid, which were then added to the AU-Net estimates ŷ.
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Specifically, the final estimate ỹ is obtained by

ỹ(x) =

{

ŷ(x)+
(

∑NG
i=1 wi(x)ei

)/(

∑NG
i=1 wi(x)

)

, if d(x, xi) 6= 0

yg,i, if d(x, xi) = 0

where ei = yg,i − ŷi is the residual calculated at a gauge location,
d =‖ x − xi ‖ is the distance between a grid cell location x and
a gauge location xi, and the weight factor is wi = d−β . For this
study, we set β = 2 based on error statistics calculated against
PRISM data.

4. RESULTS

For each coarse-resolution precipitation product (i.e., ERA5-
Land, TRMM, and IMERG), the performance of four groups of
predictors (M1 − M4) that are defined under section 3.3 were
evaluated, leading to a total of 12 different AU-Net models.
For brevity, IMERG will be simply referred to as GPM, and
ERA5-Land as ERA5 in the following discussions.

As part of the exploratory analyses, the temporal correlations
between PRISM and the coarse-resolution products at all
128 × 128 grid cell locations (i.e., after resampling via bilinear
interpolation) were calculated and are shown in Figures 3A–C.
The correlation maps of both TRMM and GPM exhibit similar
spatial patterns, which tend to be higher in the eastern part and
lower in the northwest high-elevation areas; all correlation values
are above 0.8 (Note: despite the similarity, TRMM and IMERG
processing are different in a number of ways, e.g., the Level-
2 and Level-3 algorithms, the infrared data used for gap filling
and replacement, as well as the spatiotemporal resolutions).
In comparison, the correlation between ERA5 and PRISM is
generally lower, except near the southwestern corner of the
study area. Nevertheless, the large-scale spatial patterns of all
three coarse-resolution products are similar, all exhibiting this
diagonally oriented (southwest to northeast) stripe pattern.

4.1. Performance of AU-Net Models
Figure 4 plots the training and validation errors vs. training
epochs for all models. The ERA5 model group (Figure 4A)
tends to have larger training and validation errors than TRMM
(Figure 4B) and GPM (Figure 4C) groups. In each group, the
M4 AU-Net model tends to have slower training convergence rate
and stronger oscillations than the rest of the models.

Table 2 summarizes the mean performance metrics of all
products and (uncorrected) AU-Net models against the gauge
data for the test period 2017/01–2018/12. The target data, PRISM,
has the smallest RMSE (3.59 cm) and highest CC (0.637) values.
Among the three satellite/reanalysis products, TRMM and GPM
have similar mean RMSE values (4.19 and 4.15 cm, respectively),
which are all lower than that of the ERA5 (4.89 cm), but are
more than 16% higher than that of the PRISM. The bias of
TRMM (0.41) is lowest among all. GPM shows a slightly higher
mean CC value (0.408), but is still about 35% lower than that
of PRISM. Note that the CC values shown in Table 2 are lower
than those seen previously in Figure 3. This is because the former
quantifies the spatial correlation between gridded products and

TABLE 2 | Summary of gauge comparison metrics on testing data

(2017/01–2018/12) for three precipitation products, ERA5, TRMM, and GPM, and

AU-Net models (best performing member in each category is highlighted).

Product RMSE (cm) Bias CC

PRISM 3.59 10.58 0.637

ERA5 4.89 25.18 0.283

M1 4.88 1.14 0.247

M2 4.86 6.13 0.251

M3 4.80 9.33 0.243

M4 4.96 1.54 0.247

TRMM 4.19 0.41 0.396

M1 4.23 −3.37 0.410

M2 4.21 −4.95 0.407

M3 4.22 3.78 0.407

M4 4.26 3.91 0.399

GPM 4.15 4.27 0.408

M1 4.19 −12.11 0.416

M2 4.16 −1.76 0.414

M3 4.19 0.49 0.412

M4 4.20 −4.97 0.407

point measurements at gauge locations, while the latter measures
CC between harmonized time series at each grid cell. Also
rain gauges are subject to various errors as mentioned in the
Introduction, and point-scale gauge measurements may deviate
significantly from areal precipitation (Tang et al., 2018a).

