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Located in the critical zone at the intersection between surface water and groundwater,

hyporheic zones (HZ) host a variety of hydrological, biological and biogeochemical

processes regulating water availability and quality and sustaining riverine ecosystems.

However, difficulty in quantifying water fluxes along this interface has limited our

understanding of these processes, in particular under dynamic flow conditions

where rapid variations can impact large-scale HZ biogeochemical function. In this

study, we introduce an innovative measurement assimilation chain for determining

uncertainty-quantified hydraulic and thermal HZ properties, as well as associated

uncertainty-quantified high-frequency water fluxes. The chain consists in the assimilation

of data collected with the LOMOS-mini geophysical device with a process-based,

Bayesian approach. The application of this approach on a synthetic case study

shows that hydraulic and thermal HZ properties can be estimated from LOMOS-mini

measurements, their identifiability depending on the Peclet number – summarizing the

hydrological and thermal regime. Hydraulic conductivity values can be estimated with

precision when greater than ∼ 10−5m · s−1 when other HZ properties are unknown,

with decreasing uncertainty when other HZ properties are known prior to starting the

LOMOS-mini measurement assimilation procedure. Water fluxes can be estimated in

all regimes with varying accuracy, highest accuracy is reached for fluxes greater than

∼ 10−6m · s−1, except under highly conductive exfiltration regimes. We apply the

methodology on in situ datasets by deriving uncertainty-quantified HZ properties and

water fluxes for 2 data points collected during field campaigns. This study demonstrates

that the LOMOS-mini monitoring technology can be used as complete and stand-alone

sampling solution for quantifying water and heat exchanges under dynamic exchange

conditions (time resolution < 15 min).
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1. INTRODUCTION

Sustainable management of surface water and groundwater
resources and of the ecosystems they support requires a
reliable quantification of stream-aquifer water exchanges (Winter
et al., 1998; Woessner, 2000; Stonestrom and Constantz, 2003;
Fleckenstein et al., 2010). Indeed, these exchanges condition
the water budget of hydrosystems (Krause and Bronstert,
2007), seasonal low flows (Fleckenstein et al., 2006; Kløve
et al., 2014) and contaminant transport in the stream-aquifer
continuum (Conant, 2004; Lewandowski et al., 2011). Coupled
with heat fluxes, water fluxes also condition a myriad of
chemical and ecological processes, such as denitrification rates
(Harvey et al., 2013; Newcomer et al., 2018), locations of
refuge for aquatic species (Brunke and Gonser, 1997; Malcolm
et al., 2005; Marmonier et al., 2012) and they play a critical
role in maintaining a good quality of stream water (Hancock,
2002).

Located in the critical zone at the transition between surface
water and groundwater, the hyporheic zone (HZ) is defined as
the subsurface area where water exchanges are driven both by
stream pressure gradients and subsurface properties (Tonina and
Buffington, 2009; Peralta-Maraver et al., 2018). Water and heat
fluxes in the HZ have emerged as having a significant role from
the micro scale to the catchment scale (Boulton et al., 1998;
Bencala, 2000) and have been increasingly studied in the past
decades (e.g., Boano et al., 2014; Flipo et al., 2014; Cardenas, 2015;
Brunner et al., 2017; Lewandowski et al., 2019).

A variety of technologies and methods have been proposed
to study HZ water exchanges, ranging from seepage meters,
chemical or isotopic tracers (e.g., Kalbus et al., 2006; Rosenberry
and LaBaugh, 2008; Xie et al., 2016). Amongst them, the use
of heat as a tracer is well-established thanks to the relatively
low cost of temperature sensors and the ease of deployment
(Lapham, 1989; Anderson, 2005; Constantz, 2008; Rau et al.,
2014; Kurylyk and Irvine, 2019; Kurylyk et al., 2019). It is
enabled by the relative stability of groundwater temperatures,
whereas stream temperatures exhibit strong diurnal and annual
cycles. The propagation of daily river temperature signals
in the hyporheic is particularly sensitive to flow variations
because thermal properties are much less variable than hydraulic
properties: thermal conductivity ranges between 1.5 and 6 W
m−1 ◦C−1 for unconsolidated water saturated porous materials
while hydraulic conductivity can vary over 6 orders of magnitude
(e.g., Lapham, 1989; Constantz et al., 2002; Rivière et al., 2020).
Various analytical and numerical methods based on the heat
transfer equation have emerged (e.g., Stallman, 1965; Hatch et al.,
2006; Rau et al., 2014; Irvine et al., 2020). Related software
implementations are the VFLUX2 software using the steady
state analytical solution (Gordon et al., 2012; Irvine et al.,
2015b), the FAST program using the transient analytical solution
(Kurylyk and Irvine, 2016), or the FLUX-BOT Matlab program
using a numerical model for solving the advection-diffusion
equation (Munz and Schmidt, 2017). More recently, the Fiber-
Optic Distributed Temperature Sensing (FO-DTS) technology
was introduced for hydrological applications, opening new
opportunities for inferring patterns of groundwater discharge

into streams continuously along the streambed (Selker et al.,
2006a,b; Briggs et al., 2012).

Amongst technologies using heat as a tracer for quantifying
water exchanges in the HZ, the uniqueness of the LOMOS-mini
sensor device resides in the ability to quantify transient exchanges
at a high temporal resolution, thereby relaxing the assumption
of constant daily exchanges and opening the opportunity to
monitor rapid infiltration and exfiltration events at the time scale
at which they happen (Cucchi et al., 2018). The technology is
based on a coupled approach combining vertically-distributed
temperature and pressure differential monitoring (Figure 1), and
on a process-based numerical model for estimating water and
heat fluxes (where process-based model refers to a mathematical
description of physical processes at play, e.g., Clark et al., 2017).
The methodology presented to date assumes that hydraulic and
thermal properties in the HZ are deterministically known.

Here we introduce a new application of the LOMOS-mini
monitoring technology, where the collected measurements are
used for estimating hydrological and thermal properties in the
HZ. The approach assimilates vertically-distributed temperature
and pressure differential time series measured at a high frequency
by the LOMOS-mini sampling device. It uses a Bayesian
approach and a process-based forward model for estimating the
joint statistical distribution of HZ properties, thereby allowing
to investigate the identifiability of HZ properties—that is, the
possibility of estimating the true values of underlying HZ
properties knowing LOMOS-mini measurements.

Section 2 introduces an application of the Bayesian framework
for estimating statistical distributions of HZ hydrogeological
and thermal properties from LOMOS-mini measurements.
In line with Rivière et al. (2020), section 3 applies the
framework on a synthetic case study, investigating parameter
identifiability for various hydrological and thermal forcings
(exfiltration/infiltration, advective/conductive), as well as for a
range of lithofacies. Section 4 applies the framework to in situ
measurements collected in the Avenelles basin, France. Section
5 discusses results in the light of alternative sampling solutions,
and proposes that the unique value of the introduced method
relies in being a complete and stand-alone solution for estimating
high-frequency transient water and heat exchanges, as well as
associated HZ hydraulic and thermal properties.

2. METHODS

This section describes the data assimilation chain developed to
estimate HZ properties and high-frequency exchanged fluxes
from LOMOS-mini measurements. The data assimilation is
posed in a Bayesian framework (section 2.1), relying on the
assimilation of in situ LOMOS-mini measurements via a process-
based model (section 2.2) and allowing to incorporate any level
of previous experience working with HZ unknown properties
(section 2.3). Besides the application of Bayesian inference, an
innovative feature of the proposed framework is to simplify
the estimation problem by noticing that it can be reduced
to 2 effective parameters (section 2.2.1), thereby allowing to
ease the investigation of the problem and shorten execution
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FIGURE 1 | Cross-sectional view of the LOMOS-mini monitoring system. It consists in vertically-distributed temperature sensors (in red) and a hydraulic head

difference sensor. Reproduced from Cucchi et al. (2018).

times (section 2.2.2). The outcome of this assimilation chain
is uncertainty-quantified HZ property estimates, allowing to
investigate the extent to which LOMOS-mini measurements
allow to characterize HZ properties, as well as uncertainty-
quantified water exchanges with a 15 min temporal frequency
(section 2.4).

