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Climate warming in alpine regions is changing patterns of water storage, a primary

control on alpine plant ecology, biogeochemistry, and water supplies to lower elevations.

There is an outstanding need to determine how the interacting drivers of precipitation

and the critical zone (CZ) dictate the spatial pattern and time evolution of soil water

storage. In this study, we developed an analytical framework that combines intensive

hydrologic measurements and extensive remotely-sensed observations with statistical

modeling to identify areas with similar temporal trends in soil water storage within,

and predict their relationships across, a 0.26 km2 alpine catchment in the Colorado

Rocky Mountains, U.S.A. Repeat measurements of soil moisture were used to drive

an unsupervised clustering algorithm, which identified six unique groups of locations

ranging from predominantly dry to persistently very wet within the catchment. We then

explored relationships between these hydrologic groups and multiple CZ-related indices,

including snow depth, plant productivity, macro- (102->103 m) and microtopography

(<100-102 m), and hydrological flow paths. Finally, we used a supervised machine

learning random forest algorithm to map each of the six hydrologic groups across

the catchment based on distributed CZ properties and evaluated their aggregate

relationships at the catchment scale. Our analysis indicated that ∼40–50% of the

catchment is hydrologically connected to the stream channel, lending insight into the

portions of the catchment that likely dominate stream water and solute fluxes. This

research expands our understanding of patch-to-catchment-scale physical controls on

hydrologic and biogeochemical processes, as well as their relationships across space

and time, which will inform predictive models aimed at determining future changes to

alpine ecosystems.
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INTRODUCTION

Alpine regions are essential sources of fresh water to lower
elevation ecosystems and ∼50% of people around the globe
(Winkler, 2019). In addition, they are also some of the most
vulnerable to climate change (Buytaert et al., 2011; Seidl et al.,
2011; Ernakovich et al., 2014). Many researchers have shown
that alpine areas are already warming and predict that they may
experience the highest levels and impacts of warming well before
other ecosystems (e.g., Bradley, 2004; Cannone et al., 2007; Pepin
et al., 2015; Winkler, 2019). These impacts include changes to
the timing, amount, and quality of water exported from alpine
catchments (Barnett et al., 2005; Horton et al., 2006; Tague, 2009;
Schneeberger et al., 2015), among others.

Water export from the alpine zone is controlled both
by sources—including, in some cases, glaciers (Cannone
et al., 2008), and precipitation, primarily as snow (Bales and
Harrington, 1995; Bales et al., 2006)—and their mediation by
the critical zone (CZ; Tague and Grant, 2009; Penna et al., 2011;
Yang et al., 2014; Baraer et al., 2015; Brooks et al., 2015; Winnick
et al., 2017). Many past studies have focused on determining the
effects of a warming climate on the distribution of snowpack
(Ishida et al., 2018; Smith and Bookhagen, 2018) as well as the
timing and rate of snowmelt that feeds the CZ (Magnusson et al.,
2012; Musselman et al., 2017; Jennings and Molotch, 2020). An
important next step is to delve into how the physical structure
of the CZ determines patterns of water storage and routing
within alpine catchments; this is baseline knowledge required to
predict changes to alpine water balances as well as ecological and
biogeochemical functions.

Multiple scales of the CZ affect patterns of alpine water
storage and routing. In particular, topographical features, both
at macro- (102->103 m) and micro-scales (<100-102 m) play
important roles. At the macro-scale, the characteristics of
complex relief, including hillslope position, aspect, and slope,
which interact with winds to influence snow accumulation
and redistribution (Winstral et al., 2002). At the micro-scale,
freeze-thaw processes produce morphological features, such as
patterned ground, nivation depressions, and solifluction lobes
and terraces that affect snow depth, water storage, and hydrologic
connectivity (Russell, 1933; Matsuoka et al., 2005; Wainwright
et al., 2015, 2017). At still finer, sub-meter scales, soil properties
and vegetation influence infiltration rates (see Hinckley et al.,
2014b; Brooks et al., 2015). When combined, these characteristics

Abbreviations: CI, Convergence index; CIr, Range in convergence index over

5 m; CZ, Critical zone; D, Dry; D-D, Dry cluster, Dry hydrologic group; D-MD,

Dry cluster, Moist-to-dry hydrologic group; D-WM, Dry cluster, Wet-to-moist

hydrologic group; DEM, Digital elevation model; DTM, Digital terrain model; FA,

Flow accumulation; GNSS, Global navigation satellite system; mNDVI, Maximum

normalized difference vegetation index measured; MPI, Morphometric protection

index; MSD, Maximum snow depth measured; OD2C, Overland distance to

channel; OOB, Out-of-bag error estimate; PC, Principal component; PCA,

Principal component analysis; Slope-L, Local slope; Slope-M, Macro slope; SWFA,

Snow-weighted flow accumulation; TPI, Topographic position index; TPIr, Range

in topographic position index over 20 m; TWI, Topographic wetness index; UAV,

Unmanned aerial vehicle; VD2C, Vertical distance to channel; W, Wet; W-RD,

Wet cluster, Rapid dry-down hydrologic group;W-W,Wet cluster,Wet hydrologic

group; W-VW, Wet cluster, Very wet hydrologic group; WS, Wind shelter.

of the CZ create areas of like hydrologic behavior, characterized
by both the quantity and rate of change of soil water storage.

Mapping areas of like hydrologic behaviors across alpine
catchments is an important step toward understanding
the aggregate effects of patch-scale processes. For example,
mapping the spatial distribution of hydrologic behaviors aids
in quantifying the temporal stability of soil water storage (Lee
and Kim, 2019) and water transit time distributions (Harman,
2015). These are both key factors that complicate hillslope
modeling studies (Kirchner, 2016; Guio Blanco et al., 2018)
and efforts to quantify chemical export from the CZ (Ward
et al., 2019). Furthermore, different hydrologic behaviors may
map to important ecosystem control points (Bernhardt et al.,
2017)—areas that support continuously or periodically high
rates of biogeochemical cycling (Darrouzet-Nardi and Bowman,
2011; Knowles et al., 2015; Chen et al., 2020). Finally, patch-
scale variability in snowmelt and soil moisture affects plant
phenology and physiology (Bjorkman et al., 2018; Winkler
et al., 2018) and results in catchment-scale spatial patterns of
plant community composition and productivity (Seastedt, 2020)
and responses to change (Suding et al., 2015; Winkler et al.,
2016). Thus, the capacity to identify and predict the spatial
organization of distinct hydrologic behaviors is relevant not
only to understanding how alpine systems will change under a
warmer climate, but also to addressing outstanding questions
in hydrology and CZ science more broadly. This capacity has
remained a challenge, however, because of limitations in our
approach to connect point-scale hydrologic observations to
broader scales, which is necessary for understanding catchment
processes such as water and chemical export.

