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Snow derived water is a critical component of the US water supply. Measurements of the

Snow Water Equivalent (SWE) and associated predictions of peak SWE and snowmelt

onset are essential inputs for water management efforts. This paper aims to develop an

integrated framework for real-time data ingestion, estimation, prediction and visualization

of SWE based on daily snow datasets. In particular, we develop a data-driven approach

for estimating and predicting SWE dynamics using the Long Short-Term Memory

neural network (LSTM) method. Our approach uses historical datasets (precipitation, air

temperature, SWE, and snow thickness) collected at NRCS Snow Telemetry (SNOTEL)

stations to train the LSTM network and current year data to predict SWE behavior. The

performance of our prediction was compared for different prediction dates and prediction

training datasets. Our results suggest that the proposed LSTM network can be an

efficient tool for forecasting the SWE timeseries, as well as Peak SWE and snowmelt

timing. Results showed that the window size impacts the model performance (where

the Nash Sutcliffe efficiency (NSE) ranged from 0.96 to 0.85 and the Rooted Mean

Square Error (RMSE) ranged from 0.038 to 0.07) with an optimum number that should

be calibrated for different stations and climate conditions. In addition, by implementing

the LSTM prediction capability in a cloud based site-monitoring platform, we automate

model-data integration. By making the data accessible through a graphical web interface

and an underlying API which exposes both training and prediction capabilities. The

associated results can be made easily accessible to a broad range of stakeholders.

Keywords: SWE, LSTM, prediction, real-time web based interface, forecasting, model-data integration, neural

network

INTRODUCTION

Accurate estimation and prediction of snow water equivalent (SWE) in mountain watersheds has
been a longstanding challenge (Bair et al., 2018), while, it is a key metric used by hydrologists and
water managers to assess water resources in snow-dominated catchments or basins (Bales et al.,
2006; Painter et al., 2016). SWE is defined as the equivalent amount of water if the snow mass is
completely melted. SWE is one of the main parameters used in accurate prediction of snowmelt
runoff and snowpack and water supply forecasting (Schneider and Molotch, 2016). Consequently
there is substantial interest in forecasting seasonal SWE dynamics, including parameters such as
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peak SWE and snowmelt timing onset (Odei et al., 2009).
This snowmelt timing is critical for ecological processes
in snow-dominated regions, controlling plant dynamics, net
ecosystem exchanges, and soil carbon (Harte et al., 2015;
Sloat et al., 2015; Wainwright et al., 2020). Snowmelt timing
also drives peak flow timing during which significant nutrient
export occurs from the catchments (Carroll et al., 2018). In
recognition of its value for water resource prediction SWE and
associated measurements (temperature, precipitation, windspeed
and direction, and snow thickness) are measured across the west
area by the U.S. Natural Resource Conservation Service’s (NRCS)
through over 800 automated data collection stations known as
SNOTEL (SNOw TELemetry) stations, as well as by airborne
observations (Painter et al., 2016). Stations are typically located
in small clearings in evergreen forests. Data from these stations
is transferred multiple times a day to a central database, from
where the data is publicly accessible through web interfaces
and software APIs. Each SNOTEL station has a long record of
historical data, often more than 30 years, encompassing a variety
of metrological conditions at each site. This results in typically
more than 10,000 data points. In addition, snow accumulation
and melting is a highly heterogeneous process affected by a
complex terrain or regional scale atmospheric forcing which
support us to use deep learning method for SWE forecasting.

There is a long standing interest in the use of probabilistic
forecasting and Artificial Neural Networks (ANN) such as

FIGURE 1 | Location and names of the five SNOTEL Stations used in this study (red dash line: East River watershed boundary).

recurrent neural networks (RNNs) (Kumar et al., 2004) for
hydrology and SWE forecasting (Huang and Cressie, 1996;
Winstral et al., 2019; Magnusson et al., 2020). More recently
deep learning methods such as the long short-term memory
network (LSTM) have demonstrated a significant promise in
hydrological time series analysis and forecasting (Xiang et al.,
2020), such as soil moisture modeling (Fang et al., 2017), monthly
water-table depth predictions (Zhang et al., 2018), and daily or
hourly rainfall-runoff modeling (Hu et al., 2018; Kratzert et al.,
2018; Le et al., 2019; Fan et al., 2020).