The data assimilation chain and subsequent analyses were
implemented with the R statistical software and the tidyverse
collection of R packages for data science (Wickham et al.,
2019; R Core Team, 2020). We implemented a suite of utility
functions specific to our study in the form of an R package
(Wickham, 2015), which can be found through a GitHub
repository at https://github.com/kcucchi/HZinv.

2.1. Bayesian Data Assimilation
Quantifying water movement in the subsurface generally relies
on the interpretation of collected environmental data, and is
hindered by a lack of information about subsurface properties
due to low data availability as well as spatial and temporal
variability. Stochastic hydrogeology provides a framework for
assimilating information contained in sparse environmental data
by posing problems in a probabilistic yet physical framework.
Unknown physical properties y in the subsurface are considered
as random variables defined by their probability density function
(pdf) fY (y), thereby representing a wide range of states of
knowledge, where at one end broad based pdfs fY (y) represent
maximumuncertainty and at the other end narrow pdfs represent
low uncertainty, with varying degrees of uncertainty in between
(Rubin, 2003). Notations in this paper are that uppercase letters
represents the random variable and lowercase letters represent
their realizations. Physical properties are linked to observations
θ

∗ by means of process-based models (Gelhar, 1993; Rubin,
2003). Y and θ

∗ typically have multiple dimensions and are

therefore represented using boldface, where boldface denote
vectors (Table 1). Here, θ∗ are LOMOS-mini measurements and
Y are unknown HZ properties.

Bayesian inference uses the information contained in field
measurements θ

∗ to improve the characterization of Y . In
statistical terms, this means conditioning the pdf fY (y) on
the available data θ

∗ that are related to y, by calculating the
conditional pdf fY (y|θ

∗). The basis of Bayesian inference is Bayes’
theorem, which is stated as follows:

fY (y|θ
∗) ∝ f2(θ∗|y)fY (y) (1)

fY (y) is the prior pdf, describing model parameters y before
accounting for measurements, f2(θ∗|y) is the likelihood function
describing the discrepancy between and observed data andmodel
predictions with parameters y, and fY (y|θ

∗) is the posterior pdf
describingmodel parameters oncemeasurements are assimilated.

The prior pdf fY (y) represents the knowledge about the target
parameters Y before accounting for data measured in situ, in
other words the data measured at the site under investigation
(Rubin, 2003). As further detailed in section 2.3, Bayesian
inference is flexible in the amount of information to account for
prior to starting the assimilation of in situ measurements (Rojas
et al., 2009; Kitanidis, 2012; Li et al., 2018; Cucchi et al., 2019;
Heße et al., 2021).

The likelihood function f2(θ∗|y) links the prior pdf to the
posterior pdf. It is defined as the probability of observing
measurements θ

∗ conditionally on physical parameters y, where
parameters leading to model outputs similar to observations
receive high probability (e.g., Tarantola, 2005; Scholer et al.,
2012; Anderson and Segall, 2013). Measurements θ

∗ and physical
parameters y are linked via a process-based model M, further
described in section 2.2. In this study, the likelihood function is
formulated as a weighted Gaussian probability density centered
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around temperature observations θ
∗ (e.g., Scholer et al., 2012)

as follows:

f2(θ∗|y) ∝ exp

(

−
1

2σ 2

N
∑

t=1

[M(y)t − θ
∗
t]
2

)

(2)

where N is the number of sampled points, t is an index referring
to the sample in the time series, and σ 2 is the variance of
the residuals.

The result of the Bayesian inference fY (y|θ
∗) can then be

calculated from the prior distribution and the likelihood function
(Equation 2) using Bayes’ theorem (Equation 1).

In cases where measurements helped to better characterize the
unknown property—i.e., when the posterior distribution fY (y|θ

∗)
is narrow when compared to the prior distribution fY (y)—we
refer to Y as being identifiable (e.g., Carrera and Neuman, 1986;
Vrugt et al., 2002; Scharnagl et al., 2011). This also corresponds
to cases where the likelihood function f2(θ∗|y) is narrow when
compared to the prior.

2.2. Definition of the Likelihood Function
In this study, the likelihood function is based on a process-based
model M linking LOMOS-mini measurements θ

∗ to unknown
HZ properties Y . This section presents the mathematical
equations used to represent the physical processes at play
in the streambed, as well as the adopted analytical and
numerical solutions.

2.2.1. Physical Conceptualization
The heat equation simulates heat transport in porous media:

ρmcm
∂θ

∂t
= −ρwcwq · ∇θ + λm1θ , (3)

where θ [◦C] represents temperature, ρm [kg m−3] is the density
of the sediment-water matrix, cm [J kg−1 ◦C−1] is the specific
heat capacity of the sediment-water matrix, ρw [kg m−3] is
the water density, cw [J kg−1 ◦C−1] is the water specific heat
capacity, and λm [Wm−1 ◦C−1] is the bulk thermal conductivity.
∇ is the differential operator and 1 is the Laplace operator. q
is the specific discharge [m s−1], it represents the water flux
through a unit cross-sectional area normal to the direction of flow
(e.g., Bear, 1979; de Marsily, 1986). Notations are summarized
(Table 1).

q and k are linked by Darcy’s law:

q = −
kρwg

µw
∇H, (4)

where k [m2] is the intrinsic permeability, g [m s−2] is
the gravitational constant, and µw [kg s−1] is the water
dynamic viscosity.

λm is the thermal conductivity of the water-sediment matrix
and is modeled to be linked to the water and sediment thermal
conductivities λw and λs via a functional relationship as discussed
below. Several models have been proposed, here we follow the
recommendation of Cosenza et al. (2003) as it is done in the

TABLE 1 | Notations.

αe effective advective parameter [m2 s−1]

cm thermal capacity of the sediment-water matrix [J kg−1 C−1]

cs solid thermal capacity [J kg−1 C−1]

cw water thermal capacity [J kg−1 C−1]

1 Laplace operator

f probability density function (pdf)

g gravitational constant [m s−2]

H hydraulic head [m]

k intrinsic permeability [m2 ]

K random variable for intrinsic permeability

κe effective conductive parameter [m2 s−1]

λm thermal conductivity of the water-sediment matrix [W m−1 C−1]

λs solid thermal conductivity [W m−1 C−1]

λw water thermal conductivity [W m−1 C−1]

M process-based model

µw water dynamic viscosity [kg s−1]

n porosity [-]

∇ differential operator

P period of temperature oscillations in the analytical solution, here 24h

Pe Peclet number [-]

q specific discharge [m s−1]

ρm density of the water-sediment matrix [kg m−3]

ρs solid density [kg m−3]

ρw water density [kg m−3]

t time [s]

σ 2 variance of residuals between observed and modeled temperature time

series [◦C2]

θ temperature [◦C]

θ
∗ observed temperature time series [◦C]

2 random variable for temperature

y vector of HZ physical properties

Y random variable for the vector of HZ physical properties

z vertical coordinate [m]

Bold characters symbolize vectors, the star (∗) symbolizes measurements.

numerical code Ginette (Rivière et al., 2014, 2019) and use the
quadratic parallel formulation:

λm =

(

n
√

λw + (1− n)
√

λs

)2
(5)

In this study, we neglect thermal dispersion. The formulation
of the dispersion term and its influence on heat transport at
different spatial and temporal scales is questioned in the literature
and is unsolved to date (Rau et al., 2014). In similar studies, the
dispersion is usually neglected and justified given the small spatial
extent and small specific discharge in the experimental setting
(Silliman et al., 1995; Luce et al., 2013).

