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Lakes are an essential component of biogeochemical processes, and variations in lake

level are regarded as indicators of climate change. For more than a decade, satellite

altimetry has successfully monitored variation in water levels over inland seas, lakes,

rivers, and wetlands. Through altimetry, the surface water levels are measured at varying

temporal scales depending on the orbit cycle of the satellite. The futuristic mission of

Surface Water and Ocean Topography (SWOT) scheduled to be launched in year 2022

shall offer the spatial coverage and resolution suitable for water level estimation and

volume calculation in small water bodies like lakes worldwide. With a radar interferometer

in Ka-band, SWOT proposes to provide two-dimensional maps of water heights 21 days

repeat orbit configuration. Cycle average SWOT datasets for land will be developed with

higher temporal resolution, with temporal resolution varying geographically. This work

assesses the potential of SWOT for monitoring water volumes over a case study lake

by analyzing SWOT like synthetic data produced using the SWOT simulator developed

by the Centre National d’Etudes Spatiales (CNES). With SWOT relying on a novel

technology, the initial 90 days of this mission after launch shall focus on an extensive

calibration and validation. Firsthand results of SWOT-simulated water levels and volumes

are presented over a case study region in the tropical band, namely, Pookode Lake, in the

ecologically fragile district of Wayanad, Kerala, India. It is the second-largest freshwater

lake in Kerala that is being affected by anthropogenic activities, causing huge depletion

in lake water storage in the last four decades. Our analysis indicated that the lake region

is subjected to a rise in temperature of 0.018◦C per year. We further assess the potential

of remote sensing and SWOT data to monitor water storage of Pookode Lake, which is

undergoing a rapid change. Results show that the proxy water surface elevations have

immense potential in scientific studies pertaining to lake monitoring across the world.

Overall, the study shows the potential of SWOT for monitoring the variability of water

levels and volumes in this region.

Keywords: SWOT, interferometry, climate change, lakes, water levels

INTRODUCTION

Surface water bodies are important sources of water for civilization, and they have a direct impact
on ecosystems (Dudgeon et al., 2006; Palmer et al., 2015). Changes in terrestrial water storage have
a substantial impact on the hydrological cycle. Among these, lake system embodies a complex
interaction between atmosphere, surface, and underground water, which responds strongly to
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climatic conditions. Changes in stored volume of surface water
have geodynamical implications for Earth’s rotation and have
been shown to be proxy indicators of local and regional climate
(Raymond et al., 2013; Seekell et al., 2014). Lake monitoring
is one of the main objectives of the World Meteorological
Organization (WMO) and the Global Climate Observing System
(GCOS) because lakes are primary indicators of climate change
(Adrian et al., 2009; Schindler, 2009). Climate change-related
changes in precipitation and air temperature have an immediate
impact on lake water storage (Wit and Stankiewicz, 2006). This
makes monitoring temporal shifts in lake water volumes critical
(Rahman and Di, 2017; Bonsal et al., 2019). While hydrometric
stations provide the most reliable information on water levels,
there exists a dearth of dense gauging stations for global lake
monitoring (Pavelsky et al., 2014). This is particularly a concern
for developing countries like India, where the primary focus
is on monitoring of major rivers and large reservoirs using
hydrometric stations (Gleason and Hamdan, 2017). For more
than one decade, satellite altimetry missions (Topex-Poseidon,
ERS-1, ERS-2, Jason-1, Envisat) have successfully monitored
water levels from space (da Silva et al., 2014) using a plethora
of sensors operating in visible region (Jiang et al., 2014; Nair
and Indu, 2020), microwave region like Synthetic Aperture Radar
(SAR) (Zeng et al., 2017; Nair and Indu, 2020), and a combination
of both sensors (Crétaux and Birkett, 2006; da Silva et al., 2014;
Bioresita et al., 2019; Grippa et al., 2019).

Existing studies by da Silva et al. (2014) demonstrated the
ability of Envisat altimeter data to assess water storage in
Amazon basins; in another study by Duan and Bastiaanssen
(2013), variation in lake volume was evaluated using various
altimetry databases and laser altimeters for different lakes in the
United States, Ethiopia, and the Netherlands. Similarly, Crétaux
et al. (2016) used altimetry measurements to observe the effect of
climate change on variation in lake water storage over the Tibetan
plateau. Despite the high potential of altimetry measurements,
a main drawback is the narrow swath of altimeters leading to
low spatial sampling and data acquisition problems for small
and medium lakes (Grippa et al., 2019). This shortcoming can
be overcome by using Interferometric SAR (InSAR), which uses
SAR data to determine relative water level changes in lakes. Siles
et al. (2020) used this method to measure water level changes
in lakes and wetlands across Canada. Despite these measures,
maintaining a continuous lake monitoring inventory is daunting
due to the difficulty in obtaining optical imagery, radar, and
altimetry measurements for a particular lake body within a
specific temporal window.