In this paper, we develop the integrated framework of
real-time ingestion, estimation/prediction and visualization
(webinterface) of the snow dynamics based on SNOTEL
generated time-series data. In particular, we demonstrate
the feasibility of using LSTM trained on for predicting
future SWE dynamics. Although we use a few selected
SNOTEL stations, our framework is general, and hence,
it can be used for other stations across the US. In
addition, the feasibility of automating and exposing this
capability through a webinterface and an underlying API
is demonstrated. It includes quality control, flagging and
interpolation, which is often a bottleneck of applying deep
learning to environmental datasets. We believe that this
framework makes the predictions and deep learning easily
accessible to different interested parties for public use or
stakeholder use.
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FIGURE 2 | Example of data used in this study. Top: SWE data from the Schofield station. Bottom: Temperature at the Schofield station.

MATERIALS AND METHODS

Study Area
In this paper, we focus on five SNOTEL stations, which are
located inWestern Colorado within the central RockyMountains
(Figure 1). Our interest in this area is associated with work
done by several of the authors on the multiyear, multi-institution
Department of Energy funded research effort (the Lawrence
Berkeley National Lab (LBNL) Watershed Science Focus Area
(SFA) (Hubbard et al., 2018), which focuses on the East River
Watershed located near Crested Butte, Colorado. The East River
watershed measures ∼300 km2. It includes montane to alpine
ecosystems with an elevation ranging from 2,500m to 4,000m.
The vegetation in this watershed is diverse, including mixed
conifer forest, aspen forest, and open meadows (Harte et al.,
2015). Streamflow is dominated by snowmelt in spring and
summer (Markstrom et al., 2012). This watershed is a typical
headwater catchment in the Colorado River Basin. As the
Colorado River Basin provides 75% of the water demand for 40
million people in seven states and two countries (Deems et al.,
2013) an understanding of hydro-biogeochemical processes in
these headwaters catchments is of obvious value and interest.

Data
Data types collected at SWE stations varies across stations. As
far as we can ascertain, all stations collect SWE, snow thickness,
precipitation and air temperature. Many stations also collect
other environmental parameters such as wind speed and wind
direction, air pressure and incoming broadband solar radiation.
While in general data quality and continuity is high, there are
instances (especially in the data from the early 2000s where
SNOTEL data is not continuous, is noisy or has outliers. In
this paper we have not included gapfilling or noise elimination
strategies as we limited our prediction to use data from five
selected stations for the last 10 years which are of good quality
(Figure 2). However, robust error handling strategies need to be
built in for real life applications.

Methods
Project Data Ingestion and Exposure Through Cloud

Based API
We have developed robust capabilities to automatically retrieve,
normalize (variable names, units, and timestamps), ingest and
link heterogeneous data (hydrological, geochemical, geophysical,
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microbiological, and remote sensing) from numerous public and
project specific data sources. These data are stored in project
specific relational databases. The datamodel underlying these
databases is a substantially modified version of the ODM2
(ObservationDataModel version 2) datamodel (Horsburgh et al.,
2016).

Data in the database is accessible to both through a web
interface (which allows both data visualization in a variety
of manners and data download) and a rich API. While the
public data hosted in our database can be obtained by users
themselves through APIs provided by different organizations,
our architecture allows users both to access and locate uniform
data across the project site using a single API call as well as
provides advanced visualization and analytical capabilities.

An example of the capabilities of this interface is shown in
Figure 3, which shows the SWE for the Butte SNOTEL Station for
different water years (defined by the USGS as the period between

October 1st of 1 year and September 30th of the next). Thus, the
water year 2020 runs from 10-1-2019 until 9-30-2020.