While values of certain physical properties are
deterministically known, other ones vary depending on
geological environments at investigated locations and are
therefore modeled as stochastic random variables. Table 2

summarizes parameters, indicating which are known
deterministically and which are modeled stochastically, with
associated numerical values or physically plausible variation
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TABLE 2 | HZ properties in the process-based model.

Parameter Notation D or S * Numerical value or range Unit References

Porosity n S 0.15–0.5 − Fetter, 2001

Water density ρw D 103 kg m−3 Bejan, 2013

Water specific heat capacity cw D 4,185 m2 s−2 C−1 Bejan, 2013

Water thermal conductivity λw D 0.598 W m−1 K−1 Bejan, 2013

Sediment density ρs S 1,800–3,000 kg m−3

Eppelbaum et al., 2014, Table 2.7

Sediment specific heat capacity cs S 800–2,500 m2 s−2 C−1

Eppelbaum et al., 2014, Table 2.7

Sediment thermal conductivity λs S 1–5 kg m s−3 C−1

Eppelbaum et al., 2014, Table 2.7

Intrinsic permeability k S 10−14–10−9 m2 Menichino and Hester, 2014

Gravitational constant g D 9.81 m s−2

Water dynamic viscosity µw D 10 −3 kg m−1 s−1 Bejan, 2013

*D, deterministic; S, stochastic.

Properties that are deterministically known are modeled as deterministic (D) and are associated with their numerical value. Properties that vary depending on geological environments

are modeled as random variables (S) and are associated with their physically-plausible variation ranges.

ranges. The vector of unknown physical properties modeled as
random variables is Y = (n, ρs, cs, λs, k).

Finally, it is worth noticing that while there are 5 unknown
HZ properties in vector y, there are only 2 degrees of freedom
in the physical system. Indeed, the ADE (Equation 3) and the
flow equation (Equation 4) can be merged into a single equation
as follows:

∂θ

∂t
= κe1θ + αe∇H · ∇θ (6a)

κe =
λm

nρwcw + (1− n)ρscs
(6b)

αe =
ρwcw

nρwcw + (1− n)ρscs

kρwg

µw
(6c)

κe [m2 s−1] and αe [m s−1] are effective parameters of the
problem and function of physical properties in Table 2. In this
study, we refer to κe and αe as effective conductive and effective
advective parameters respectively. κe is also known as effective
thermal diffusivity (e.g., Suzuki, 1960).

For every set of HZ parameters yi, we can calculate the
corresponding effective parameters (κe,i, αe,i) (Equations 6b
and 6c). The outputs of the process-based model M(yi) verify
M(yi) = M(κe,i,αe,i). Therefore, the likelihood function
in Equation (2) can be rewritten as a function of the
effective parameters:

f2(θ∗|κe,αe) ∝ exp

(

−
1

2σ 2

N
∑

t=1

[M(κe,αe)t − θ
∗
t]
2

)

(7)

2.2.2. Dimension Reduction for Evaluating the

Likelihood Function
When evaluating the likelihood for physical parameters
Y (Equation 2), the computational burden resides in the
computation of numerical model outputs M(y) for a large
number of combinations of physical parameters y. This study
has five parameters of interest, therefore the likelihood function
f2(θ∗|y) needs to be estimated in a five-dimensional space. The
number of simulations needed, and therefore the computational
burden of the problem, can be reduced by noticing that the
physical model is characterized by two degrees of freedom
(Equation 6).

Steps for deriving the likelihood function for
physical parameters Y and taking advantage of the
reduced dimensionality are summarized in Figure 2 and
described hereafter.

1. Define range of variations for physical parameters Y (section
2.2.1, Table 2)—note that the range of variation of these
properties can be decreased with the definition of informative
prior distributions, see section 2.3;

2. Define corresponding range of variations for effective
parameters αe, κe (Equations 6b and 6c) and sample values
on a 2D-grid, here we use latin hypercube sampling to ensure
good coverage of the parameter space for a given number of
simulations (McKay et al., 1979; Blasone, 2007);

3. For each pair (αe, κe), calculate outputs of the process-based
modelM(αe, κe) (see sections 2.2.3 and 2.2.4);

4. For each pair (αe, κe), calculate the likelihood function
f2(θ∗|αe, κe) (Equation 7);

5. In order to evaluate the value of the likelihood for a given
parameter set yi, calculate corresponding effective parameter
values αe,i, κe,i (Equations 6b and 6c);

6. The likelihood for physical parameter set yi is then evaluated
with f2(θ∗|yi) = f2(θ∗|αe,i, κe,i), with f2(θ∗|αe,i, κe,i) from
step 4.
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FIGURE 2 | Calculation of the likelihood function f2(θ∗|y) with the dimensionality reduction. The computational burden resides in the computation of model outputs M

in step 3. Computing model outputs in the effective parameter space reduces the computational burden by going from a parameter space with dimension 5 [O(N5)

simulations] to 2 [O(N2) simulations].

Note that in this approach, the two-dimensional effective
parameter space is used as a way to reduce the number of forward
model simulations needed to evaluate the five-dimensional
likelihood function. Once the likelihood is assessed in the five-
dimensional space with the procedure described above, the
posterior can be calculating by multiplying with the prior pdf
(Equation 1). Prior and posterior pdfs remain always defined as a
function of the five-dimensional physical parameters.

2.2.3. Analytical Solution
Under specific conditions, there exists an analytical solution
to the heat equation. The solution was first introduced by
Stallman (1965) and has been widely applied for estimating
water exchanges between streams and aquifers from vertically-
distributed temperature time series (e.g., Goto et al., 2005; Hatch
et al., 2006; Kalbus et al., 2006; Luce et al., 2013). It models
the propagation of diurnal temperature fluctuations with depth
under the following conditions: the stream temperature is strictly
sinusoidal with amplitude θamp, mean θµ, and period P, the HZ
temperature at infinite depth is constant in time and equal to the
mean of the stream temperature, the hydraulic head difference
1H between the stream and the bottom of the hyporheic
zone column is constant in time. Under these assumptions, the
solution to the heat equation is:

θ(z, t) = θµ + θampe
−az cos

(

2π

P
t − bz

)

(8a)

a =
1

2κe









√

√

√

√

√

v4t + (8πκe/P)2 + v2t

2
− vt









(8b)

TABLE 3 | Numerical values for variables in analytical solution.

Parameter Notation Numerical value Unit

Mean temperature θµ 20 ◦C

Temperature amplitude at z = 0 θamp 1 ◦C

Period of oscillation P 86,400 s

Hydraulic head difference 1H −0.01, 0.01 m

Height of vertical soil column 1z 0.04 m

b =
1

2κe

√

√

√

√

√

v4t + (8πκe/P)2 − v2t

2
(8c)

vt = −αe
1H

1z
(8d)

where (αe, κe) are calculated from physical properties y

(Equations 6b and 6c).
In this study, we leverage this analytical solution as a

synthetic study to investigate the identifiability of HZ properties
under multiple physical configurations. Numerical values used
in this synthetic study are summarized in Table 3. The thermal
amplitude of 1◦C corresponds to the average in situ diurnal
amplitude measured with the LOMOS-mini in the field. For
a given set of properties y and hydraulic head difference 1H

1z ,
outputs of the process-based model M(y) are temperatures at
depths −0.1, −0.2, and −0.3 m below the surface obtained with
the analytical solution (Equation 8).

