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In sub-Saharan Africa, land cover change, expansion of hydropower infrastructure, and

increased flooding complicate country-level efforts to meet the Sustainable Development

Goal target concerning access to safe water. The Water, Energy and Food (WEF) nexus

approach recognises that addressing these complex challenges requires cross-sectoral

analyses at multiple scales. Building on such an approach, our study examined the

interrelationships between land cover change, dam-related flooding and access to safe

water via a national-level spatial analysis with local case studies in Malawi and Ghana.

Our assessment of the water–food interactions found that areas of overlap between

water points and cropland increased from 2000 to 2020 for both countries at national

scale, but overlap extent varied greatly depending on the land cover product used.

Local-scale exploration of water point installation patterns in Zomba, Malawi confirmed

this pattern, highlighting increasing non-governmental funding of borehole installation

programmes. Our assessment of water–energy interactions found that flooding mediated

by hydropower dams increased for the White Volta Basin in Ghana, thereby increasing

inundation of groundwater points. Local-scale focus group discussions revealed flooding

resulted in contaminated water sources and high risk of injury or drowning whilst fetching

water. Overall, our study highlights how socio-economic drivers are bringing water points,

flooding and cropland into closer proximity, requiring flood mitigation measures at water

points and agro-chemical management to minimise potential water quality impacts.

Given differences between land cover products, we recommend more robust integration

of existing land cover products to better monitor these phenomena.

Keywords: WEF nexus application, resource scarcity, spatial modelling, geographical information systems, water

safety planning, land cover change
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INTRODUCTION

Sustainable Development Goal (SDG) 6 sets out to achieve
universal and equitable access to safe and affordable drinking
water (United Nations Dept of Economic Social Affairs,
2020). Simultaneously, governments have committed to zero
hunger under SDG 2, whilst SDG 7 forms an international
commitment to affordable and clean energy. The water–energy–
food (WEF) nexus concept seeks to understand the cross-
sectoral connections, synergies and trade-offs between these three
resource sectors. However, there is no single, agreed WEF nexus
definition, so for the purposes of our study, we define it broadly
as “the study of the connections between these three resource
sectors, together with the synergies, conflicts and trade-offs that
arise from how they are managed,” following (Simpson and
Jewitt, 2019). Progress towards all SDGs is affected byWEF nexus
trade-offs and synergies, with for example all goals linked directly
or indirectly to food (Simpson and Jewitt, 2019).

Sub-Saharan Africa (SSA) remains the region facing the
greatest challenge in meeting all three SDGs. Only 64.5% of
its population had access to basic or safely managed water
services in 2020 with only Oceania having lower service coverage
(UNICEF/WHO Joint Monitoring Program, 2021). Among safer
water sources, non-piped improved water sources (i.e., boreholes,
protected wells and springs; rainwater; and bottled or bagged
water) predominate, supplying 42.8% of the SSA population
in 2020 (UNICEF/WHO Joint Monitoring Program, 2021).
The proportion of world population experiencing moderate to
severe food insecurity increased from 23.2% in 2014 to 26.4%
in 2018, with food price rises in SSA a notable contributor
(United Nations Economic Social Council, 2020). In the same
period, the global population lacking access to electricity
became increasingly concentrated in SSA, so understanding
WEF nexus issues in this region is especially critical. The
region has particular characteristics that mediate trade-offs
between these three targets. It is particularly dependent on
hydropower (Falchetta et al., 2019), meaning that many trade-
offs between renewable energy and household water and food
security relate to dams. This situation is further complicated by
numerous transboundary catchments, with the Southern African
Development Community alone having 15 such catchments
(Conway et al., 2015). SSA’s agriculture sector is dominated by
rain-fed agriculture and associated green water use, though with
hotspots of blue (irrigation) water use (Conway et al., 2015).
Agricultural land use has expanded rapidly throughout SSA, with
the region’s agricultural land increasing by 57% at the expense of
natural vegetation over a 25 year period (Brink and Eva, 2009),
though there are also pockets of agricultural land abandonment
(Blair et al., 2018).