Long Short-Term Memory Network
The prediction of time series behavior is of interest for a wide
range of applications. Numerous statistical and machine learning
approaches exist to predict time series behavior (Fawaz et al.,
2019). When dealing with long-term dependencies, traditional
feed forward Artificial neural networks (ANNs) are limited
(Bengio et al., 1994; Fang et al., 2017). However, the Long Short-
Term Memory (LSTM) network method is well-suited for long
term dependencies (Hochreiter and Schmidhuber, 1997; Fan
et al., 2020). LSTM is a deep neural network (DNN) method
which has been successfully applied in various fields (Sahoo et al.,
2019) for especially for time sequence prediction problems.

LSTM is well-suited to classify, process, and predict time series
given time lags of unknown duration. It can be trained on and

FIGURE 3 | Graph of year over year SWE measured at the Butte SNOTEL station generated by the web interface of our cloud based data management system.

FIGURE 4 | One step iteration of the training process in the LSTM approach.
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deal with long sequences and does not rely on a pre-specified
window lagged observation as input (Kratzert et al., 2018). In
addition, LSTM is well-suited to deal with time series prediction
problems with multiple input variables (Le et al., 2019).

In order to use LSTM, we first need to train and calibrate a
model. Once this is done the model can be used to predict future
values. Figure 4 shows a schematic of the one-step iteration in the
LSTM training/calibration procedure (Fan et al., 2020).

A random batch of input data, consisting of several
independent training samples (depicted by the gray colors) that
is used in each step. Thus, the input to every LSTM prediction
layer is three dimensional, with the three dimensions being
samples (or sequences), time steps and features (observations
at a timestep). As can be seen in Figure 4 each training
sample consists of several days (timesteps) of look-back data
and one target value (Y) to predict. Therefore, the number of
samples refer to the number of observations fed into the LSTM
network. The number of timesteps or lookback, describes the
time window (past data) needed by the LSTM. In each LSTM
training iteration step, some of the available training data is used
to update some model parameters such as the weights, biases,
and learnable network parameters. This update is done in such

TABLE 1 | Multipliers to be used for confidence intervals.

Percentage Multiplier

70 1.04

80 1.28

90 1.64

95 1.96

a way that the loss function is reduced. The loss function is
computed from the observed training samples and the network’s
predictions. In this study, we used the mean-square-error as the
loss function for parameter optimization (Kratzert et al., 2018).
The gradient descent optimization algorithm is used to reduce
the loss function which is equivalent to the unexplained fraction
of variance (Xiang et al., 2020).

In building a LSTM, after normalizing the raw data, the
dataset is first made suitable for a supervised learning problem
by splitting into test and training data and by formatting the
data in the right input format. Following common practices
60% of data is used for training and 40% is used for validation.
After the model is trained and validated, the model can
then be used to generates predictions for the future values.
The model performance can be evaluated by using testing
datasets. Forecasting uncertainties can be represented with
confidence intervals. These confidence intervals give us an
interval within which we expect the real value to lie with a
specified probability that uses standard deviation and mean
values of previous observations and current real data. The range
of confidence intervals communicates our confidence in the
uncertainty associated with the forecast. The confidence intervals
are calculated by standard deviation, percentage multiplier and
forecast distribution. The percentage multiplier depends on the
coverage probability as shown in Table 1 (Hyndman et al., 2018).

Application of LSTM to SWE Time-Series Analysis

and Prediction
In our prediction problem (and in the software implementation),
we assume that we have the SWE time-series up to a specific
(generally the current) date in a specific (generally the current)
water year, and aim to predict the future SWE from this date for

FIGURE 5 | Web interface to the prediction API.
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FIGURE 6 | Detail of Figure 5 showing prediction for a start date of February 7. The prediction was made in Note that our prediction matches actual data (available

through the end of April) quite well.

the remainder of the water year based on the historical datasets.
As our architecture pulls in new SWE data on a daily basis this
prediction is quasi real-time, and in general most interest will
be in using our prediction in this mode. However, by allowing
the flexibility of providing dates in the past our code allows for
performance assessment.