Synthetic observations θ
∗ are obtained by adding a Gaussian

white noise to the analytical solution with standard deviation
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σ = 0.01◦C, reproducing the error that was characterized in the
lab for temperature sensors used in the field (Cucchi et al., 2018).

2.2.4. Numerical Solution
Temperature and pressure boundary conditions encountered in
the field often didn’t follow the hypotheses behind the analytical
solution described in the previous section. Therefore, for field
case study datasets, we solved the physical model described
in section 2.2.1 using a numerical solution. The numerical
model used is called Ginette (Rivière et al., 2014, 2019) and
is available on the GitHub repository https://github.com/agnes-
riviere/ginette. It solves the flow and heat transport in saturated
sediments using the finite volumes numerical scheme. We use
a grid discretization of 1 cm and an adaptive time stepping
ensuring convergence of numerical simulations. The hydraulic
head difference measured by the LOMOS-mini device is used to
define the hydraulic head boundary condition of the model, the
top and bottom measured temperature time series are used as
top and bottom temperature boundary conditions. The thickness
of the model is set to distance between the top and the bottom
probes as implemented during the field campaigns, here 40 cm.
Since the initial pressure and temperature conditions within the
HZ column are unknown, we set up the initial temperature
and pressure fields as linear interpolations of pressure and
temperature measurements in order to start with realistic initial
values, and introduce a burnout time of 4 days that is not
further considered in the inversion (Cucchi et al., 2018). The
Bayesian inversion is carried out using the remainder of the
LOMOS-mini records. Outputs of the process-based model
M(y) are temperatures calculated with this numerical model
and at depths corresponding to locations of the LOMOS-mini
temperature probes.

In this study, the computation time of the numerical model
for one given set of parameters converged from about 10 s to
more than 15 min, depending on parameter values. For each field
dataset, the numerical model was run 10,000 times. Simulations
were carried out using parallel computing thanks to computing
resources at the National Energy Research Scientific Computing
Center (NERSC).

In this paper, process-based forward model refers either to the
analytical solution, or to the numerical model.

2.3. Definition of the Prior pdf
The prior pdf fY (y) represents the knowledge about the target
parameters Y before accounting for data measured in situ. Two
approaches can be adopted when defining a prior pdf (e.g.,
Gelman et al., 2014). The first approach consists in starting
from a case of ignorance, where minimal information is included
about the parameter (e.g., equal probabilities between physically-
plausible values); in that case the prior is said to be non-
informative. The second approach consists in providing a non-
trivial amount of information about the target variable, either
assumed or collected from other geologically similar sites (e.g.,
Li et al., 2018; Cucchi et al., 2019). The prior then summarizes
previous experience working with variables y; in that case the
prior is said to be informative.

In this study, both approaches are adopted sequentially. The
purpose of section 3 is to show to what extent the presented
measurement strategy allows the estimation of subsurface
properties and exchanged fluxes, the prior pdf is hence defined
as non-informative uniform between physically realistic bounds
(as defined in Table 2). The purpose of section 4 is to
estimate HZ properties in the previously studied Avenelles basin
where previous work has already helped characterize streambed
materials (Mouhri et al., 2013), hence priors there are defined as
informative. Estimates resulting from the use of non-informative
priors are also computed for comparison purposes.

2.4. Estimation of HZ Physical Properties
and Water Fluxes
Applying Bayes’ theorem (Equation 1) with prior distributions as
defined in section 2.3 and the likelihood function as defined in
section 2.2.2 yields the posterior pdf for the physical unknown
HZ properties Y = (n, ρs, cs, λs, k), fY (y|θ

∗). This posterior pdf is
a joint pdf and expresses the probability of any given set of these
5 parameters.

To evaluate the identifiability of a given physical property, say
intrinsic permeability k, we compare its prior distribution fK(k)
to its posterior distribution fK(k|θ

∗) (section 2.1). We therefore
need to calculate its posterior distribution fK(k|θ

∗) without the
reference to the other unknown HZ properties in Y , where Y =

(n, ρs, cs, λs, k). In statistical terms, this is done by calculating the
marginal distribution of k from the joint distribution fY (y|θ

∗).

fK(k|θ
∗) =

∫

n,ρs ,cs ,λs

fY (k, n, ρs, cs, λs|θ
∗) dn dρs dcs dλs. (9)

For each physical property, the 95% credible interval is also
calculated, it is defined such that the posterior probability that the
parameter is in the credible interval is 0.95 (Wasserman, 2004).

Finally, the posterior distribution for the specified discharge q
is estimated applying Darcy’s law (Equation 4) where the intrinsic
permeability k is characterized by its posterior distribution
(Equation 9).

fQ(q|θ
∗) = −

∫

k
fK(k|θ

∗)
kρwg

µw
∇H dk (10)

2.5. Characterizing the Thermal Regime
With the Peclet Number
The adimensional Peclet number (Pe) quantifies the ratio of
advective to conductive heat fluxes and characterizes the thermal
regime of a system (Anderson, 2005). Many formulations of the
Peclet number exist (van der Kamp and Bachu, 1989), it has
been applied to surface-subsurface exchanges and necessitates the
definition of a characteristic length for the physical system under
study (e.g., Munz et al., 2011; Bhaskar et al., 2012). Although the
characteristic length for the Peclet number is often defined as a
function of grain size (e.g., Bhaskar et al., 2012), here we applied
dimensional analysis from the heat transport equation (Equation
6a) and calculated the definition of Pe by taking the ratio of the
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advective to conductive terms in the equation (e.g., Kundu et al.,
2012). This yields:

Pe =
αe

κe
1H (11)

where 1H [m] is the hydraulic head difference between the
stream and the bottom of the hyporheic zone column. For the
range of property values used in this study (Table 2), the Peclet
number varied between 10−4 and 104.

In this study, we use the Peclet number to characterize the
hydrothermal regime of water and heat exchanges in the HZ and
to investigate the associated identifiability of hydrological and
thermal HZ properties.

3. ESTIMATION OF HZ PROPERTIES AND
FLUXES: SYNTHETIC CASE STUDY

We first assess the proposed approach on synthetic cases via
the analytical solution to the water and heat transport in the
streambed (section 2.2.3). As detailed in Table 4, we focus on six
configurations covering a range of HZ water and heat regimes,
combining advective, transition and conductive cases, as well
as infiltrating and exfiltrating conditions. The definition of the
six configurations allows to investigate hydrogeological controls
of parameter identifiability. For each configuration, we calculate
the likelihood function for the effective parameters (Equation
7), and the corresponding posterior distributions of HZ physical
properties (Equation 9). The last subsection generalizes the
study to a wide variety of configurations covering the range
of variability of physical parameters, as defined in Table 2, for
evaluating identifiability of the specific discharge q.

3.1. Likelihood of Effective Parameters
Figure 3 shows the likelihood function as a function of effective
parameters (Equation 7), for each configuration defined in
Table 4. Underlying “true” parameters αe and κe, used to
generate the synthetic observed temperature time series θ

∗, are
represented with a wide dot. The thick solid line represents the
set of parameters corresponding to Pe = 1, that is the separation
between HZ properties corresponding to a conductive regime
(left of the line) and properties corresponding to an advective
regime (right of the line).

TABLE 4 | Hydrological and thermal configurations in synthetic case study.