Previous analytical approaches have included a combination
of terrain-derived topographic indices and other CZ-related
properties to predict hydrologic states. For example, Western
et al. (1999) used the upslope flow accumulation area and
potential radiation indices to determine soil moisture values,
finding that these variables were useful for prediction at different
points in time. Williams et al. (2009) applied a similar approach
to show that both static (e.g., slope, aspect, soil texture) and
dynamic (e.g., snowmelt) properties controlled soil moisture
spatiotemporal variability. More recently, Oroza et al. (2018)
were able to accurately predict soil water storage over multiple
years, relying on high-resolution soil moisture sensor network
data from the Southern Sierra Critical Zone Observatory.
Moving beyond prediction of point-scale surface soil moisture
measurements, terrain-derived indices have also been used to
identify areas of connected saturation or hydrologic connectivity
to stream channels (Ali et al., 2013) and explain subsurface flow
variability (Bachmair andWeiler, 2012). Combined, these studies
demonstrate analytical approaches that connect multiple scales of
physical properties with observations to explain spatiotemporal
variability in soil water storage across landscapes.

Another set of analytical approaches extrapolate hydrologic,
biogeochemical, and ecological measurements beyond
the locations of field observations by combining point
measurements, topographic indices, and statistical models.
At Hubbard Brook Experimental Forest, Gillin et al. (2015)
extrapolated soil hydropedons across a catchment with
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topographic wetness index, topographic position index,
and bedrock-weighted upslope accumulation area using a
multinomial logistic regression model. Another study by
Wainwright et al. (2015) mapped carbon fluxes across arctic ice
wedge polygons using high-resolution transects of geophysical
and topographic metrics and support vector machine learning.
Similarly, tower-based net ecosystem productivity, soil chamber
CO2 fluxmeasurements, and topographic indices were combined
to calculate regions of a catchment that were either strong carbon
sources or sinks (Emanuel et al., 2011). Falco et al. (2019)
developed a new data fusion and machine learning approach
that assimilated remote sensing and surface geophysical
measurements to categorize plant communities and estimate
soil moisture distributions across a lower montane-floodplain
landscape in Colorado. This set of predictive modeling studies
demonstrates a movement toward harnessing on the ground
observations, remotely-sensed data, and statistical approaches to
map integrated CZ processes at broader spatial scales.

Our study builds on these previous efforts to address this
gap in our ability to connect point- or patch-scale hydrologic
observations to broader spatial scales. We addressed three
primary research questions: (1) Are there unique temporal
trends, or hydrologic behaviors, in soil water storage across
an alpine catchment? (2) Which CZ-related properties explain
these different behaviors? and (3) What are the spatial scales
that dictate the pattern of these hydrologic behaviors across an
alpine catchment? To address these questions, we developed
an analytical framework that integrates existing statistical
approaches to (1) identify unique hydrologic behaviors from
intensive in situ soil moisture observations, (2) explore CZ-
related drivers of these behaviors, and then (3) map the
occurrence and spatial pattern of behaviors across a study
catchment. We apply this framework to an alpine system in
the Colorado Rocky Mountains where physical properties of the
CZ clearly exert control over hydrologic patterning at multiple
scales. Developing this predictive capability to move from patch-
scale measurements to catchment-scales is extremely valuable in
alpine landscapes, due to their complexity, fragility, and societal
importance as sources of fresh water.

MATERIALS AND METHODS

Study Area
We focused our research at the Niwot Ridge Long-term
Ecological Research (NWT-LTER) site (40.05N, 105.59W), a
high elevation, mountainous, alpine tundra ecosystem in the
Colorado Rocky Mountains, U.S. This region, broadly, is part
of the traditional territories of the Cheyenne, Ute, and Arapaho
Peoples. The mean annual temperature is −4.1◦C (Greenland
and Losleben, 2001), although the annual minimum temperature
has increased ∼0.43◦C per decade from 1953 to 2008, with the
largest increases during July (McGuire et al., 2012). There is some
evidence of spring warming (March–June) and winter cooling
(October, December; McGuire et al., 2012). Annual precipitation
is ∼1,000 mm and long-term records at Niwot Ridge show
that precipitation has increased by 60 mm per decade (Kittel
et al., 2015). The majority (∼80%) of precipitation falls as snow

FIGURE 1 | Headwater catchment (Saddle stream) of North Boulder Creek

within the Niwot Ridge (NWT) Long-term Ecological Research (LTER) site in the

Colorado Rocky Mountain Front Range. Repeat soil moisture measurements

occurred at 84 locations (black “+”) and were combined with UAV-derived

observations over the study area (black outline). Gray lines show 10 m

elevation contours. The catchment outline and contours were derived from a

1 m digital terrain model (National Ecological Observatory Network, 2018).

during winter and spring and localized convective rainstorms
occur in the summer (Greenland and Losleben, 2001). Strong
westerly winds redistribute snow, and topography dictates spatial
patterns in snow accumulation and melt (Litaor et al., 2008).
In turn, snow heterogeneity influences biogeochemical process
rates (Darrouzet-Nardi and Bowman, 2011), solute transport
(Perrot et al., 2014), and alpine plant community distributions
(May andWebber, 1982; Caine, 1995). Snowmelt and streamflow
typically peak during late May-June, and streamflow stops by
late November (Williams and Caine, 2001). This climatology
normally restricts the growing season to 1–3 snow-free months.

We used a 0.26 km2 headwater catchment within the North
Boulder Creek Watershed as a study area (Figure 1). Ranging
∼3,330 to 3,610 m in elevation, the study catchment is primarily
south-facing, with east and west hillslopes. The upper portion of
the catchment is alpine tundra, which transitions downslope to
sub-alpine forest. A seasonally intermittent stream bifurcates the
catchment and stream flow has been recorded since 1999 (Caine
et al., 2020). Soils are typically ≤2 m deep and are categorized as
Cryochrepts and Cryumbrepts, with some Cryorthents in areas
without biota (Burns, 1980). Solifluction deposits, characterized
by hummocks, turf- and stone-banked lobes and terraces, and
ephemeral ponds are found throughout the catchment (Benedict,
1970); they are the dominant microtopographical features.
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Point-Scale Characterization of Near
Surface Hydrology
During the summer of 2017, we established a grid of 84
monitoring locations across the study catchment. The locations
were on roughly a 60 m × 60 m grid to maximize the spatial
extent of monitoring across the landscape (Figure 1). We
surveyed positions of monitoring locations to within 0.05 m
using a GNSS rover receiver/antenna (Septentrio Altus APS3G)
with dual band L1/L2 GPS and GLONASS functionality. Rover
positions were differentially post-processed against base station
observations from the five closest 1 second Continuously
Operating Reference Stations (CORS) operated by the National
Geodetic Survey (station codes: STBT, TMGO, P041, EC01,
COFC). Two locations were marked by hand-held consumer
grade GPS to 5 m accuracy. At each monitoring location, a 0.3 m
× 0.3 m plot was established, with the northeast corner of the
plot aligned with the surveyed point.