The future Surface Water and Ocean Topography (SWOT)
mission, which is set to launch in 2022, will be the first of its
kind to have a bistatic SAR interferometric wide swath altimeter.
SWOT mission is a collaborative effort between NASA and the
Centre National d’Études Spatiales (CNES), along with support
from the Canadian Space Agency (CSA) and theUnited Kingdom
Space Agency (Biancamaria et al., 2016). The SWOT satellite
will have an onboard Ka-band SAR, which has a great potential
for detecting water surface elevation and slope for rivers and
lakes (Biancamaria et al., 2016). It will benefit from both radar
altimeters for water level detection and SAR imagery for high

spatial resolution. The SWOT will capture water surfaces of
rivers (width more than 100m) and lakes (surface area more
than 0.0625m2), with a revisit period of 21 days, globally between
78◦S and 78◦N (Pavelsky et al., 2014).

Previous studies on SWOT characteristics have concentrated
on river hydrology, such as the ability to estimate streamflow
(Frasson et al., 2017), streamflow assimilation (Oubanas et al.,
2018), and bathymetry (Yoon et al., 2012). Very few studies have
examined the contribution of SWOT in lake hydrology: Grippa
et al. (2019) demonstrated SWOT capabilities to monitor lakes
in Sahel in Africa, and Bergeron et al. (2020) indicated SWOT
capabilities for measuring lakes in Canada. Many of these studies
are mostly focused on the United States and South America.
Temporally, SWOT mission shall sample each location at least
twice everymonth with the exact timing dependingmostly on the
latitude. With SWOT relying on a novel technology, this mission
shall require an in-depth calibration and validation (CalVal). In
the year 2022, SWOT mission is known to fly a specific orbit
dedicated to the CalVal activities, which is expected to last for
90 days upon launch. CalVal orbit is designed in such a manner
that the satellite will follow the same track every day. Keeping
these factors in mind, our research looks at Pookode Lake in
Kerala’s Wayanad area to evaluate the efficacy of synthetic SWOT
data. This is due to the fact that SWOT will capture Pookode
Lake in CalVal orbit, giving daily data for the lake during the
CalVal phase.

With the high potential in SWOT for hydrological studies
of reservoirs and rivers, it is crucial to check the efficiency
of the SWOT dataset before its launch. Previous studies have
tried to simulate SWOT-like data using different ways such as
by corrupting errors into merged observations from satellite
altimetry, satellite images, and gauges (Lee et al., 2010); a different
approach is to use simulators to generate data using orbit pass
plan and expected errors (Rodriguez and Moller, 2004; Solander
et al., 2016). SWOT hydrology simulator is available from
both the collaborators of the mission, i.e., from Jet Propulsion
Laboratory (JPL) and CNES.

In the present study, we utilize the CNES Large-Scale SWOT
Hydrology Simulator to simulate data over Pookode Lake.
Furthermore, the difference in water storage is first computed
using interferometric SAR for Pookode Lake. In the second step,
synthetic SWOT data are generated for this lake and evaluated
for its ability to compute lake volume. This is the first research
to demonstrate the capabilities of remote sensing to detect lake
volume fluctuations and the potential of future SWOT mission
for lake hydrology in India.

STUDY REGION

This research work has been carried out on the second largest
lake in Kerala, a state in southern India (Figure 1). Pookode
Lake is a fresh water body encompassing an area of 0.085 sq.
km. It is situated at an altitude of 770m above mean sea level,
and the main source of water is precipitation from the southwest
monsoon (during June, July, August, and September) and the
northeast monsoon (during October, November, and December).
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The lake region receives a mean annual rainfall of 4,000mm
(Sandeep et al., 2012) and is subjected to amaximum temperature
of 35◦C in summer to 7◦C in winter. Along with the major source
of water from precipitation, the lake is also fed by two streams of
the Kabini river. Because of its primary source of precipitation,
it is critical to track fluctuations in lake volume, as Kerala has
experienced two extreme floods in a row in 2018 and 2019.