For SWE timeseries forecasting we use the method described
above, which is implemented as a python code which uses
the Tensorflow (Abadi et al., 2016) and Keras (Chollet et al.,
2015) libraries. This code is exposed through an API. The API
can be accessed directly programmatically or through a web
interface which provides a visual interface to the API (Figure 5).
Parameters passed to the API include which SNOTEL location
to forecast for, how many years of historic data to use for
training, what type of snow years (below average, average, or
above average) prediction data to use, and for which date we
should predict for.

Once our code receives the parameters it first retrieves the
raw datasets (which includes SWE, precipitation, snow thickness,
and air temperature) needed for prediction through a call to the
data API. These are long sequences of thousands of observations
for data in previous water years. These sequences are split into
samples which are reshaped for the LSTM model. The size of
these samples is called the window size (Fan et al., 2020) and has
impact on the forecast accuracy.

The reshaped data is used to train the LSTM network. The
supervised learning problem is framed as predicting the SWE at a
specific day given SWE and associated data (precipitation, snow
thickness, and air temperature) up to that day. In our analysis
we used training datasets with between 5 and 10 years of recent
SNOTEL data, but our code is able to deal with different lengths
of data to train the LSTM network.

Once the network is trained, we can use it to make predictions
about SWE for a specific water year and date within this year. For
this prediction, the model needs the history of SWE over the past
months and days in the current water year until the prediction
start date. The model then predicts SWE for the remainder of
that water year. For the prediction data we allow users to select
any of snow years worth of data (e.g. “below average,” “average,”
“above average” years) to accommodate different kinds of
snow years.

It should be noted that in this study, the proposed LSTM
method was tested for several SNOTEL stations in the one
watershed (East River watershed), but as automated, it can be
used for any other stations in other watershed, hence, the model
and the system are not dependent on any dataset and station.
As presented in Figure 5, any location (station related to any
watershed) can be selected for SWE prediction.

Model Evaluation Criteria
To evaluate forecasting performance, we can use different
statistical criteria. The ones we use include the Nash Sutcliffe
model efficiency coefficient (NSE) (Nash and Sutcliffe, 1970)
and Rooted Mean Square Error (RMSE) which are a widely
used performance evaluation method for hydrological modeling
(Krause et al., 2005; Arnold et al., 2012). Both of these compare
predicted values with observed values. The NSE evaluates the
model performance to predict testing data different from the
mean and gives the proportion of the initial variance accounted
for by the model (Nash and Sutcliffe, 1970). The RMSE is used
to evaluate how closely the predicted values match the observed
values, based on the relative range of the data.

NSE = 1−

∑n
i=1

(

Yo
i − Y

p
i

)2

∑n
i=1

(

Yo
i − Y ′

)2
(1)

RMSE =

√

√

√

√

∑n
i=1

(

Yo
i − Y

p
i

)2

n
(2)

where Yo
i , Y

p
i and Y ′epresent the observed, predicted and the

average observed data at time i respectively. NSE ranges from –∞
to 1, and the value close to 1 is equivalent the better model
performance (Arnold et al., 2012). In general, a lower RMSE
represents a higher accuracy and a better fit.

RESULTS

Forecasts and Performance
The method described above generates a site-specific LSTM
model which can be used to predict SWE. This model can be
trained using different datasets (e.g., the last 10 years of data),
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FIGURE 7 | SWE observed and predicted for the current year (2020) with their performance, for SNOTEL Schofield Pass station, SNOTEL Upper Taylor station, and

SNOTEL Park Cone station.

and be used to predict SWE dynamics in different types of years
(low snow, medium snow, high snow years). The model can use
any specified start date in the past to evaluate the performance of
the approach in SWE forecasting.