We measured surface soil moisture as a proxy for soil water
storage. Repeat soil moisture surveys occurred weekly to biweekly
with survey start dates on July 3, July 10, July 18, July 24, August
1, August 7, August 24, and September 8, 2017. The surveys
began during late snowmelt, captured summer rainfall mid-July
and August, and ended before snowfall recommenced in late
September (Figure 3). Each survey took 2–4 days to complete.
We measured soil moisture to 0.05 m depth five times within
each 0.3 m × 0.3 m plot using a Delta-T Devices Ltd. SM-150
Soil Moisture Sensor. The five measurements captured fine-scale
heterogeneity within plots, but we report soil moisture as plot
averages. A site-specific calibration converted raw instrument
voltages to volumetric soil moisture, which resulted in values
>1.0 v/v for some locations (Supplementary Materials, Delta-
T Devices Ltd. SM-150 Soil Moisture Sensor User Manual, v.
SM150-UM-1.2, September 2016).

High-Resolution Characterization of
Landscape-Scale Properties
As part of a related study we completed weeklymultispectral (red,
green, blue, near infrared) photogrammetric surveys of the study
catchment with an unmanned aerial vehicle (UAV). These flights
were coordinated with our soil moisture surveys. Eight flights
between June–August 2017 characterized spatial patterns of snow
accumulation and depth and plant productivity (Wigmore and
Molotch, 2018). Multispectral imagery collected at 0.03 m spatial
resolution was used to derive 0.05 m orthomosaics and 0.10 m
digital elevation models (DEM) using a Structure from Motion
workflow (Westoby et al., 2012; Fonstad et al., 2013; Wigmore
et al., 2019). Maximum snow depth (MSD) measured (21st
June 2017) was calculated through DEM differencing against a
snow free DEM (14th August 2017; Bühler et al., 2016; Webb
et al., 2020) and accuracy assessed against extensive field-based
snow depth measurements. From the multispectral surveys we
calculated the Normalized Difference Vegetation Index (NDVI)
for each date, which we use here as a proxy for plant productivity.
We took this multi-temporal series and returned the maximum
NDVI value for each pixel across the series, which is reported as

max NDVI and is used as an index of peak productivity for the
survey period.

We derived a 1 m digital terrain model (DTM) from publicly
available LiDAR survey data. We downloaded raw .laz point
cloud tiles over our area of interest from a National Ecological
Observatory Network (NEON) aerial LiDAR survey of Niwot
Ridge completed on September 4, 2017 (National Ecological
Observatory Network, 2018). NEON point clouds are already
classified by land cover/terrain features (e.g., ground, vegetation,
building etc.); however, we re-classified the point cloud in ENVI
LiDAR to better account for local terrain parameters and identify
structures, low shrubs, trees, and bare ground. We calculated a
1 m DTM from the ground classified points and smoothed it to
5, 10, 20, 30, 65, and 100 m scales inMATLAB (v. 9.5.0.1033004,
R2018b, Update 2) using the smooth2a function (Reeves, 2020).

We used the 1 m DTM to calculate a wide range of
topographic indices. Topographic index calculations are detailed
in the Supplementary Materials. In brief, we calculated: slope
(both local, L, and macro, M), aspect, northness, eastness,
flow accumulation (FA), topographic position index (TPI), the
range in TPI across 20 m (TPIr), topographic wetness index
(TWI), wind shelter (WS), convergence index (CI), the range
in CI across 5 m (CIr), morphometric protection index (MPI),
overland distance to channel network (OD2C), and vertical
distance to channel network (VD2C; Supplementary Table 1).
Slope, aspect, FA, TWI, and TPI indices were examined at a
number of spatial scales (1, 5, 10, 20, 30, 65, 100, 200, and
300 m). We transformed indices that were strongly skewed to
better approximate normal distributions or at least increase
dispersion (Supplementary Table 1). All indices were scaled to
account for differing means. Average topographic index values
were extracted at the 84 soil moisture monitoring locations using
either a 1, 5, or 10 m buffer radius around each location’s GPS
point. Topographic indices were visually inspected using QGIS
(v. 3.12 Bucuresti). Collectively, we refer to the UAV-derived
snow and NDVI layers and DTM-derived topographic indices
as “CZ indices.”

Statistical Analyses
We combined multiple statistical methods into a data analytical
framework, which allowed us to (1) identify unique hydrologic
behaviors from intensive in situ observations, (2) explore physical
drivers with extensive remotely sensed parameters, (3) and map
behaviors across broader spatial scales (Figure 2). The framework
began with an unsupervised agglomerative hierarchical cluster
analysis to identify groups of locations with like hydrologic
behaviors within the study catchment. To cluster the locations,
we included each location’s time series of soil moisture;
importantly, we included missing values for some monitoring
locations due to snow cover. We calculated a Euclidean distance
matrix and then used the hclust function in the base stats
R package using a ward.D2 linkage method. This method
minimizes within-group variance (Murtagh and Legendre, 2014),
which was found to be most representative for grouping
locations based on related studies in mountainous ecosystems
(Devadoss et al., 2020). We visualized cluster separation using
a dendrogram and a plot of the total within sum of squares for
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each increasing cluster number (Hastie et al., 2009). We named
clusters of locations, “hydrologic groups,” which represented
unique hydrologic behaviors.

We then used a suite of univariate and multivariate statistical
analyses to identify CZ indices that had differences across
hydrologic groups. First, we removed highly co-variate CZ
indices that had a Pearson correlation coefficient ≥ ± 0.8,
which was particularly useful for determining optimal micro-
and macrotopographical spatial scales in our study catchment.
Second, we reduced CZ indices to a final subset that differentiated
at least two hydrologic groups using pairwise Wilcox tests with
Bonferroni p-value adjustments (p < 0.1 significance threshold),
visual examination of boxplots, and principal components
analysis (PCA) and principal component (PC) biplots. The
PCA analysis was primarily used as a visualization tool to
understand the relationships among CZ indices and between
hydrologic groups.

We used a supervised machine learning classification
approach to extrapolate the hydrologic groups across the
study catchment. We selected Breiman’s (2001) random
forest classification algorithm, which generates a large
number of decision trees with bootstrapped sample data,
and each tree is trained with a random selection of predictor
variables. We selected random forest, because it does not
assume underlying data distributions, avoids data overfitting,
produces strong results compared to other machine learning-
based classification methods, and performs well without
substantial tuning (Breiman’s, 2001; Liaw and Wiener, 2002;
Cutler et al., 2007; Hastie et al., 2009; James et al., 2013).
Furthermore, CZ indices seemed to separate hydrologic groups
in a rule-based fashion.