SWOT HYDROLOGY SIMULATOR

The aim of the SWOT satellite is to provide hydrologists
with unprecedented observations of terrestrial water bodies in
order to track changes in water volume. These data are crucial
for determining surface water availability and preparing for
major water-related disasters like floods and droughts. Readers
are recommended to the SWOT mission page for further
information on the SWOT satellite’s goal pertaining to hydrology
(https://swot.jpl.nasa.gov/science/hydrology/). Except for a few
places in Greenland’s interiors and portions of the Sahara Desert,
SWOT will catch inland water bodies worldwide. Users will
have access to three types of SWOT datasets: pixel cloud, raster,
and vector. The pixel cloud will contain geolocated heights,
backscatter, geophysical fields, and flags over tile of 64× 64 km2.
Raster products will provide water surface height, area, water
fraction, backscatter, and geophysical information at 100 and
250-m resolution. The vector shapefiles will include information
such as water surface elevation, slope, width, and calculated
discharge. The further section provides details on how proxy
SWOT point cloud data is generated for Pookode Lake.

In this study, CNES SWOT large-scale hydrology simulator
(CNES, 2020) is used to generate synthetic SWOT data. The
Water Surface Elevation (WSE) is corrupted with SWOT
measurement errors and spatial sampling based on SWOT
orbital configuration to produce synthetic SWOT results. White
noise, dark water effect, satellite positioning error, geolocation
error, and errors attributable to atmospheric attenuation are all
factors that are taken into account by the SWOT simulator.
The measurement noise of the SWOT interferometric phase
difference is a prime example of random errors. The system
SNR (Signal-to-Noise Ratio), the duration of the interferometric
baseline, and the processing algorithm all play a role in the
random error contribution. The dark water effect uncertainty
refers to the inaccuracy that occurs when a water pixel is
incorrectly categorized as land because of dark radar returns.
Satellite positing errors are caused by a lack of knowledge
about the spacecraft’s roll angle, changes in the baseline due
to thermal contraction or expansion, system timing mistakes,
and phase errors produced by the antennas or electronics.
Geolocation errors occur in satellite images when pixels are
incorrectly georeferenced. Layover effects incurred to near-nadir
instruments are ignored in SWOT simulator used for present
study. However, due to the strong contrast between water and
land observed in Ka-band, the SWOT mission is anticipated to
have a low contribution of error from layover (Elmer et al., 2020).
Despite its limitations in representing the complete SWOT error
budget, the large-scale SWOT simulator is a reliable platform

for generating synthetic SWOT data for this study. To generate
synthetic SWOT observations, the SWOT simulator uses a
lake water extent shapefile with true WSE (details provided in
Extraction of Water Level Using Interferometric SAR section) as
one of the attributes (CNES, 2020).

To generate SWOT data for time corresponding to before
(2015) and after (2020) flood events in Kerala, lake water extent
shapefiles are created using Sentinel-1 dataset in Google Earth
Engine (GEE). To generate water extent shapefiles, Sentinel-
1 SAR imagery for Pookode Lake is selected for the study
period. The SAR datasets are processed for noise filtering using
speckle filtering algorithm. After noise correction, the images
are classified for water using a binary thresholding technique,
thereby generating a water mask raster. In this process, pixels
with VV polarization backscatter less than −16 decibels are
considered as containing water, and the corresponding pixel
values are set to one, and the remaining pixels are set to zero
(Bonnema and Hossain, 2019). This classified raster files are
used to generate water extent shapefile. The shapefile created by
GEE is pre-processed with Quantum Geographic Information
System (QGIS, 2020) to add reference WSE as an attribute.
Further section summarizes some of the most important steps in
configuring and running the SWOT simulator in this study.

(a) In addition to WSE, the input shapefile is added with
attributes such as river flag (RIV_FLAG) that is set to 0 for
lakes and 1 for rivers. Two water extent shapefiles (pre-flood,
2015 and post-flood, 2020) are prepared and preprocessed for
compatibility with SWOT simulator.

(b) Following the generation of input water extent files, a
SWOT satellite pass plan is generated based on its orbit
configuration. Synthetic SWOT data are produced using the
SWOT simulator based on this SWOT plan. The SWOT
simulator creates WSE in the form of a point cloud, taking
into account all pixel size inconsistencies and errors in the
SWOT swath. The point cloud offers high-quality observations
for study.