Regime 1H [m] αe [m s−1] Pe [-]

(a) Infiltration, conduction −0.01 7.81 · 10−6 0.0950

(b) Infiltration, transition −0.01 2.47 · 10−4 3.006

(c) Infiltration, advection −0.01 2.47 · 10−3 30.06

(d) Exfiltration, conduction +0.01 7.81 · 10−6 0.0950

(e) Exfiltration, transition +0.01 2.47 · 10−4 3.006

(f) Exfiltration, advection +0.01 2.47 · 10−3 30.06

For each configuration, we investigate the ability to estimate HZ properties and fluxes from

synthetic LOMOS-mini measurements.

For all configurations, the underlying “true’ parameters are
located in a region of high likelihood—in other words, the
Bayesian inference correctly predicted that the “true” parameters
are likely based on themeasured data. However, the identifiability
of each parameter varies amongst the different combinations,
where in some cases (e.g., Figure 3F) the region of high likelihood
covers a wide range of αe and κe values leading to low
identifiability, whereas in other cases (e.g., Figure 3E) the region
of high likelihood is located in a small range of αe and κe, leading
to high identifiability.

Effective parameters are best identifiable at the transition
between advective and conductive cases under infiltrating
and exfiltrating cases (Figures 3B,E). Indeed, for these
configurations, the likelihood function peaks around the
true parameters values, and is close to zero outside of the
underlying parameter combination.

Under conductive conditions for both infiltrating and
exfiltrating cases (Figures 3A,D), κe is well-identified, as the high
likelihood region is contained within a narrow interval of the
effective conductive parameter κe. However, αe is not identifiable,
as the high likelihood region extends over a wide interval of
αe. However, the high likelihood region for αe is bounded by a
maximum value, as the high likelihood region is contained within
the conductive region corresponding to Pe < 0.5. This result
can be explained physically : under conductive conditions, the
conductive term (a function of κe) dominates over the advective
term (a function of αe) in the heat equation (Equation 6a).
Therefore temperature measurements are sensitive to the value
of κe and insensitive to the value of αe—as long as it is small
enough for the advective term to remain small when compared
to the conductive term. As a result, the likelihood region covers a
narrow range for κe and a wide range for αe.

Under advective conditions, the effective conductive
parameter κe is never identifiable, as the region of high likelihood
covers the entire range of variation of κe (Figures 3C,F). Under
advective and infiltrating conditions (Figure 3C), the effective
advective parameter αe is identified to be in a narrow interval,
whereas under advective exfiltrating conditions (Figure 3F),
the effective advective parameter αe is bounded to a region
corresponding to Pe > 5. This result can again be explained
physically : under advective conditions, the advective term
(a function of αe) dominates over the conductive term (a
function of κe) in the heat equation (Equation 6a), temperature
measurements are sensitive to the value of αe and insensitive
to the value of κe. As a result, the likelihood region covers a
narrow range for αe and a wide range for κe. Additionally, under
infiltrating conditions, the infiltrating water propagates the
diurnal temperature signal with depth, and this propagation is a
function of the advective parameter value αe. In contrast, under
exfiltrating conditions, the diurnal temperature variations do
not propagate with depth, and the observed temperature time
series is constant. Therefore, under highly advective conditions
(Pe > 5), parameter αe is identifiable within a narrow range
under infiltrating conditions, while the uncertainty is higher
under exfiltrating conditions.

In summary, the effective advective parameter αe is
identifiable at least to be within a region for all configurations, as
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for all configurations an upper or lower bound exists. A clear cut
exists between the advective regime (Pe > 5) and the conductive
regime (Pe < 0.5), where regions of likely values do not cross the
middle domain (0.5 < Pe < 5). As αe varies over a much larger
range than κe, the value of αe has a strong influence on the value
of the Peclet number and dominates the physical behavior of
the soil column and the corresponding time series produced by
the model.

3.2. Posterior Intrinsic Permeability
Distribution
Figure 4 shows prior and posterior distributions for intrinsic
permeability for the six investigated flow and heat regimes, as
well as the associated underlying “true” permeability value and
the posterior credible interval. For all regimes, the posterior
distributions are narrower than the priors and the true value for
the intrinsic permeability is located within the credible interval,
which confirms that the algorithm correctly infers the interval
where intrinsic permeability is located based on the observed
temperature time series.

However, the width of the credible interval is variable between
the regimes (Figure 4). In the advective and transition cases,
the intrinsic permeability is identified to be in a narrow region
around the true value. In the conductive case, it is identified
to be bounded by a maximum value. The local peak in the
infiltrating case confirms that if the posterior distribution
remains wide, highest likelihood values are identified to be

located around the true underlying intrinsic permeability value—
and that intrinsic permeability is better identified in infiltration
cases where temperature variations at the surface penetrate
deeper in the streambed (Figure 4A). These findings are in line
with the identifiability of effective parameter αe described in the
previous section, as intrinsic permeability k represents most of
the variability of the effective advective parameter αe (Equation
6c). In the conductive regime, heat transport is dominated by
conduction and thus mostly insensitive to flow which is mostly
controlled by permeability values, while in the advective and
transition regime heat transport is sensitive to the advective term
which is directly proportional to intrinsic permeability.

Posteriors for intrinsic permeability k are more certain (less
wide) than posteriors for physical parameters n, λs, cs, and ρs,
for which the posterior credible intervals cover almost the total
variation range of the variation defined by prior distributions
(not shown here). This is because these 4 parameters vary within
similar orders of magnitude, such that a unique value of κe can
correspond to many combinations of n, λs, cs, and ρs. As a
result, even in cases when κe is known to be within a narrow
interval, each of these parameters can still cover a wide range of
values. These parameters cannot be individually estimated from
vertically-distributed temperature alone.

3.3. Estimation of Specific Discharge
In this section, we investigated the inference of specific discharge
based on vertically-distributed temperature measurements for

FIGURE 3 | Likelihood values as a function of advective effective parameter αe and conductive effective parameter κe (Equation 7), calculated from synthetic observed

time series θ
∗ (section 2.2.3). Panels a-f refer to the hydrological and thermal regimes as defined in Table 4. In each figure, values are normalized from 0 to 1 so that

the same color scale can be applied, the x-axis is on a log-scale. The white dot represents the true parameters used to generate θ
∗. The contour lines signify constant

values of Peclet number (thick black: Pe = 1, dashed gray: Pe < 1, solid gray: Pe > 1, one line per unit on the decimal logarithmic scale).
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FIGURE 4 | Prior (in yellow) and posterior (in black) distributions for log-transformed permeability. Panels a-f refer to the hydrological and thermal regimes as defined in

Table 4. The vertical red bars are values of underlying parameters used to generate synthetic measurements θ
∗. The dashed black lines represent the bounds of the

95% credible intervals. For all regimes, the underlying value for the intrinsic permeability is located within the credible interval, which confirms that the algorithm

correctly infers the interval where intrinsic permeability is located based on the observed temperature time series. Posterior distributions are always narrower than

priors, showing that temperature time series are always helpful for characterizing intrinsic permeability values. The posterior distributions are narrower for transition

and advection cases, for conductive cases intrinsic permeability values are characterized to be lower than the upper bound ∼ 10−12m2, i.e., a hydraulic conductivity

value of ∼ 10−5m · s−1.

HZ properties covering the variation range (Table 2). For the
investigated parameter sets, the “true” specific discharge values
q range between q = −10−4 m s−1 (−8 m d−1, infiltration) and
q = 10−4 m s−1 (8 m d−1, exfiltration). The predicted specific
discharge q from measured temperatures is calculated following
equation 10. Figure 5 shows the 95% credible interval of each
estimated specific discharge as a function of the “true” specific
discharge value, where the 1:1 line represents perfect prediction.