We developed two random forest models: one with six
hydrologic groups and the other with three. For both, we used the
randomForest algorithm in the randomForest R package (v 4.6-
14; Liaw and Wiener, 2002) to classify hydrologic groups using a
suite of CZ indices as predictor variables. We used a grid-search
approach to tune the number of predictor variables included in
each tree and test the effect of different numbers of trees per
forest. We selected the combination of hyperparameters that
minimized “out-of-bag” (OOB) error and maximized Cohen’s
kappa coefficient (Cohen, 1960). Both models had a single

FIGURE 3 | Summer 2017 climatology for the NWT Saddle stream catchment

depicting stream discharge (blue line; Caine et al., 2020), precipitation (gray

bars; Morse et al., 2020), date of our maximum snow depth UAV survey (green

inverted triangle), and soil moisture surveys (yellow diamonds).

FIGURE 2 | Analytical framework used to (1) identify unique hydrologic behaviors and landscape patterns from field observations, (2) explore critical zone (CZ) physical

drivers underpinning groups of hydrologic behaviors, (3) map hydrologic behaviors beyond point scales, and (4) develop further hypotheses and studies.
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observation per terminal node and bootstrapped samples without
replacement, which produces less bias with unbalanced classes
(Boehmke and Greenwell, 2020). The six-group model had
one predictor variable per tree and 500 trees, while the three-
group model used nine predictor variables and 250 trees. We
performed leave-one-out cross-validation (LOOCV) to assess
overall model accuracy and class-specific balanced accuracy
(Kuhn, 2008; James et al., 2013). We also calculated the local
variable importance, which is the increase in the percent of
times a site was misclassified when a CZ index was permuted.
Though local importance calculations are often noisy, they
provided some indication of which indices best separated groups
(Touw et al., 2013).

We then applied the random forest models to distributed
CZ index maps to classify a hydrologic group for every pixel in
the study area. We compared predicted maps to spatial patterns
of hydrologic features observed during field surveys and high-
resolution multispectral imagery across the study catchment to
qualitatively evaluate model performance. Lastly, we calculated
the areal extent of each hydrologic group across our study area.
All statistical analyses were conducted in R, v. 4.0.0 (R Core
Team, 2017).

RESULTS

Growing Season Climatology and Soil
Moisture Observations
Measurements collected in summer 2017 captured late snow
melt, rainfall, and dry-down. The earliest UAV survey, June 21,
occurred during peak streamflow (June 16–June 23; Figure 3)
and measured a maximum snow depth of 4.8 m and median
snow depth of 1.1 m (Supplementary Figure 1). During our
first three soil moisture surveys (July 3, July 10, July 18),
snow was still present at 12, 7, and 2 monitoring sites,
respectively. Frequent convective thunderstorms began mid-
July, and cumulative monthly rainfall peaked in August at
0.11 m (surveys 5–7; Figure 3). The catchment was completely
snow-free by August 14, as shown by the high-resolution UAV
imagery surveys. Between the 7th and 8th soil moisture surveys,
precipitation was <0.001 m, and surveys ended before snowfall
began again in late September (Figure 3).

Soil moisture measurements reflected these seasonal patterns
in snowmelt and rainfall. Overall, median soil moisture was
highest for surveys 1, 6, and 7 at ∼0.3 v/v (Figure 4A). It was
lowest for surveys 3 and 8, near 0.1 v/v. The widest range in soil
moisture, ∼1.1 v/v, was during the first two surveys. By the final
survey, 80% of sites had dried to < 0.2 v/v. Despite these overall
trends, every survey had a wide range in soil moisture values with
coefficients of variation across the catchment∼50 to 110.

Unsupervised Hierarchical Cluster Analysis
of Soil Moisture
Our unsupervised hierarchical cluster analysis revealed that
monitoring locations assembled into two main clusters. The plot
of within-sum-of-squares by cluster number showed an “elbow”
at two clusters (Supplementary Figure 2). The locations in the

first cluster had lower median soil moisture overall than the
locations in the second cluster, and so we named them “DRY” (D)
and “WET” (W), respectively. The D cluster locations exhibited
a decline in soil moisture between surveys 1–3 in response to
snowmelt, and then an increase in soil moisture later in the
study period in response to summer rainfall events (Figure 4A).
Locations in the W cluster had either wet (> 0.4 v/v) or very wet
(≥ 0.8 v/v) soil moisture conditions during the first two surveys.

Using a dendrogram, we subdivided the D and W clusters
into six groups of locations with common soil moisture
quantities and temporal trends over the observed period
(Supplementary Figure 3). We summarize the relationships
between the two clusters and six hydrologic groups in Table 1

and Figure 4B. The first D group we named “dry” (D-D) since
it had soil moisture ≤0.2 v/v during surveys 1-3. This group’s
median soil moisture peaked at ∼0.3 v/v during surveys 6-7
and coincident with maximum summer rainfall (Figure 3). We
named the second group “wet-to-moist” (D-WM). Median soil
moisture was highest during the first survey at 0.5 v/v and then
peaked again during surveys 6-7, similar to the D-D group. The
third group, “moist-to-dry” (D-MD), had soil moisture values in
between the D-D and D-WM groups. The fourth group, “rapid
dry-down” (W-RD), had median soil moisture at 1.1 v/v which
decreased approximately linearly to 0.13 v/v over the eight field
surveys. The final two groups were either “persistently wet” (W-
W; 0.4–1.0 v/v) or “persistently very wet” (W-VW; ≥ 0.8 v/v)
until the last survey. We note that for each hydrologic group, its
range in soil moisture values overlapped with one or more other
groups (shaded areas, Figure 4A).

Relationships Between CZ Indices and Soil
Moisture-Derived Hydrologic Groups
Critical zone indices were first narrowed by linear correlation
analysis. We started with 47 CZ indices representing snow,
plant productivity, macrotopography, microtopography, and
flow accumulation patterns. Twenty-eight indices were highly co-
variate with either the same index calculated at a different spatial
resolution or another index representing similar topographic
patterns (Supplementary Table 1). For example, we calculated
slope at 1, 5, 10, 20, 30, 65, and 100 m scales, but all scales except
1 and 65 m had Pearson correlation coefficients ≥ ± 0.8. Thus,
these two scales were retained to represent local slope andmacro-
slope, respectively. In another example, CI was highly correlated
with TPI-30 m (r = 0.9) and so CI was removed.