At the gauge level, Table 2 suggests that the AU-Net models
in the ERA5 group show similar mean RMSE and CC, but the
bias is reduced significantly compared to the original ERA5.
The AU-Net models for TRMM show slightly worse RMSE than
the original TRMM, and slightly better CC, but the bias is also
larger. The same is true for GPM AU-Net models. All the metrics
are summarized in Figures 5A–C in separate Taylor diagrams
(Taylor, 2001), which help to visualize model performance in
terms of CC, standard deviation (SD), and RMSE relative to the
reference gauge observations. The Taylor diagrams suggest that
all gridded precipitation products underestimate the data spread
as seen in the gauge data, which is due to the harmonization
process behind the gridded products. ERA5 has the greatest SD,
while TRMM and GPM have similar SD values. The AU-Net
models for different data groups are mostly clustered together,
although theM1 models seem to do better than others.

In Supplementary Figures 1–3, boxplots of the monthly
values of MSE, bias, and CC for each AU-Net model are
provided. In general, the boxplots support the aforementioned
observations. Moreover, they also suggest that the range of
model performance metrics depends on the quality of the coarse-
resolution inputs. For example, models trained using TRMM
and GPM, both are already gauge corrected, generally exhibit
smaller variations in metric values than the models trained using
ERA5 do.

Overall, on the basis of rain gauge data comparison, the best
performers are scattered among predictor groupsM1–M3 for the
three products considered. TheM4 group seems to underperform
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FIGURE 5 | Taylor diagrams summarizing statistics of all gridded rainfall products and uncorrected AU-Net models, against the gauge data and PRISM data for test

period (2017/01–2018/12): (A) ERA, (B) TRMM, and (C) GPM. The blue star on the horizontal axes corresponds to the gauge dataset result.

FIGURE 6 | Time series of ERA metrics over the test period (2017/01–2018/12): (A) monthly averaged PRISM and ERA data; (B) mean grid averaged RMSE; and (C)

SSIM. All subplots share the same x axis.
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FIGURE 7 | Time series of TRMM metrics over the test period: (A) monthly averaged PRISM and TRMM data; (B) mean grid averaged RMSE; and (C) SSIM. All

subplots share the same x axis.

compared to the other three predictor groups, due to its use of
only coarse-scale information.

At the grid-level, Figures 6–8 show the monthly time series
of performance metrics for each product. The top panel of each
figure compares the spatially averaged precipitation calculated
on PRISM and the respective data product. In general, results
suggest that the model performance is sensitive to the amount
of precipitation, as well as to antecedent conditions of dynamic
variables (i.e., P, T, and EVI). The models tend to outperform
the baseline coarse-resolution product in dry months than in
wet months. For ERA5, models M1 and M3 improve over ERA5
(as measured in SSIM) in the mid part of the test period,
ranging from 2017/03 to 2018/06. Most ERA5 models, however,
underperform the original ERA5 data during two extreme wet
events, one in 2017/08 when Hurricane Harvey made landfall
and the other during the record-breaking wet period 2018/08–
2018/09. This may be attributed to the extremity of the events
and the lack of predictability at the monthly scale. In the case
of TRMM and GPM models, the metrics time series are less
oscillatory—all models tend to have very similar RMSE values,
and the model SSIM values are better than the TRMM and

GPM during the dry period in the middle of the test period.
Compared to ERA, the metrics of TRMM and GPM model
stay close to the original data products even during the two
extreme events.

To give examples of learned patterns, in Figure 9 we plot the
AU-Net results (left three columns), together with the original
coarse-resolution data (top row) and the fine-resolution PRISM
and Stage-IV datasets (the rightmost column) for 2017/01, which
was a relatively wet month. The SSIM between each image
and PRISM is shown on top of each subplot. PRISM and
Stage-IV have very similar spatial patterns. Compared to the
PRISM and Stage-IV data, ERA5 (upper-left) did not capture
the higher rainfall zone near the eastern side, while both TRMM
and GPM were able to capture the same zone in a large-scale
sense. The AU-Net models that include static information (i.e.,
M1–M3) introduce more fine-scale features in the results, such
as near the southwestern corner of the domain and inside
the wetter zone; however, the improvements over the original
products are rather limited in terms of SSIM. Only the M2

model under the GPM group predicts the location of the high-
precipitation relatively accurately. The M4 models, which only
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FIGURE 8 | Time series of GPM metrics over the test period: (A) monthly averaged PRISM and GPM data; (B) mean grid averaged RMSE; and (C) SSIM. All subplots

share the same x axis.

use coarse-resolution information, yield more smooth features
than the other models do.