3.3.1. Specific Discharge Estimates for Pe>0.5
Estimates of absolute specific discharge ranging between 2 · 10−6

m s−1 (17 cm d−1) and 10−4 m s−1 (8 m d−1) match true specific
discharge values with good confidence (Figure 5). Indeed, for
those high specific discharge values discharging into or out of the
HZ, the width of the 95% posterior credible interval only ranges
over half an order of magnitude. This configuration corresponds
to either an advective (Pe>5) or a transitional (0.5<Pe<5)
hydrothermal functioning of the HZ.

3.3.2. Conductive Functioning (Pe<0.5)
Estimates of specific discharge for low specific discharge values
(|q| < 10−6m s−1, i.e., (8 cm d−1) are characterized by more
uncertainty. These cases correspond to a conductive functioning

of the HZ, for which the intrinsic permeability posterior pdf
is only known to be bounded by an upper value (Figure 4A).
Therefore, the posterior credible interval for specific discharge is
similar for all conductive cases, with a median value of 4 10−8

m s−1, i.e., 3.5 mm d−1. In these cases, estimates of the specific
discharge are uncertain, ranging over two orders of magnitude.

3.3.3. Infiltration vs. Exfiltration for Pe>50
In a highly advective configuration (Pe>50), uncertainty is
smaller under infitrating configurations than under exfiltrating
configurations. Indeed, under high values of exfiltrating specific
discharge, HZ temperatures are governed by groundwater
temperatures which are stable in time. In that case, diurnal
temperature variations of the stream do not penetrate with
depth in the HZ, and specific discharge values can only be
estimated to be higher than a critical specific discharge value
defining the highly advective case. On the contrary, under high
infiltrating conditions, high specific discharges propagate diurnal
temperature variations down the HZ, and specific discharges are
estimated to be within a narrow posterior credible interval. Our
examples are based on a 1◦C amplitude in the stream, which is the
low bound of temperature time series amplitudesmeasured in the
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FIGURE 5 | Statistics of estimated specific discharge: median and 95% posterior credible intervals, Pe ∈ [0.01, 100]. Axes are on the logarithmic scale. Specific

discharge is identifiable above 2 · 10−6 m s−1 (17 cm d−1), where the width of the 95% posterior credible interval ranges over half an order of magnitude.

field, it is worth noting that the uncertainty could be decreased
with higher stream temperature amplitudes.

In conclusion, the synthetic case study showed that
identifiability depends on the Peclet number. When 0.5<Pe<5,
both advective and conductive parameters are identifiable
with narrow posterior pdfs, while in conductive (Pe<0.5)
or advective (Pe>5) conditions, only associated properties
are identifiable.

4. ESTIMATION OF HZ PROPERTIES AND
FLUXES: FIELD CASE STUDY

This section presents the application of the methodological
framework to time series collected in the Avenelles basin, France.
The Avenelles sedimentary basin is located 70 km East of Paris
and mainly used for agriculture (Loumagne and Tallec, 2013).
In this well-instrumented experimental basin, a monitoring
network has been designed and implemented in order to quantify
stream-aquifer exchanges over multiple spatial and temporal
scales. LOMOS-mini devices are installed in this basin in order
to complement this monitoring network in place (Mouhri et al.,
2013). The streambed is composed of loess and underlaid by
colluvium with blocks of gritstone, a rarely sampled type of
hyporheic zone.

4.1. In situ HZ Monitoring
HZ properties estimation is based on in situ measurements
obtained using the LOMOS-mini monitoring device—its
functioning is briefly summarized here, for more information
we refer the reader to Cucchi et al. (2018). The LOMOS-
mini consists in the coupling of temperature and pressure
measurements (Figure 1). Several temperature sensors are
vertically distributed. One is located in the stream and four
are located at multiple depths below the streambed, where the
deepest temperature sensor is placed between 40 and 60 cm below
the streambed. In the direct vicinity of the temperature sensors,
a piezoresistive pressure sensor is hydraulically connected to two
tubes, one in the river and one in the HZ. It records the hydraulic
head difference between the stream and the HZ at depth. All
temperature and pressure measurements are synchronous and
recorded with a 15 min-periodicity and for a duration of 1–3
weeks. Figure 6 presents two examples of measured data sets in
the Avenelles basin.

4.2. Likelihood of Effective Parameters
The inversion framework was applied to the 2 sets of LOMOS-
mini measurements presented in Figure 6 in order to derive
uncertainty-quantified estimates of HZ properties and fluxes in
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FIGURE 6 | LOMOS-mini measurement data sets used to estimate hydrothermal properties and fluxes. Top row: pressure head difference 1H. Bottom row: HZ 1D

vertically-distributed temperatures. Two configurations are presented: (A) infiltration case study and (B) exfiltration case study.

the streambed. For the field case study, the inversion was carried
out using the numerical model described in section 2.2.4.

Figure 7 presents the corresponding likelihood function
corresponding to measurements as a function of effective
parameters. Root mean squared errors between measured time
series and time series simulated for parameters with the highest
likelihood are 0.065◦C for the infiltrating point and 0.043◦C for
the exfiltrating point, suggesting that the modeling approach was
able to reproduce the observed temperature values.

Figure 7 can be interpreted in the light of results of
the analytical case study, in particular by comparison with
likelihood functions derived for infiltrating or exfiltrating
boundary conditions, and advective or conductive thermal
regimes (Figure 3). Point a corresponds to infiltrating boundary
conditions in a conductive thermal regime (Figure 3A). In that
case, the effective conductive parameter κe is identifiable to
be located in a narrow interval, and the effective advective
parameter αe is identified to be bounded by a maximum value
corresponding to the transition from a conductive to an advective
thermal regime. Point b corresponds to the configuration
where hydrological boundary conditions are exfiltrating and
the thermal regime is at the transition between advective and
conductive conditions (Figure 3E). In that case, both effective
parameters αe and κe are identifiable.

4.3. Identification of Physical Properties
We then investigate posterior distributions of two physical
subsurface properties: the intrinsic permeability k and the
thermal conductivity λs. Here, two scenarios for defining prior

distributions were tested. The first scenario is in line with the
synthetic study in section 3, where priors were defined as uniform
bounded between physically reasonable values, as defined in
Table 2. The second scenario corresponds to a case where the
prior stay non-informative for parameters corresponding to
permeability k and thermal conductivity λs, but we assume
that porosity n, sediment density ρs and sediment heat capacity
cs to be informative, where associated prior distributions are
defined as uniform distributions within narrower intervals:
n ∈ [0.2, 0.3], ρs ∈ [2000, 2300] kg m−3, and cs ∈

[1000, 1500] m2 s−2 C−1. Figure 8 shows associated posterior
distributions, where posteriors associated with the first scenario
are represented in black and ones with the second scenario
in gray.

4.3.1. Posterior of Intrinsic Permeability
For point a, the maximum a posteriori estimate for intrinsic
permeability is k = 5.2 · 10−14 m2, and the 95% posterior
credible interval is [1.1 · 10−14, 8.6 · 10−13] m2. The intrinsic
permeability is identified to be bounded by a maximum value,
in line with the observation that the effective advective parameter
αe is bounded by an upper value. For point b, the maximum a
posteriori estimate for intrinsic permeability is k = 1.4 · 10−12

m2, and the 95% posterior credible interval is [1.29 · 10−14, 3.1 ·
10−12] m2. Again, the intrinsic permeability is identified to be
bounded by amaximum value. These local posterior distributions
constitute the final result for the estimation of hydrological and
thermal properties from LOMOS-mini measurement sets.
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FIGURE 7 | Normalized likelihood functions as a function of advective effective parameter αe and conductive effective parameter κe, (A,B) refer to the two

LOMOS-mini measurement datasets presented in Figure 6, corresponding to an infiltration and an exfiltration case study respectively. In each panel, values are

normalized so that the same color scale can be applied, the x-axis is plotted on a log-scale. For grayed-out combinations of αe and κe, numerical simulations have not

converged within the allocated time (15 min) and no likelihood value can be computed. By comparing with the analytical study results (Figure 3), point (A) seems to

undergo a conductive regime where high likelihoods are restricted within a narrow interval of κe and high likelihood are bounded by a maximum value for αe, while

point (B) seems to undergo a transition regime where both κe and αe can be well-characterized from LOMOS-mini measurements.