With the 19 remaining CZ indices, we aimed to hone
the CZ indices to a set that separated as many hydrologic
groups as possible in univariate or multivariate space. Pairwise
Wilcox tests determined that 11 CZ indices (MSD, mNDVI,
OD2C, VD2C, CIr, TPIr, SWFA, TWI-1 m, TWI-10 m, TPI-
300 m, and northness) had significant differences across
one or more hydrologic groups (Supplementary Table 2).
Four pairs of hydrologic groups could not be statistically
separated by CZ indices, but five CZ indices (elevation, MPI,
WS, slope-L, slope-M) did show trends toward differences
when CZ indices were visualized using boxplots (Figure 5;
Supplementary Table 2). While some CZ index values, such
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FIGURE 4 | Soil moisture cluster analysis results. (A) Time series’ of the overall soil moisture median (dashed black line) for each survey (black dots), and median

(solid lines) and range (shaded area) in soil moisture for each of the six hydrologic groups. (B) Schematic of the relationships between clusters and hydrologic groups.

Names and abbreviations correspond to those in Table 1.

TABLE 1 | Soil moisture clusters and hydrologic groups.

Cluster 6-group model Abbreviation Locations per group 3-group model Important CZ indicesa

DRY Dry D-D 33 Dry MSD, TWI-10m,

mNDVI, slope-L,

TPI-300m

DRY Moist-to-dry D-MD 22 Snow-rain MSD, TPIr,

North, MPI, mNDVI

DRY Wet-to-moist D-WM 14 Snow-rain North, WS, SWFA,

Elevation, VD2C

WET Rapid dry-down W-RD 4 Snow-rain MSD, TPIr

WET Persistently wet W-W 7 Wet TWI-10m, North,

OD2C, TPIr

WET Persistently very wet W-VW 4 Wet CIr, TWI-1m,

MSD, Slope-L, OD2C

aTop CZ indices based on local importance calculations from the six-group random forest model. Indices in bold text were also important in the three-group model.

as slope-L and mNDVI, were more of a continuum across
hydrologic groups (e.g., local slope or mNDVI), others
clearly isolated one or more of them (e.g., OD2C, CIr;
Figure 5).

Our PCA analysis showed relationships among CZ indices
and hydrologic group separation in multivariate space. The
first principal component (PC1) explained 28% of the CZ
index variance and generally separated the D cluster from
the W-W and W-VW groups (Figure 6A). The D cluster
tended to have higher TPI-300 m, elevation, OD2C, and VD2C,
while the W-W and W-VW groups had higher mNDVI,
CIr, TWI-10 m, and TPIr. The second principal component
axis (PC2) generally separated the D cluster from the W-
RD group (Figure 6A) and explained 20% of overall variance.
Plotting the first and third principal components (PC3), which
explained an additional 15% of overall variance, further separated
the D-D group from most others with higher TPI-300 m
and slope, lower WS and SWFA, and was more south-
facing (low northness index) compared with the rest of the
groups (Figure 6B). Despite these patterns in PCA biplot space,
no one group completely separated from the others, and
the first three principal components only explained 63% of
overall variance.

Spatial Organization of Hydrologic Groups
Across the Catchment
We used random forest models to classify hydrologic groups
across the study catchment using CZ indices as predictor
variables. The six-group model included all 16 CZ indices and
had an overall accuracy of 52.4% (Table 2). Some hydrologic
group classifications were more accurate than others. Individual
group balanced accuracy rates ranged from 49 to 80%. We
reclassified our six hydrologic groups into three to increase
sample numbers per group for random forest classification
exercises. Locations classified as D-D remained the same across
models, but locations classified into the D-MD, D-WM, and W-
RD groups were combined into a “snow-rain” group (Table 1,
Figure 4B). The remaining W-W and W-VW groups were
combined into an overall “wet” group. The three-group random
forest model had substantially improved overall accuracy at
71.4% and snow-rain group class balanced accuracy of 72%
(Table 3). The wet group still had lower balanced accuracy than
the others at 66%.

Local importance calculations identified CZ indices
underpinning each of the two main clusters (Table 1).
Important CZ indices for the W cluster included CIr, TPIr,
MSD, northness, OD2C, slope-L, TWI-1 m, and TWI-10 m,
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FIGURE 5 | Hydrologic groups by CZ indices. Local slope and macro slope are in degrees. OD2C, overland distance to channel (meters); VD2C, vertical distance to

channel (meters); MSD, maximum snow depth (meters); max NDVI, maximum normalized difference vegetation index; MPI, morphometric protection index; FA, flow

accumulation; TWI, topographic wetness index, where higher values indicate flow accumulation; TPI, topographic position index, where “0” represents flat areas, while

positive values are topographic highs and negative values are topographic lows; and CI, convergence index. “*”, indicates the index was transformed by natural log

(ln) and “+” indicates the index was transformed by square root (sqrt).

all of which represent microtopography or flow accumulation
patterns. In contrast, CZ indices that differentiated the D cluster
included mNDVI, WS, MPI, SWFA, northness, TPI-300 m,
elevation, TPIr, and TWI-10 m. These indices represent snow
accumulation and melt patterns driven by macrotopography and
flow paths.

We then applied both the six- and three-group random forest
models to distributed CZ index maps to classify each pixel in the
study catchment (Figure 7). For the six-group model, the D-D
group was mapped throughout the study area and encompassed
the highest proportion of total area at 58.3% (Table 2). The
upper portion of the catchment was mostly classified as a D-MD
and D-WM zone (Figure 7A). These two groups made up 27.2
and 9.7% of the study area, respectively (Table 2). The middle
area of the catchment was classified as the overall W cluster

(W-RD, W-W, and W-VW; Figure 7A), with isolated patches

of the W-W and W-VW groups also found along the eastern
flank of the catchment. The W cluster accounted for ∼5% of
the total study area (Table 2). For the three-group model, the
study area was classified as 46% dry, 51% snow-rain, and 3% wet
(Table 3). The dry and snow-rain groups generally mapped to
broad zones across the study area, with wet patches intermingling

with the snow-rain group in the eastern half of the catchment
(Figure 7B).