Given the importance of non-piped improved sources in
rural SSA, this study examines a subset of WEF nexus
inter-connections affecting borehole and well water point
safety through an assessment of spatial connections between
hydropower dam-mediated flooding and land use for food
production. As water becomes scarce, most WEF studies focus
on the water sector (Giupponi and Gain, 2017; Albrecht
et al., 2018). Studies have examined growing water resources

competition between the energy and agricultural sectors, such
as multi-objective optimization for multi-purpose reservoir
systems (Si et al., 2019), evaluation of the water and energy
footprint of irrigated agriculture (Daccache et al., 2014), and
understanding interactions between energy and water for
agricultural production and food security (Albrecht et al., 2018).
However, nexus issues affecting water point safety have received
little attention, particularly considering their connection with
energy security via flood regime mediation from hydropower
dams, as well as the impact from growing agriculture expansion.
Globally, conversion of natural to agricultural ecosystems has
led to increased mobilisation of salts, particularly in drylands,
and leaching of fertilisers into surface and groundwaters, often
accompanied by increased streamflow (Scanlon et al., 2007).
High salinity, often geogenic but sometimes exacerbated by
anthropogenic processes, is a widespread cause of borehole
abandonment in Sub-Saharan African countries such as Malawi
(Rivett et al., 2019). Where natural ecosystems are converted to
rangeland, there is growing evidence that faecal contamination
from livestock represents a risk factor for diarrhoeal disease
particularly in children (Zambrano et al., 2014; Penakalapati
et al., 2017), including via water-borne pathogens such as
Cryptosporidium (Daniels et al., 2016). Evidence of the impact
of flooding on water point safety is sparser, though it can
mobilise pathogens, overwhelm water supply infrastructure,
and force consumers to use unsafe, alternative water sources
(Levy et al., 2016). Pathogen mobilisation may have longer-term
consequences: inundation history was associated with increased
risk of microbiological contamination of tubewells in Bangladesh
(Luby et al., 2008). For these reasons, observation checklists for
identifying and managing contamination hazards around rural
water points promoted by WHO have included proximity of
livestock and cropland (World Health Organization, 1997), as
well as inundation history in revised versions (World Health
Organization, 2018).

Because of data availability, systematic review evidence
(Albrecht et al., 2018) suggests many water-energy-food nexus
studies have been undertaken regionally or nationally, with
fewer examples (Nhamo et al., 2020b) at local level. There
have also been calls (Chang et al., 2016) to synthesise “bottom-
up” and “top-down” studies of trade-offs. Evidence from local
case studies are valuable, given that they have been used to
validate continental scale quantification of the numbers of people
affected by dam construction (Richter et al., 2010). Localised
case studies can also ensure broader-scale quantification of
affected populations and cost-benefit analyses relating to dams
to capture the full range of impacts experienced by downstream
populations. Given the complex nature of the WEF nexus,
interdisciplinary and mixed methods are also needed that
combine quantitative with qualitative data to advance nexus
assessments and capture complex synergies and trade-offs
(Albrecht et al., 2018).

The complexity of the WEF nexus necessitates innovative use
of datasets to understand cross-sectoral interactions (Albrecht
et al., 2018). The increasing availability and reliability of
geospatial data as a source of WEF-relevant information has
been recognised by the FAO (FAO, 2014) and such data have
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been widely used in WEF analyses (Keskinen et al., 2015;
Karabulut et al., 2016; Albrecht et al., 2018). Geospatial data
products and spatial analysis thus provide an opportunity to
assess both overall WEF security through composite indices
created via a multi-criteria approach (Giupponi and Gain, 2017)
and potential conflicts between sectors. As the lack of adequate
data is a common limitation for studies using robust nexus
methods (Wolfe et al., 2016), open access geospatial data further
enable transferable and transparent WEF analysis. This study
therefore presents an approach for integration of geospatial
data and spatial analysis to understand connections between
different WEF elements. It examines the interlinkage of water
points (water security) with dam-mediated flooding (an energy-
related conflict) and with agricultural expansion (a food-related
conflict). The study explores the co-location and evolution over
time of these three phenomena and thereby potential conflicts
between the three dimensions of the WEF Nexus.