FIGURE 8 | Posterior pdfs for intrinsic permeability k and heat conductivity λs at both investigated locations, marginalized from the multivariate posterior distributions.

Panels (A,B) refer to the two LOMOS-mini measurement datasets presented in Figure 6, corresponding to an infiltration and an exfiltration case study respectively.

The black lines represent the posterior derived from non-informative priors and the gray lines represent the posterior derived from informative priors. The solid vertical

lines represent the maximum a posteriori estimate and the dashed vertical lines represent the 95% posterior credible interval.

4.3.2. Posterior of Thermal Conductivity
For point a, the maximum a posteriori estimate for thermal
conductivity λs is λs = 3.2 W m−1 K−1, and the 95% posterior
credible interval is [1.5, 4.8] W m−1 K−1. For point b, the
maximum a posteriori estimate for thermal conductivity λs is
λs = 5 W m−1 K−1, and the 95% posterior credible interval
is [2.9, 5] W m−1 K−1. It is interesting to note that posterior

pdfs for λs are wide even if the likelihood functions for the
conductive effective parameter κe are located within a narrow
range of variation (Figure 7). This is because κe is a function of
λs, n, ρs and cs, and the ranges of variation of properties n, ρs
and cs are comparable to the range of variation of λs (Equation
6b). Therefore, uncertainty in parameters n, ρs and cs lead to
uncertainty in λs estimates even if κe is well-identified.
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FIGURE 9 | Posterior distributions of specific discharge q. Panels (A,B) refer to the two LOMOS-mini measurement datasets presented in Figure 6, corresponding to

an infiltration and an exfiltration case study respectively. The solid lines represent the medians of the posterior distributions, the shaded intervals correspond to the 50

and 95% posterior intervals. The y-axis is on a logarithmic scale.

4.3.3. Informative Prior Distributions
Using informative prior distributions for n, ρs and cs results
in narrower posterior distributions in λs, while estimates of
permeability k are almost unchanged with the use of informative
prior distributions (Figure 8). This is because the variation range
of parameters other than k is small when compared to the
variation range of k. It appears that LOMOS-mini measurements
alone allow for the identification of intrinsic permeability without
the need for informative priors for n, ρs, and cs.

4.4. Estimation of Specific Discharge
The posterior predictive distribution for the time series of specific
discharge can be calculated by applying Darcy’s law (Equation 4)
using the posterior pdf of intrinsic permeability fK(log10(k)|θ

∗)
(Figure 8). 100 values of intrinsic permeability k were sampled
from the posterior pdf, and for each permeability sample, a
time series of specific discharge was simulated using the forward
numerical model, yielding an ensemble of exchanged time series
realizations. From this ensemble, values corresponding to the
2.5th, 25th, 50th, 75th, and 97.5th percentiles were extracted.

At point a, the median value of the specific discharge is
estimated to be around 5 · 10−8 m s−1 (0.4 cm d−1), ranging
between 1 · 10−8 and 5 · 10−7 m s−1 with 95% uncertainty
(Figure 9A). At point b, themedian value of the specific discharge
is estimated to be around 2 · 10−7 m s−1 (1.7 cm d−1), ranging
between 5 · 10−9 and 1 · 10−6 m s−1 with 95% uncertainty
(Figure 9B).

5. DISCUSSION

This paper introduced a solution combining field
instrumentation, process-based numerical modeling, and
Bayesian inference to estimate hydrothermal properties and
high-frequency water and heat fluxes in the HZ. This solution

relies on measurements from the LOMOS-mini, a sensor that is
cost-effective (< 500 euros), easy to manipulate, and quick and
robust to deploy on the field (Cucchi et al., 2018). This solution
complements the set of available solutions for estimating surface-
subsurface exchanges (see Kalbus et al., 2006 and Ren et al., 2018
for comprehensive reviews).

Uncertainty is common to subsurface data due to data scarcity
and subsurface variability, and quantifying and accounting
for uncertainty is recognized as fundamental for decision
making in hydrogeology (e.g., Gelhar, 1993; Rubin, 2003;
Kitanidis, 2015). As opposed to deterministic approaches
typically adopted in previous HZ studies, the stochastic point
of view adopted in this study invoked probability concepts to
deal with problems of physics, where unknown properties are
modeled as random variables characterized by their probability
distributions. Amongst methods adopting the stochastic point of
view, the Bayesian inference presented in section 2—in which
probabilities are updated as more information or measurements
become available—has been used in a wide range of settings
in hydrological and hydrogeological studies (e.g., Woodbury,
2007; Freni and Mannina, 2010; Rubin et al., 2010; Harrison
et al., 2012; Viglione et al., 2013; Zhang et al., 2014; Linde
et al., 2017). Bayesian inference is flexible in the amount of
information to account for prior to starting the assimilation of
in situ measurements (Rojas et al., 2009; Kitanidis, 2012; Cucchi
et al., 2019; Heße et al., 2021). To the author’s knowledge, this
study is the first to adopt a stochastic or Bayesian approach for
estimating properties and fluxes from measurements in the HZ
and it demonstrated how estimates become more reliable as the
amount of prior information increases.

Here, the Bayesian framework allowed to investigate how
LOMOS-mini measurements could support the estimation
of unknown HZ properties (i.e., hydraulic conductivity,
porosity, thermal conductivity, thermal capacity, density).
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We have proposed a new formulation for the Peclet number
in the framework of surface-subsurface water exchange
quantification using LOMOS-mini measurements (Equation
11) and demonstrated the strong relationship between this
Peclet and estimates of HZ properties, where regions of likely
values do not cross the domain around Pe = 1. We showed
that LOMOS-mini measurements allowed to estimate hydraulic
conductivity within less than one order of magnitude for
hydraulic conductivities greater than ∼ 10−5m · s−1 even
when all other properties are unknown, and that this uncertainty
decreases when other properties are better characterized prior
to starting the measurement assimilation procedure. Previous
studies demonstrated how uncertain HZ properties result in
incorrect discharge calculations (e.g., Shanafield et al., 2011), with
the Bayesian framework presented in this study, uncertainties
in HZ properties are accounted for on flux estimates in a
way that is transparent and coherent. Another application of
such framework is goal-oriented campaign design, where field
campaigns are optimized so that they maximize the expected
data worth (e.g., Nowak et al., 2012; Harken et al., 2019). For
example, if the goal of a given campaign is to estimate hydraulic
conductivity, one should favor field measurements collected in
high-flow conditions (e.g., winter) over low-flow conditions.