Despite some uncertainty related to the six- and three-group
maps, the spatial patterns of groups mirrored field observations
of key hydrologic and topographic features across the study area
(compare Figures 7, 8). In the upper portion of the catchment,
mostly classified as D-MD and D-WM groups, snow caught
between stone-banked solifluction terraces and accumulated
in a wide “saddle” between two knolls. The saddle area had
broad areas of wet and moist meadow plant communities,
captured as W-W and W-VW groups. Eastern and western
flanks of the catchment were predominated by dry meadow plant
communities, captured as the D-D group in our models. Mid-
catchment, a snow field persists every year until mid-August,
adjacent to a broad zone of highly productive shrub and wet
meadow plant communities. This area was classified as the
W-RD, W-W, and W-VW groups. From this mid-catchment
snow field and wet meadow, the stream channel emerged, and
continued into sub-alpine forest in the lower portion of the
catchment. Throughout the catchment, we observed seeps and
ephemeral ponds in areas of local microtopographic variability,
which were largely captured as D-MD,W-W, andW-VWgroups.
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FIGURE 6 | CZ index principal component analysis (PCA) biplots showing (A) PC1 vs. PC2 and (B) PC1 vs. PC3. Vector lengths are proportional to the variance of

each CZ index, and the angle between vectors represents the correlation between CZ indices. Points are colored by hydrologic group. The x- and y-axes provide the

percent variance explained by each PC.

TABLE 2 | Confusion matrix and accuracy for the six-group random forest modela.

Predicted Hydrologic Group Group accuracyc % Study Area

1 2 3 4 5 6

Actual hydrologic groupb 1 D-MD 9 10 0 3 0 0 0.61 27.2

2 D-D 4 28 0 1 0 0 0.80 58.3

3 W-RD 2 1 0 0 1 0 0.49 1.5

4 D-WM 4 1 0 6 3 0 0.66 9.7

5 W-W 1 0 0 3 1 2 0.54 3.0

6 W-VW 1 1 1 0 1 0 0.49 0.3

Overall accuracy 52.4%

aEach number in the matrix represents the number of times a site was predicted into a hydrologic group compared to its actual hydrologic group during leave-one-out cross-validation.
bAbbreviations as defined in Table 1.
cGroup balanced accuracy.

TABLE 3 | Confusion matrix and accuracy for the three-group random forest modela.

Predicted hydrologic group Group accuracyc % Study area

1 2 3

Actual Hydrologic Group 1 Dry 22 11 0 0.80 45.7

2 S-Rb 3 34 3 0.72 50.9

3 Wet 0 7 4 0.66 3.4

Overall accuracy 71.4%

aEach number in the matrix represents the number of times a site was predicted into a hydrologic group compared to its actual hydrologic group during leave-one-out cross-validation.
bS-R = “Snow-Rain” group.
cGroup balanced accuracy.
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FIGURE 7 | Predictions for the six- (A) and three- (B) hydrologic group random forest models. Colors reflect pixel-by-pixel hydrologic group classifications compared

to observed classifications (dots).

DISCUSSION

Alpine Hydrologic Patterns Driven by
Physical Properties of the Critical Zone
In this study, we used a hierarchical cluster analysis to identify
six unique hydrologic behaviors, or the quantity and time
evolution of soil moisture, across an alpine catchment at Niwot
Ridge. Multiple scales of CZ properties drove the differences
among these six groups, affecting patterns in water routing,
storage, and potentially export to the stream channel. Notably,
macrotopography and snow accumulation and melt across broad
zones within the catchment created a continuum from drier sites
to those more influenced by snow and snowmelt. For example,
sites in the driest group, D-D, were found on hillslope summits
or shoulders (high TPI-300 m, higher slope values; Figures 5, 6),
which had high wind scour (lower WS values), low to no snow
accumulation (low MSD; Figure 5), and were distant from the
stream channel (higher OD2C and VD2C). These sites also
tended to be south-facing, consistent with prior evidence that
equator-facing slopes have higher solar radiation, and, thus,
lower snow accumulation and soil moisture (Hinckley et al.,
2014b; Pelletier et al., 2018). Water limitation characterizes the
D-D areas, making them less likely to contribute to catchment
export of water and solutes.

In contrast to the D-D group, the D-MD, D-WM, and W-
RD groups reflected differences in the timing and duration
of snow and snowmelt. The D-MD group was found along
snowmelt flow paths (Figures 5, 7A), reflecting early snowmelt
patterns across the study area; these areas also supported higher
plant productivity than the D-D group, as shown by mNDVI

measurements (Figure 5). The D-WM group, which mapped to
a broad zone in the upper catchment, reflected an area of delayed
snowmelt. These sites had higher wind shelter and were more
north-facing than the D-D and D-MD groups. TheW-RD group,
with the highest MSD measured and highest morphometric
protection on average, largely coincided with the persistent
snow field mid-catchment. This group had a proximal source
of snowmelt throughout the spring and summer, and, hence,
was saturated during the first survey. Together, the physical
drivers of the D-D to W-RD groups are consistent with prior
work showing that wind interacts with macrotopography to drive
snow accumulation and re-distribution patterns across Niwot
Ridge (Winstral et al., 2002; Erickson et al., 2005; Litaor et al.,
2008; Jepsen et al., 2012) and in mountainous regions globally
(Grünewald et al., 2013).

Our research demonstrates that multiple scales of topography
play a role in defining areas of soil water storage. We
found that the W-W and W-VW groups were driven by
a combination of macrotopography, microtopography, and
hydrological flow paths. Both of these groups were in areas of
lower macrotopographic position (lower TPI-300 m and slope
relative to the DRY cluster groups; Figure 6). However, theW-W
group was closer to stream channels (lower OD2C) or along flow
paths (higher TWI) compared to the W-VW group (Figure 5).
Sites in the W-VW group, in contrast, had lower local slope and
were in areas of microtopographic change on the order of 5 m
(higher CIr values; Figure 5). These differences suggest that those
areas characterized by theW-W group follow the stream network
and may contribute to catchment export, while the W-VW
group is associated with areas of water storage (longer residence
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FIGURE 8 | Key features across the study catchment from field-based observations. (A) UAV-derived orthomosaic (14th August, 2017) of the snow-free study area

with boxes showing approximate locations represented by (B) a photo looking east from a western knoll in the upper catchment with image of ponds (inset) and (C) a

photo looking west across a central shrub and wet meadow with a snow field in the distance. Yellow arrows on (A) indicate view direction of (B,C).

time), such as solifluction lobes, terraces, and ephemeral ponds
(Benedict, 1970; Harris, 1977; Mercer, 2018). Areas in theW-VW
group may have a number of functions: acting as biogeochemical
reactors on the landscape, due to storage of water and material,
or contribute to groundwater recharge depending on subsurface
structure, including the presence of permafrost layers (Leopold
et al., 2008; Mercer, 2018; Knowles et al., 2019).