As another example, we compare the AU-Net results for the
month 2018/01, which was a relatively dry month. Figure 10
shows that all three coarse-resolution products are able to
delineate the large low-precipitation zone near the northwestern
corner. Under the ERA group, the M1 model gives the best
pattern match (SSIM = 0.69), while in the cases of TRMM and
GPM, M1 (SSIM = 0.63) and M4 (SSIM = 0.67) give the best
pattern match, respectively. In this case, even the M4 model,
which only uses dynamic variables, is able to infill some fine-
scale features.

Results in Figures 9, 10 highlight the promises, as well as
challenges, in extracting and learning the fine-scale features in
precipitation data for this low-predictability study area. The
use of antecedent conditions and auxiliary static information
helped to improve the baseline coarse-resolution products in

some cases, but deteriorated the baseline in other cases. In
particular, we note that static information tends to be more useful
under dry conditions, while autocorrelation in precipitation itself
seems to play a major role in predictability. No predictor group
consistently performed better than the others. The inherent
high variability of precipitation in space and time, especially
in topographically complex regions, makes the pattern-based
downscaling challenging, without further correction using in
situ data.

4.2. Corrected AU-Net Models
The AU-Net models were corrected by first calculating the error
residual between model and gauge data, and then interpolating
to the grid using the IDW scheme described under this section.
Figure 11 shows the gauge-corrected AU-Net results on the
2017/01 data used in Figure 9. Similarly, Figure 12 shows the
gauge corrected results for 2018/01 data. Results suggest that
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FIGURE 9 | AU-Net results on 2017/01 data (128× 128 grid). Left column (from top to bottom) ERA5 and the corresponding M1 −M4 AU-Net models; 2nd column:

TRMM and the corresponding AU-Net models; 3rd column: GPM and the corresponding AU-Net models; rightmost column: PRISM and the reference Stage-IV data

for the same month. All subplots are scaled to the same color range.
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FIGURE 10 | AU-Net results on 2018/01 data (128× 128 grid). Left column (from top to bottom): ERA5 and the corresponding M1 −M4 AU-Net models; 2nd column:

TRMM and the corresponding AU-Net models; 3rd column: GPM and the corresponding AU-Net models; rightmost column: PRISM data for the same month.
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FIGURE 11 | Results of gauge correction using inverse distance weighting on 2017/01 data. Left column (from top to bottom) ERA5 and the corresponding M1 −M4

AU-Net models; 2nd column: TRMM and the corresponding AU-Net models; 3rd column: GPM and the corresponding AU-Net models; rightmost column: reference

PRISM and Stage-IV data for the same month.
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FIGURE 12 | Results of gauge correction on 2018/01 data. Left column (from top to bottom) ERA5 and the corresponding M1 −M4 AU-Net models; 2nd column:

TRMM and the corresponding AU-Net models; 3rd column: GPM and the corresponding AU-Net models; rightmost column: reference PRISM data for the same

month.
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FIGURE 13 | Results of U-Net models for 2017/01. Top row: ERA5 results; mid-row: TRMM results; and bottom row: GPM results.

gauge correction significantly improved the pattern match for
all AU-Net models, leading to convergence in model patterns
among all models. In the case of 2017/01, gauge correction
actually introduced more fine-scale features than that are present
in the PRISM image. This may be caused by the difference
in point measurement set used, and also in the gauge data
interpolation algorithm. In the case of 2018/01, gauge correction
almost resulted in identical patterns to the PRISM image. The
dominating effect of gauge correction observed here is not
surprising, given the large number of gauges available for the
study area (361 in 2017/01 and 459 in 2018/01). RMSE of
the gauge-corrected AU-Net models (not reported here) is also
significantly reduced, compared to the uncorrected results.

4.3. Effect of Attention Mechanism
A main motivation of this work to explore the use of attention
mechanism for multiscale pattern extraction. To demonstrate the
effect of attention mechanism, we train the classic U-Net models
using the same model structures, but with the attention block
removed (see Figure 2). The kernel size used in the U-Net is 4×4
and stride size is 2. As mentioned before, attention mechanism
helps to capture the large-scale patterns while producing sharper
local details. Figure 13 shows the result for the same 2017/01

data, as shown earlier in Figure 9. An immediate observation
from Figure 9 is that all images produced by the U-Net are more
blurry than those generated by the AU-Net models. The SSIM
values are also smaller than their counterparts in AU-Nets.