We evaluated SWE forecast performance, obtained from
LSTM model, by considering 3 month forecasting for different
SNOTEL stations (Schofield Pass, Upper Taylor, and Park Cone).
The observation data obtained from stations were available until
May 1, 2020 and 3 month before this time is February 1, 2020
that was the starting date to forecast. Given these conditions, the
performance of the model can be evaluated with the observed

data from the stations and the predicted SWE data from the
LSTM model. However, the model can use any dates in the past
to forecast, hence, it can be invoked programmatically makes it
easy to evaluate performance and to use it for scenario modeling.
An example of this prediction is shown in Figures 5, 6.

Figure 7 shows the SWE prediction for the selected stations.
In addition, the uncertainty in the prediction and the match
between predicted and observed data for each station are
presented in the associated graph for each station. The predicted
data is obtained from the LSTM model and current water
year data. All the graphs illustrate the both peak SWE and
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snowmelt timing captured within the confidence interval and
therefore the performance is consistent among these three
locations. The model and the results are validated by applying
criteria such as NSE value, RMSE value. The LSTM model
has a narrower range of RMSE between 0.026m and 0.03m
relative to the Upper Taylor and Schofield Pass station. The
value of NSE is also improved from 0.85 (Park Cone) to 0.96
(Schofield Pass). The results illustrate equally good performance.
However, since the LSTM model is highly dependent on
the meteorological variables such as rainfall, the model with
smoother observed data is able to capture more precisely
the peak of snowmelt timing and SWE forecast as well. As
mentioned, all three stations shown in Figure 7 have acceptable
results, although the model performance at Park Cone Station
is not as good as the other two stations, this is due to
meteorological data (rainfall) which is smoother at the other
two stations.

We can also evaluate the prediction behavior for different
days by changing the starting date. An example of this is
shown in Figure 8 which shows the SWE prediction for the
SNOTEL Schofield Pass station for different days in the past

TABLE 2 | Prediction performance for key metrics (peak SWE and Snow melt

timing) for different start dates.

From Peak SWE (m) Snow melt timing Performance

(NSE)

Observation – 0.81 04-21-2020 –

Forecasting December 1.07 04-08-2020 2.23

January 0.98 04-08-2020 1.21

February 0.78 04-07-2020 0.96

March 0.77 04-07-2020 0.95

April 0.76 04-08-2020 0.94

FIGURE 8 | Forecasting from the different past month for the water year 2020.
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FIGURE 9 | Improvement of SWE prediction during the learning process of the LSTM as the number of epochs increases.

(from December 1, 2019, to March 1, 2020). This demonstrates
the model’s ability to predict SWE at any time of the water year.
As is expected the confidence interval becomes narrower reduces
over time as we get closer to the end of the year (Table 2). In all
the cases, the SWE time series are contained within the interval,
which validates our methodology.

Model Parameter Effect
There are multiple model parameters which we can vary in the
LSTM network. These include the epoch and the number of
historic years we use as training data. In NN applications, the
epoch is one cycle through the full training set in which model
parameters are updated.

Figure 9 illustrates the LSTM learning process for different
numbers of training epochs. It shows how the training network
improves from the initial state from scratch (where it has random
weights) as we go to 200 epochs.

Effect of the Number of Years Used to
Train Our Dataset
As mentioned before (and as should be intuitively clear), the
number of years of data we use to train our dataset has an impact
on the model performance, and it is important to evaluate and
analyze this impact. We can evaluate the effect of the number of
years used on the model performance (which is represented by
Loss function or NSE). We compared 4 different lengths: 2, 5, 10,
and 15 years. The comparison results are shown in Figure 10.

The statistical results for the overall performances of LSTM
models for both length of training data are listed in Table 3.
As shown in Table 3, the prediction performed well for the 10
years length (2010–2020), with average NSEs of 0.96 and RSME
0.038. Although we initially expected that increasing the number
of years used to train our model (15 years for our model 2005–
2020) would have better performance, the 10 years window size
performed better. This behavior can be observed in Figure 10, in
the Predicted-Observed graph. The blue dots that represent 10
year window size (2010–2020) show a better performance than

the red dots that represent the 15 year window size. This may be
associated with a shift in system behavior—which would be better
expressed in recent data than in older data. In addition, it should
be noticed that the confidence interval becomes narrower when
the window size increases (Figure 10).