EXTRACTION OF WATER LEVEL USING
INTERFEROMETRIC SAR

In this study, we used SAR from Sentinel-1 data to compute
difference in lake volume. The interferometric large swath mode
collects data over a 250-km swath with a spatial resolution
of 5m by 20m. To estimate variation in water level using
SAR imagery, it is required to obtain short temporal baselines
and broad perpendicular baselines. Sentinel-1 was introduced
primarily to detect deformations (DInSAR), not to extract
water levels.

For this study, two sets of imageries that met the criteria over
the study region were separated into master and slave images
and co-registered to extract information of phase differences.
The details of SAR dataset are provided in Table 1. The first
series of SAR images shows the water level in the lake in 2015
before two flood occurrences (2019, 2018), while the second set
shows the water level after the flood in 2020. The main steps
adopted for generating water level change using interferometry
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FIGURE 1 | Location of Pookode Lake with backscatter image of lake observed by Sentinel-1. Along with orbit tracks of altimetry missions and SWOT footprint

over lake.

TABLE 1 | Summary of SAR image characteristics.

Master image

acquisition

Slave image

acquisition

Perpendicular

baseline

distance

July 20, 2015 July 8, 2015 151 m

October 21, 2020 October 9, 2020 90 m

is described. The key steps of process are shown in the flowchart
in Figure 2.

Initial interferogram was developed with phase difference
between two images using Equation 1.

∅ = ∅DEM +∅flat +∅disp +∅atm +∅noise . . . (1)

Where ∅DEM refers to topographic effects, ∅disp denotes
displacement, ∅flat indicates earth curvature error, ∅atm refers
to atmospheric effects, and ∅noise denotes noise effects (Ferretti
et al., 2001).

After this, de-burst algorithm (Esposito et al., 2020) was
applied to interferogram to process the individual bursts from
one sub swath together into a single sub-swath (Moran,
2006). Later, Goldstein filtering was applied to the image to

FIGURE 2 | Flowchart of methodology adopted to extract water level using

interferometry.

remove noise and speckles and to enhance the signal-to-noise
ratio of the image. In the interferogram, the interferometric
phase is ambiguous and only known within the scale of
2π. To be able to relate the interferometric phase to the
topographic height, the phase must first be unwrapped using
Equation 2.
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FIGURE 3 | Variation in temperature anomaly over a lake for a period of two decades from 2000 to 2020. The trend line indicates an increase in temperature of

0.018◦C per year.

FIGURE 4 | Variation in daily precipitation from GPM IMERG over Pookode Lake over a period of 20 years from 2000 to 2020 along with variation in annual

precipitation.

1Z =
−φλ

4πcosθ
+ n. . . (2)

Where λ is the wavelength of the SAR signal, φ is the
unwrapped interferometric phase (surface displacement), θ is the
incidence angle, n is the noise, and 1Z is displacement.

After phase unwrapping, the data are processed for terrain
correction. It is to be noted that terrain correction shall geocode
the image by correcting SAR geometric distortions using the
SRTM digital elevation model (DEM). Geocoding converts an
image from slant range or ground range geometry into a map
coordinate system. Terrain geocoding is used for correction of
inherent geometric distortions, such as foreshortening, layover,
and shadow. In this study, the shape of lake was assumed

as pyramidal frustrum to calculate change in volume from
year 2015 to 2020. For master images, surface area extent was
computed from masked water bodies of sentinel photos. Using
this information, the change in volume (1v) for Pookode Lake
after flood events was computed using Equation 3.

1v =
(h1 − h2)

(

A1 + A2 +
√
A1A2

)

3
. . . (3)

Where h1 is the high water level in the lake (during the study
period, i.e., 2020), h2 is the low water level (2015), A1 is lake
surface area during 2020, and A2 is lake surface area during 2015.
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FIGURE 5 | Variation in water extent in Pookode Lake for (A) February 2016 and (B) February 2021.

FIGURE 6 | Variation in water level in Pookode Lake extracted using interferometric SAR before and after flood in (A) 2015 and (B) 2020.

RESULTS

Storage of lake water is highly susceptible to temperature
changes. As a first step, we use NOAA temperature
measurements (https://www.climate.gov/maps-data/datasets)
to assess the temperature anomaly (with respect to 1981 to
2010 average) over Pookode Lake. The lake temperatures
were evaluated for two decades, from 2000 to 2020. The

annual temperature anomaly is depicted in Figure 3. In this
study, the increasing surface temperature is clearly evident.
Over the lake, temperatures are found to be rising at a rate
of 0.018◦C per year. To compute this, we applied Mann-
Kendall test on temperature data and results indicated a
significant trend at 95% confidence interval with a p-value of
0.0217. The trend in temperature time series was computed
based on Sen’s slope indicator. If the temperature rises,
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FIGURE 7 | Variation in water level in Pookode Lake as observed by synthetic SWOT data before and after flood in (A) 2015 and (B) 2020.

evapotranspiration increases, resulting in low runoff into
the lakes.