Specifically, this study aims to generate evidence on the
changing spatial interactions between land use for food
production, dam-mediated flooding, and domestic water points
over two decades. By drawing on both quantitative and
qualitative data sets, this study also aimed to address a
methodological gap in the WEF literature, which remains
dominated by quantitative approaches (Albrecht et al., 2018). It
firstly aims to examine whether agricultural land use conversion
and water point installation programmes bring water points into
closer proximity with cropland, with potential consequences for
managing their safety. Secondly, it aims to quantify the overlap
between dam-mediated flooding and domestic water points,
again with potential consequences for water safety management.
Thirdly, it aims to evaluate the extent to which existing geospatial
datasets are suitable for monitoring such spatial interactions in
SSA. As energy and agricultural sector stakeholders often do
not fully consider the effects of planning decisions on domestic
water supply and use, in doing so, it seeks to inform decisions
concerning trade-offs and support inter-sectoral coordination of
local and national policy—key focal points for WEF analyses.

MATERIALS AND METHODS

Overview and Conceptual Framework
In examining spatial process connecting flooding mediated
by hydropower dams and agricultural land use expansion to
domestic water points, our study focuses on two regulating
services within the ecosystem services framework (Figure 1).
Firstly, through dam overspill regimes, hydropower affects flood
regulation and thereby water security as a constituent of well-
being. Secondly, land conversion to agriculture mediates the
ecosystem service of water purification, with consequences for
managing the safety of rural water points.

To explore these issues, the study draws on Malawi and
Ghana as two case study countries within SSA that have a shared
reliance on groundwater points for water security, but where
potential energy and food-related conflicts affecting groundwater
safety vary. Malawi’s landscape is dominated by intensively
farmed cropland, with rapid cropland expansion, increased soil
erosion, and reduced crop productivity (Li et al., 2021). Borehole

abandonment from salinisation in Malawi has been exacerbated
by agricultural expansion (Rivett et al., 2019). Poor drinking
water quality from shallow wells (Smiley, 2017) is aggravated
by agricultural pollution from fertilisers in the wet season,
particularly in rural areas of southern Malawi (Mkandawire,
2008). In Ghana, woody savanna landscape dominates the central
and northern parts of the country where mixed crop-livestock
farming and mobile pastoralism are both widespread (Tonah,
2002; Callo-Concha et al., 2012). Livestock from such systems
have been identified as a risk factor for faecal contamination of
water points in Ghana (Ampofo, 1997; Wardrop et al., 2018).
Whilst both countries rely heavily on hydropower for energy,
current Malawian hydropower systems are run-of-river, whereas
Ghana and upstream Burkina Faso have major hydropower dams
such as the Akosombo (Djimesah et al., 2018). Northern part
of Ghana is particularly susceptible to flooding from torrential
rainfall, coupled with scheduled overspill from the Bagre Dam,
Burkina Faso (Figure 2). Water point safety is thus connected
with the energy sector, since the multipurpose Bagre Dam has
hydropower capacity to provide 10% of Burkina Faso’s electricity
needs (Manu, 2019). For several decades, Bagre Dam water
releases, typically occurring in August-October when dam levels
reach 235m.a.s.l., have caused severe flooding along the White
Volta (Djimesah et al., 2018). A hydrological modelling study
(Udo et al., 2012) suggested that the Bagre Dam overspill
exacerbated flooding relative to a natural hydrological system.
Modelling suggested its impact was greatest around 100–150 km
downstream, where maximum flood levels at Pwalugu on the
border between Upper East and Northern regions were 75 cm
greater than they would have been without the dam.

Considering the countries’ different agricultural and
hydropower systems, this study firstly explored agricultural
land use change in relation to the spatial distribution of water
points in both countries nationally, to assess potential impacts
on water security, then explored detailed patterns of change
in Zomba District, Malawi as a local case study. Secondly, as a
case study exploring the transboundary energy-water nexus, it
examines the changing overlaps between dam-related flooding
and water points in the White Volta catchment in northern
Ghana downstream of the Bagre Dam, with detailed local case
studies in Savelugu Nanton and Talensi districts.