5. DISCUSSION

In this work, the feasibility of using AU-Net to downscale
precipitation data was investigated over Central Texas, U.S., on
three coarse-resolution satellite/reanalysis products. Climate in
the region ranges from semi-arid in the west to subtropical in the
east. The climate and hilly terrain of the region lead to strong
spatial and temporal variations in precipitation patterns, making
downscaling for the study area at the monthly level especially
challenging. The AU-Net models, which can extract features at
multiple scales, are used to learn the mappings between coarse-
and fine-resolution products.

At the regionally aggregated scale, all three coarse-resolution
products (baseline) are shown to have relatively strong temporal
correlation with the fine-resolution PRISM product (>0.7) at the
monthly level. The question is whether this correlation can be
propagated down to the grid level. A main finding of this study
is that the efficacy of downscaling and thus, model improvement,
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depends on the precipitation amount and information content
embedded in antecedent conditions and auxiliary variables,
as well as the quality of the original product. Under drier
conditions, the precipitation patterns are more contiguous and
are easier for the AU-Net models to learn. In addition, the static
information tends to be more useful under drier conditions. On
the other hand, in wet months the precipitation patterns become
spatially heterogeneous and are more difficult to downscale
without additional constraints. This observation is largely in
agreement with the previous studies that show systematic errors
in precipitation products are proportional to precipitation rates,
which is higher for higher rates (e.g., AghaKouchak et al.,
2012).

The fine-resolution auxiliary variables considered in this
study only include EVI and DEM. EVI may be less reliable
as a predictor at the monthly level (Duan and Bastiaanssen,
2013), even with added lags. Thus, future effort should focus on
experimenting with alternative fine-resolution remotely sensed
information, which is especially valuable when high-density rain
gauge networks are not available.

Performance of DL models may depend on grid resolution.
Higher grid resolution models, however, also increase training
time significantly. In this work, we mainly experiment with 128×
128 grids. As a sensitivity analysis, we also trained the same AU-
Net models on 256 × 256 grids. The average training time is
about 30 min on the same computing node. The results, which
are compared in Supplementary Material S2, indicate that finer
resolution tends to improve error metrics across all groups. The
relative performance between models and the original products
remains about the same.

The monthly scale considered in this work limits the number
of data samples available for training which, in turn, may also
affect the network performance. Future work will examine daily
scales. At last, in this work we assume that the ground truth is
PRISM, which itself may be subject to uncertainties present in
the rain gauge data.

6. SUMMARY

High-resolution precipitation data is needed in a large number
of hydrological planning and emergency management activities.
Currently, a number of coarse-resolution remotely sensed
products are produced on operational basis. To maximize the
societal benefits of these products, some type of downscaling is
necessary, which is a highly ill-posed inverse problem. This work
investigates the feasibility of deep-learning-based downscaling

approaches by considering different combinations of static and
dynamic variables as predictors. The state-of-the-art, end-to-
end deep learning (DL) framework adopted in this study allows
for stacking of multi-source and multi-resolution inputs. In
addition, we explore a new attention mechanism for learning
multiscale features (i.e., AU-Net). The efficacy of the AU-Net is
demonstrated over Central Texas, U.S., for downscaling three
coarse-resolution precipitation products, namely, ERA, TRMM,
and IMERG data. Results suggest that the trained AU-Net models
achieve different degrees of success in downscaling the coarse-
resolution products. In general, the model performance depends
on the precipitation rate, and the performance is better under
nominal and dry conditions than in extremely wet conditions.

Although we mainly demonstrate an attention-based, DL
framework for a low-predictability study area in the U.S., the
problem setup is general and the approach can be applied to other
regions and at different spatial and temporal resolutions.
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APPENDIX

Definition of Abbreviations
AU-Net Attention-based U-Net
CFSR NCEP Climate Forest System Reanalysis
CNN Convolutional Neural Network
DL Deep learning
ECMWF European Center for Medium-Range Weather

Forecasts
ERA ECMWF reanalysis
GPM Global Precipitation Measurement
IDW Inverse distance weighting
IMERG Integrated Multi-satellite Retrievals for GPM
LSTM Long short-term memory
MERRA Modern-Era Retrospective Analysis for Research

and Application
MODIS MODerate resolution Imaging Spectroradiometer
MSWEP Multi-Source Weighted-Ensemble Precipitation
NCEP National Centers for Environmental Prediction
PRISM Parameter-elevation Regressions on Independent

Slopes Model
RMSE Root mean square error
SSIM Structural similarity index metric
TRMM Tropical Rainfall Measuring Mission
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