Precipitation is a significant element that underpins the
maintenance of lake’s water balance. Precipitation has varied
considerably in the study area. To evaluate this, we examined
precipitation data from the Global Precipitation Mission (GPM)
IMERG pixel over the study region. Figure 4 represents the
variation in daily precipitation over a 20-year period, from 2000
to 2020. In 2018 and 2019, the study area experienced significant
floods. In 2019, the region received a rainfall of more than
170mm in a single day. Figure 4 also represents the annual
precipitation variation across the study area. During 2018 and
2019, the area received a high amount of rain.

We compared high-resolution optical images of the lake from
Google Earth to visually examine lake water storage after two
floods. Figure 5 depicts changes in the lake that happened prior
to the flood (February, 2016) (Figure 5A) and after the flood
(February, 2021) (Figure 5B). This figure shows the rise in
lake water storage after successive flood events. This is because
precipitation is the lake’s primary source of fresh water. To
measure this rise in lake water, we used an interferometric
method (explained in section 4) to calculate water level increases.
We chose interferometry for this challenge because there was no
overpass of altimetry missions around the lake.

Figure 6 depicts the interferometry-derived water level
estimates. Figure 6A illustrates the water level in 2015 before

the flood, while Figure 6B illustrates the water level after the
flood. The increase in lake water storage is distinctly evident,
as the mean water elevation in Figure 6A is 687.9m, while the
lake water level after flooding is 691.2m (Figure 6B). During this
time, the lake’s water level increased by about 3 m. We then used
the technique described in section 4 to quantify the increase in
lake volume. After analysis, the change in volume was observed
as 63,739 m3.

Figure 7 represents synthetic SWOT point cloud over the
Pookode Lake during pre-flood (2015) and post-flood (2020).
Each point observation in point cloud comprises information
on location, water surface elevation, and other attributes.
Figure 7A represents point cloud observed by future SWOT
mission when water storage was low in lake. The crucial
thing to remember is that over Pookode Lake, there was no
measurement error from SWOT. As there are no overpasses
of altimetry missions over Pookode Lake (as shown in
Figure 1), the SWOT mission will be a promising source to
monitor its water balance. The altimetry missions checked
for overpass include Jason, Sentinel-3A, Sentinel-3B, and
Envisat SARAL. These dense point cloud observations will
have high potential in calculating change in lake volume.
For the current study, reference height used for the SWOT
simulator is obtained from DInSAR. The volume change
exactly matches the volume computed from a previous step as
mentioned above.
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CONCLUSION

This study presents firsthand the results of the SWOT hydrology
simulator to small lakes in India. The SWOT simulator used
in this study does not account for layover impacts; however,
given the location of Pookode Lake, the layover impact can
be neglected. The synthetic observations demonstrated high
accuracy in monitoring water level for the lake. The lake is
subjected to climate change with a rise in temperature of 0.018◦C
per year and frequent heavy rainfall. Monitoring lake storage
is crucial for water balance analysis and mitigates for future
sustainable water for society and recreational purpose. Our study
indicated an increase of 63,739 m3 in water in 2020 as compared
to 2015. The heavy precipitation in 2018 and 2019 contributed
to the increase in lake volume. However, our analysis shows that
the temperature in Pookode Lake is rising at a pace of 0.018◦C
each year. This rise in temperature will result in a large amount
of evaporation from the lake. As a result, it is critical to focus on
such lakes in order to reduce the risk of climate change.

The SWOT mission has the potential to provide an
unparalleled capacity to monitor geographically diverse lakes and
wetland WSE like Pookode Lake; therefore, continued scientific
advancement is required. The capacity to address water balance
components that have previously depended on limited ground-
based monitoring would be enhanced by a revolutionary SWOT
satellite-based surface water monitoring methodology. Following
the launch of SWOT, constructing hypsometric curves for all
lakes using SWOT will be tremendously helpful in building a
lake inventory. This will also improve our understanding on
impact of climate and climate change on lake water balance on
a global scale.
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