Previous studies have relied on vertically-distributed
temperature measurements such as ones collected by the
LOMOS-mini to estimate HZ properties. A sentinel study from
Lapham (1989) demonstrated the feasibility of determining
hydraulic conductivities from streambed temperature time
series, they assumed known values for unknown parameters
density and thermal diffusivity and used a numerical model to
represent water and heat transport. More recently, Hatch et al.
(2010) used a combination of automated vertically-distributed
temperature measurements and manual hydraulic gradient
measurements to estimate hydraulic conductivity. They assumed
known values for porosity, fluid and sediment density and heat
capacity, and thermal dispersivity in the streambed, as well as
steady state conditions for each calculation of a daily mean
water flux value. While their approach allows for easiness of data
handling, the obtained fluxes and HZ properties values do not
account for uncertainty in HZ properties estimates, and do not
apply for estimating dynamic (sub-daily) seepage rates. Other
studies have used vertically-distributed temperature time series
to estimate hydraulic conductivity and seepage (e.g., Niswonger
and Prudic, 2003; Stoneman and Constantz, 2003; Burow et al.,
2005) or HZ properties relating to thermal transport (e.g., Luce
et al., 2013; Vandersteen et al., 2015), but our method is the first
to jointly estimate all unknown HZ properties (i.e., hydraulic
conductivity, porosity, thermal conductivity, thermal capacity,
density) as well as vertical discharge values. A fundamental
assumption of such approaches, including the one developed
in this paper, is that flow and heat transport locally occur along
a one-dimensional vertical direction. Although relevant in
most cases given the spatial distortion between the longitudinal
dimension (decameter) and the vertical one (centimeter) (Flipo
et al., 2014), the local one-dimensional assumption can lead to
errors in specific discharge estimates in cases of low specific
discharge and highly heterogeneous streambeds (e.g., Salehin

et al., 2004; Ferguson and Bense, 2007; Irvine et al., 2012, 2015a;
Cuthbert and MacKay, 2013).

Recently, Thomle et al. (2020) introduced a new probe for
quantifying dynamic exchange at the interface between surface
water and groundwater via the monitoring of temperature,
pressure, as well as electrical conductivity along a vertical profile.
This probe is very similar in design to the LOMOS-mini sensor
used in this study, the main difference being the presence of
electrical conductivity measurements. They showed that adding
pressure head difference measurements to temperature profiles
lead to accurate estimates of porosity and permeability. Although
having developed one of the most advanced electrogeophysical
probe for HZ applications, the testing of this probe was
performed in a controlled soil column and this probe has not
been deployed in in situ conditions yet. The price of the probe in
Thomle et al. (2020) was not mentioned, however the LOMOS-
mini would be a more cost-effective choice (since it doesn’t
require electrical conductivity measurements) in cases when
vertical pore water velocity estimates are not needed. Finally,
the Bayesian measurement assimilation framework introduced
in this study could also be applied to measurements collected
with the probe designed in Thomle et al. (2020), leading to
uncertainty-quantified estimates of in situ water and energy
fluxes under transient conditions with a temporal resolution
of a few minutes, as well as associated uncertainty-quantified
HZ properties.

While it is well-established today that high-frequency datasets
are required to fully capture the biogeochemical functioning
of river and streams systems, the hyporheic datasets remain
coarse as regards to time sampling (Aubert et al., 2015; Vilmin
et al., 2016; Floury et al., 2017; Escoffier et al., 2018; Wang
et al., 2019). Rapid hydrological events such as storms can be
key drivers of increased exchange between stream water and
groundwater in the HZ, thereby fueling HZ nitrate reduction
processes and modifying the large-scale biogeochemical function
of the HZ (e.g., Dudley-Southern and Binley, 2015). Providing
high frequency flow is key to better understand the role played
by the stream-aquifer interface in the functioning of the critical
zone, particularly for small stream orders where stream ecology
is mostly controlled by benthic processes (Flipo et al., 2004,
2007; Gaillardet et al., 2018; Jäger and Borchardt, 2018; Segatto
et al., 2020). How and how much HZ processes contribute to
river ecology in average or at very short time scale is still an
open research question. For instance, Newcomer et al. (2018)
demonstrated that flow direction control carbon emission to
rivers by bacterial respiration in the HZ, thereby suggesting
that high-frequency measurements are required to assess carbon
emissions by rivers toward the atmosphere. The LOMOS-
mini system and the assimilation technique proposed in this
paper overcome the temporal sampling limitation and provide
a unique tool for further investigating the hydrological and
biogeochemical role played by the HZ at the catchment scale.

The monitoring and data assimilation methodology
introduced in this study can further contribute to innovative
research focused on measurement of HZ fluxes. Indeed, drivers
of HZ exchanges are complex, they include topographically-
varying bedforms such as ripples or pool-riffle sequences, river

Frontiers in Water | www.frontiersin.org 15 September 2021 | Volume 3 | Article 700274

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Cucchi et al. Estimating Hyporheic Zone Properties and Fluxes

sinusoity, changes in hydraulic conductivity of sediments,
high-frequency pressure variations resulting from rainfall events
and low-frequency pressure variations resulting from flows in
regional aquifer systems (Elliott and Brooks, 1997; Malard et al.,
2002; Cardenas et al., 2004; Fleckenstein et al., 2006; Cardenas
and Wilson, 2007; Flipo et al., 2014). The quantification of fluxes
between streams and aquifers remains challenging and their
impact on environmental and water management remains often
underestimated due to a lack of experience for measurement and
analysis approaches (Lewandowski et al., 2020). One relatively
recent and promising direction is the development of Fiber-
Optic Distributed Temperature Sampling (FO-DTS). FO-DTS
can identify areas of groundwater discharge continuously
along the streambed—often with mixing models that only
consider the advective component of heat transfers (Selker et al.,
2006a; Briggs et al., 2012). Simon et al. (2021) demonstrated
with laboratory experiments the accuracy of discharge flux
estimates offered by the combination of a heat source with a
FO-DTS over a range spanning 1 10−6 to 5 10−2 m s−1. The
methodology introduced in this study can not only serve as an
in situ validation system for these innovative measurements,
but also complement experimental set-ups for high-frequency
discharge flux estimation, in particular at hot spot locations
(Zhao et al., 2021). FO-DTS systems have recently been coupled
with vertically distributed temperature sensors for quantifying
water exchanges along the FO (Shanafield et al., 2018; Le Lay
et al., 2019). Since our methodology allows to lift the classical
assumption of a daily hydraulic steady state, coupling FO-DTS
with LOMOS-mini monitoring systems would open the door
to the interpretation of FO-DTS datasets collected outside of
low-flow steady-state events. This would provide unique datasets
for characterizing not only HZ properties, but also HZ water
and energy fluxes both continuously along the stream and
during transient high-flow events, such as floods or flow reversal
following a rainfall event.

6. CONCLUSION

This study introduced a new solution for estimating HZ
properties and surface-subsurface water exchanges, leveraging
in situ LOMOS-mini measurements, numerical modeling and
Bayesian inference. There are three main innovations in
the proposed method. First, Bayesian inference provided a
framework for investigating the identifiability of HZ properties
from collected measurements, and to derive uncertainty-
quantified HZ properties and surface-subsurface water exchange
estimates. To the authors’ knowledge, this is the first study
using Bayesian inference for investigating the HZ. Second,
the definition of effective parameters decreased the number of
numerical simulations needed and provided a simplified view
of the problem, allowing to investigate the identifiability of HZ
properties as a function of two parameters summarizing the
advective and convective heat fluxes. Third, it introduced a new

formulation of the Peclet number describing the hydrological and
thermal regime in the HZ and controlling the identifiability of

HZ properties; this Peclet number can be calculated from in situ
LOMOS-mini measurements.

It demonstrated that the LOMOS-mini is a low-cost and
complete stand-alone solution for estimating local stream-
aquifer exchanges under dynamic exchange conditions, as well
as for quantifying HZ properties with associated uncertainties.
The proposed approach complements the set of available
solutions for monitoring the HZ, and can contribute to
further innovative research into HZ dynamic hydrological and
thermal functioning and its role for regulating water availability
and quality.
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