Based on the results of this study and others, we propose
a conceptual model of CZ influence on landscape hydrology
in regions influenced by snow and ice. At high latitudes,
the CZ is predominated by microtopographic features. For
example, across great swaths of arctic tundra, microtopographic
ice wedge polygons (∼ 5–20 m) affect near surface soil
moisture, permafrost, microbial activity, carbon fluxes, and
vegetation (Zona et al., 2011; Hubbard et al., 2013; Wainwright
et al., 2015; Dafflon et al., 2016; Taş et al., 2018). On
the other end of the continuum, the CZ is predominated
by macrotopographic features. For example, Hinckley et al.
(2014a,b) found that hydrologic response and the fate of
atmospheric nitrogen deposition in the montane were consistent
within north- and south-facing aspects, but that the opposing
hillslope aspects differed greatly, demonstrating nearly binary
behavior when compared to one another. Here, we illustrate
that alpine tundra sits between the arctic and montane
endmembers: macrotopography dictates broad zones of snow
accumulation and melt, as well as hydrological flow paths,
while microtopography influences patches of water storage. We

predict that this patch-to-zone structure of the CZ results in
the heterogeneous patterns of hydrologic connectivity (Ronayne
et al., 2012), biogeochemistry (Darrouzet-Nardi and Bowman,
2011), and plant community composition (Spasojevic et al., 2013;
Opedal et al., 2015) that complicate our understanding of these
sensitive but critical environments. Additional studies across
multiple years and in other alpine regions are warranted to
confirm this conceptual model.

A Dialogue Between Datasets and
Predictions
Our random forest statistical classification models were strongly
informed by our field observations, monitoring, and empirical
data. Visual inspection of topographic features during field
surveys informed initial topographic index selection and scales
of interest. In addition, they led to the calculation of new
indices, including CIr and TPIr, to capture solifluction lobe
and terrace features. We also observed areas of persistent
snowpack, ephemeral or subsurface flow paths, and surface
ponding, indicating locations of extended water storage. These
field observations aided in validating our random forest maps.
For example, our six- and three-group random forest models
were evaluated on their successful prediction of observed upper-
and mid-catchment wet and moist meadows, ponds, extent of
dry meadows, and isolated wet patches (Figure 7 compared
to Figure 8). The three-group map presents predictions for
broad spatial patterns in dry-to-wet areas, while the six-group
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map provides insight into patch-scale patterns that reflect
more nuanced hydrologic dynamics. As posed by Blöschl et al.
(2019), our study shows that employing multiple approaches to
characterize alpine hydrology leads to a stronger understanding
of how physical drivers affect patterns of hydrologic dynamics
across space.

In turn, our random forest predictions identified gaps in
our understanding of alpine hydrology, pointing to future field-
based research needs in alpine CZ science (Figure 2, box 4).
Although all of our groups had some degree of separation based
on CZ indices, wide variance in most CZ index values (Figure 5),
the incomplete separation of groups in multidimensional space,
relatively low explanatory power of principal components
(Figure 6), and high single-group error rates in our random
forest models (Tables 2, 3) suggests that hydrologic groups may
be affected by additional factors that we did not include in our
analysis. First, our study did not include sub-meter-scale CZ
properties specifically related to soils. Several studies reinforce
the importance of soil texture indices for predicting patterns in
soil moisture (Williams et al., 2009; Oroza et al., 2018). Other
soil characteristics, such as porosity, mineralogy, and organic
matter content are important for vertical infiltration rates and
lateral flow paths in the alpine (e.g., Quinton et al., 2005; Yang
et al., 2014). Stone-banked lobes and terraces may also affect
surface soil moisture, similar to the importance of rock-related
metrics in defining hydropedologic units in the Hubbard Brook
Experimental Forest (Gillin et al., 2015) or explaining subsurface
flow variability (Bachmair and Weiler, 2012).

Second, while the regularly spaced grid of monitoring sites
enabled broad characterization of the landscape and allowed us
to extrapolate hydrologic groups across the area, it yielded few
samples of wet patches and zones (Table 1). As a result, it was
difficult to predict W groups accurately. WhenW-W andW-VW
groups were combined for the three-group model, wet group
balanced accuracy improved from ∼50 to 66%, but this was still
higher error than for the “dry” and “snow-rain” groups (Tables 2,
3). TheW-W andW-VW group were mostly misclassified as one
another or as W-RD, D-WM, or D-MD groups, which suggests
that we did not include some mechanisms that may more clearly
differentiate these groups. Our results highlight a need for more
rigorous study of wet areas within alpine landscapes to better
understand the mechanisms underlying persistent wetness. For
example, we do not know whether wet areas stay wet because
they continually receive snowmelt or rather that they are areas fed
locally by melting subsurface ice lenses and/or permafrost (e.g.,
Leopold et al., 2008; Knowles et al., 2019).

Third, subsurface characterization will be critical for
developing predictive capacity related to quantifying stream flow
and chemical export from the CZ. Characterizing subsurface
heterogeneity has long been identified as a missing link in
developing a unified theory of watershed hydrology (Troch
et al., 2008), and our study indicates that the alpine is no
exception. We could not physically measure soil moisture
under the stone-banked terraces in the upper western portion
of the catchment, nor in a broad shrub zone mid-catchment
(Figure 8). Yet, we heard water percolating through the terraces
and the broad shrub zone appeared saturated throughout most

of the summer season. We know little about subsurface flow
in these areas. These two unmeasured areas of the alpine may
be important for water transport or storage, respectively, with
important implications for water delivery to lower elevations.
More broadly, characterizing surface water-groundwater
interactions would inform the hydrologic connectivity between
our hydrologic groups (Liu et al., 2004; Williams et al., 2015;
Mercer, 2018).

Additionally, we believe that estimation error associated
with predicting the W-RD group may be due to the lack of
characterization of the subsurface CZ structure. This group was
found in broad areas of steep relief with snow accumulation
(i.e., the snowfield in the middle of the catchment; Figure 8)
and in the upper western part of the catchment, where the
stone-banked terraces intermix with meadows. These sites were
mostly misclassified as the D-MD function, suggesting that
the physical drivers of these two groups are similar. Although
obviously influenced by snowmelt supply, the W-RD function
may reflect subsurface properties at play. Our predictedmaps can
guide future acquisition of intensive geophysical datasets, such as
ground-penetrating radar, as well as tracer studies to determine
patterns of hydrologic connectivity at hillslope-to-catchment
scales. In summary, our data analysis framework capitalized
on the combination of intensive field observations, extensive
remotely-sensed CZ indices, and the strength of machine
learning models. However, continuing the dialogue between
targeted data collection and building predictive frameworks is
critical for extending our efforts beyond mapping soil water
storage patterns (Figure 2).