We can combine the results shown in Figures 9–11 which
shows the loss function behavior for different lengths of training
data. As shown in Figure 11, the Loss function of the LSTM
model decreased (or NSE increased) when the length of training
data increases. It should be noticed also that when training with
longer dataset the curve of the loss function becomes smoother.
However, as shown in Table 3 and Figure 10 adding more years
of data beyond 10 years does not increase performance. It is
interesting to consider why this is, and while a detailed analysis
of this falls outside the scope of this paper it could be because
SWE characteristics have changed over the last 10 years. If
this is the case, more recent SWE behavior would be a better
predictor of current behavior than SWE behavior of 15 or 20
years back.

LSTM Automation
In this study, we have presented a step-by-step workflow on the
SWE prediction by obtaining the metrological data form stations,
training the model with the different windows size, checking
the confidence interval, plotting the results and calculating
the performance of the prediction. However, all these process
and capability can be automated at different levels. First by
automatically creating trained networks for any SNOTEL site,
using API-able approach and creating daily updated predictions
using new data for every day by rerunning the prediction. Finally,
the predicted results can be delivered to interested end users.
This delivery can be either done through an API or through a
web interface as shown in Figures 5, 6. Due to the flexibility
of the API, the effect of using different training datasets can be
rapidly compared.
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FIGURE 10 | SWE predicted for the different length of years of training data (2, 5, 10, and 15 years).

TABLE 3 | Statistics of LSTM model for SWE prediction on the SNOTEL Schofield

Pass Station for different window size.

2005–2020 2010–2020 2015–2020 2017–2020

NSE 0.88 0.96 0.89 0.85

RSME 0.063 0.038 0.062 0.07

DISCUSSION

In this study, we demonstrated that LSTM networks can be
trained to accurately predict SWE behavior for different NRCS
SNOTEL stations. Prediction accuracy and performance were

analyzed for different epoch number and length of training data.
Our results demonstrate that training data length affects the
model performance. While 7–10 years of training data length
seems to be suitable for the sites we examined this number should
be determined for different stations and climate conditions.

There are multiple other efforts which have focused on
SWE. This includes the work by Guan et al. (2013) which
retrospectively estimates SWE distribution by using the blended
method. Similarly (Fassnacht et al., 2003) applied inverse
weighted distance and regression techniques to evaluate SWE
across the entire Colorado River. Bair et al. (2018), used different
machine learning techniques (bagged regression trees and
feed-forward neural networks). Schneider and Molotch (2016)
used regression techniques to estimate the spatial distribution of
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FIGURE 11 | Loss function after 200 epochs for predictions using different water years (2, 5, 10, and 15 years).

SWE for the Upper Colorado River basin weekly from January
to June 2001–2012. Leisenring and Moradkhani (2011) compare
common sequential data assimilation methods, the ensemble
Kalman filter (EnKF), the ensemble square root filter (EnSRF),
and four variants of the particle filter (PF), to explain. These
efforts differ from ours in that we provide a forecast for the water
year. In addition, in this study, we analyze presented the impact
of the training data set on the forecast accuracy of LSTM. This
analysis complements the work by other groups which used the
LSTM method to runoff prediction such as Kratzert et al. (2018)
and Zhang et al. (2018).

We demonstrated the feasibility of automated model/data
coupling and model generation, with the model accessible
through the API and through a web interface. We expect that this
ability will be of interest to multiple stakeholders. One limitation
of the current study is that the current prediction effort uses
single station data.We are currently exploring howwe can extend
this prediction by integrating multiple SNOTEL stations and
satellite data on watershed snow coverage to give watershed-wide
SWE and water predictions.
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