Our analytical framework provides a strategy for condensing
multiple and complex data streams into a process-oriented
understanding of within catchment functions. This approach is
increasingly important as technology enables observations with
higher spatiotemporal resolutions and for longer durations. For
example, unmanned aerial vehicles, such as those used in this and
prior studies, offer sub-meter-scale observations (Wigmore et al.,
2019), commercially available high-resolution (3 m) satellite
images provide broad spatial coverage (Planet Team, 2017), and
in situ soil moisture sensor arrays yield real-time sub-hourly data
feeds and long-termmonitoring (e.g., Demand et al., 2009; Oroza
et al., 2018). Our unsupervised cluster analysis distilled many
observations into clear and related soil moisture behaviors, and
similar approaches identified characteristic time series of plant
productivity in mountainous regions (Devadoss et al., 2020). In
turn, our machine learning-derived maps could be used to design
sensor array placement in new locations or targeted process
oriented transect studies (e.g., Wainwright et al., 2015).

Implications of Soil Moisture Patterns for
Biogeochemical and Ecological Processes
Our approach to identify and predict hydrologic groups allowed
us to begin exploring their relationships within a catchment,
as well as their potential effects on biogeochemical processes,
plant productivity, and stream water and solute fluxes. Both
our six- and three-group random forest predictions indicated
that ∼40–55% of the catchment is hydrologically active early
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in the summer growing season (Tables 2, 3). Areas classified
as the D-MD, D-WM, and W-RD groups (∼40% of the study
area) are expected to contribute significantly to water fluxes
and the fluxes of solutes stored in snowpack (e.g., inorganic
N; Williams et al., 2015), mobilized from shallow soils (e.g.,
dissolved organic carbon), or produced from carbonic acid
weathering (Winnick et al., 2017). As temperatures warm and
soil moisture saturation decreases during the growing season,
these areas develop optimal conditions for soil respiration
(Knowles et al., 2015), soil N transformation rates (Chen
et al., 2020), and plant growth (Supplementary Figure 1). We
would expect that D-MD, D-WM, and W-RD groups then
“prime” soils for mobilization of solutes in response to snowmelt
and convective rainstorms later in the season, but future
hydrologic modeling studies are needed to test this hypothesis.
While their biogeochemical activity appears to be activated
by warming temperatures and declining soil moisture, we
predict that their primary role in the catchment is as export
control points (Bernhardt et al., 2017); they accumulate and
then contribute much of the water, solute, and nutrient fluxes
from the terrestrial ecosystem when hydrologically connected to
the channel.

Although we estimated that the W-W and W-VW
groups are only ∼3% of the study area, these sites may be
disproportionately important in net ecosystem or catchment
processes. Encompassing the riparian zones along the stream
channel and areas accumulating snowmelt, these groups
align with the “activated control points” typology outlined
by Bernhardt et al. (2017). When warming temperatures
cause thawing, these areas exhibit high soil respiration rates
relative to other areas (Knowles et al., 2015, 2019). Consistent
with prior research on Niwot Ridge (Bowman and Fisk,
2001; Seastedt, 2020), the wetter areas also had the highest
mNDVI (Supplementary Figure 1). However, since these
areas had the highest predictive uncertainty, further study is
warranted to better understand their biogeochemical process
rates, subsurface weathering dynamics, and surface-subsurface
hydrologic connectivity.

We classified the other half of the study area as the D-D group.
Dry areas have high rates of net Nmineralization and nitrification
early in the summer season (June-July) and again during August-
September (Chen et al., 2020). These biogeochemical processes
are stimulated by higher soil moisture during early snowmelt and
summer rains. However, the overall low antecedent soil moisture
conditions at dry sites prior to rains suggest that they are unlikely
to contribute to streamflow, similar to the findings of Penna
et al. (2011) in the Italian Alps. Low soil moisture also limits
plant productivity; these areas had the lowest mNDVI on average
(Supplementary Figure 1), consistent with previous studies on
Niwot Ridge (for review, see Bowman and Fisk, 2001). However,
these drier areas host the highest plant species richness of alpine
plant communities (Seastedt and Vaccaro, 2001; Litaor et al.,
2008; Seastedt, 2020). Our findings suggest that while the D-
D group may be important areas for local nutrient cycling and
plant species diversity, they are less important for ecosystem-
or catchment-scale processes; thus, we do not designate them as
control points. We do note, however, that D-D group areas may

bemore hydrologically relevant during early snowmelt—a period
of time that our measurements did not capture.

Our observations and random forest predictions reflect only
one growing season’s hydrology in one alpine catchment, but we
can consider our findings in the context of long-term climate
data and predictions for the region. We suggest that, broadly,
the spatial patterns of the different hydrologic groups will be
robust to change, since these patterns are driven by the physical
template of the landscape. This idea is similar to Williams
et al. (2009)—patterns in soil moisture respond to both static
(i.e., topography and soils) and dynamic (i.e., snowpack) CZ
controls. However, we might expect some shifts in the spatial
extent of groups, since over the long term, winter precipitation
is increasing (Kittel et al., 2015) but spring and summer are
warming (McGuire et al., 2012). Earlier but slower snowmelt
(Musselman et al., 2017) may shift more areas to behave like
an expanded D-MD group, with early influence of snowmelt,
a slower dry-down period, and longer dry conditions prior
to summer precipitation. This shift reinforces the importance
of summer rains for stimulating microbial activity and plant
growth under conditions of temperature stress (Harpold, 2016;
Winkler et al., 2016; Chen et al., 2020). Nutrient losses to the
channel may increase, since alpine plant productivity may be
limited by photoperiod despite early snowmelt and warmer
spring temperatures (Ernakovich et al., 2014). The W-W and
W-VW areas may experience increases in subsurface thawing
with warming summer temperatures, enhancing the hydrologic
connectivity of these zones to other areas of the landscape
and shifting their role, for example, from activated to transport
control points (Bernhardt et al., 2017), important for conveying
water and solutes to the channel (e.g., Barnes et al., 2014).

CONCLUSIONS

Our intensive soil moisture observations clustered into six
hydrologic groups, characterized by similar quantities and
temporal trends in soil moisture over the alpine growing season.
Interestingly, we found that multiple scales of topography were
at play in differentiating these groups, and these scales of
topography interacted to manifest as broad zones or isolated
patches of like soil moisture behaviors across the landscape.
We expect hydrologic groups may shift in response to changes
in snowmelt predicted for the region (Musselman et al., 2017;
Jennings and Molotch, 2020), which may affect the roles of
different patches or zones as ecosystem control points (Bernhardt
et al., 2017). Our study illustrates the novel insights that can be
provided by applying an analysis framework that links intensive
on-the-ground field observations with empirical evidence,
topography-derived terrain indices, and extensive aerial imagery
from UAVs. Our framework combined the exploratory nature
of hierarchical cluster analysis to identify unique hydrologic
behaviors in our observations with the power of machine
learning algorithms to predict them across a landscape. This
approach yielded a detailed snapshot of hydrologic dynamics and
connectivity across space, which will aid in informing targeted,
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process-based field and modeling studies in this and other
sensitive alpine CZ systems.
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