National Spatial Analysis
To examine spatial overlap between domestic water points and
agricultural land cover types or flooding, gridded surfaces of
water point potential geographic occupancy were first estimated
from dug well and borehole water point map layers for 2000,
2010, and 2019. In each of these years, in each country, a
range overlapping measure was then calculated for these surfaces
in relation to cropland, shrubland/grassland, and a satellite-
derived estimate of areas subject to inundation. Further details
are provided below.

Modelling Potential Geographic Occupancy of

Domestic Water Points
Water point data concerning boreholes and dug wells in Malawi
and Ghana were obtained from the water point data exchange

Frontiers in Water | www.frontiersin.org 3 October 2021 | Volume 3 | Article 730370

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Li et al. Agriculture, Hydropower, and Water Points

FIGURE 1 | An ecosystem services conceptual framework for WEF nexus interactions between hydropower dams, agricultural land conversion, and water point safety.

(See Table 1; Accessed on 2nd Mar 2021). Dug wells and
boreholes were chosen for comparison, since there is typically
greater oversight of borehole installation via regulators such
as the Water Resources Commission in Ghana. In contrast,
as a form of “self-supply” (Butterworth et al., 2013), hand-
dug well installation is typically subject to less regulatory
oversight. Other source types were excluded from analysis,
either because too few water points had been mapped to
enable analysis (e.g., surface water collection points; rainwater
harvesting) or because of difficulties unambiguously classifying
source types (e.g., “handpump”; “solar”). Since water points
are often incompletely mapped (Yu et al., 2019), potential
geographic occupancy was estimated from the raw water point
data sets, following a maximum entropy (MaxEnt) modelling
technique widely used in spatial ecology (Phillips et al., 2006).
By combining georeferenced observational point data with
environmental covariates, the MaxEnt model estimates the
overall geographic distribution of target objects by predicting the
relative probability of presence or relative site suitability across
the landscape of interest. In this study, we chose MaxEnt as the
modelling technique for its assumption-free and non-parametric

nature, good predictive performance, and open-source
user-friendly software.

Ten covariates were used to predict the spatial distribution of
boreholes and dug wells in Ghana and Malawi (Table 1): depth
to groundwater level (Fan et al., 2013); groundwater productivity
and geology with particular relevance to hydrogeology
(British Geological Survey, 2021); lineament density (based
on lineaments extracted via an algorithm) (Šilhavý et al., 2016)
from NASA’s Shuttle Radar Topography Mission (SRTM) DEM;
distance to inland water (based on OpenStreetMap); elevation
and slope (SRTM DEM); distance to settlements (based on
Worldpop settlements); population density (Worldpop); and a
poverty index created using population counts and night-time
lights data (Elvidge et al., 2009). For each covariate layer likely
to change over decadal time scales (e.g., spatial distribution of
poverty), data sources were chosen that captured such temporal
change. Covariates with finer resolutions were aggregated or
resampled to 1 km resolution. Large water bodies identified in
any source covariate layers were excluded to retain identical
spatial extent for all covariate layers. By overlaying with the
pre-processed covariate layers, water points with implausible
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FIGURE 2 | Maps showing (A) location of the case study districts of Talensi and Savelugu Nanton in the White Volta basin of Ghana relative to the Bagre Dam (B)

location of the case study district of Zomba, Southern region, Malawi.

coordinates (e.g., inside a water body or outside the spatial extent
of covariate layers) and those with neighbouring water point(s)
within the same 1 km grid cell were excluded from the analysis.
Water points missing installation year details were only included
in the 2019 model. Supplementary Figure 1 summarises water
points excluded from analysis at each step by country and
source type.

For each type of water source in each study country, model
fitting was carried out using MaxEnt 3.3.3k (Phillips et al., 2006)
for each of the years 2000, 2010 and 2019. Each model was
fitted using a random subsample of 70% of the pre-processed
water points, whilst the remainder was used for performance
evaluation based on Monte Carlo cross validation. We restricted
the selection of 10,000 background points to administrative
level 2 units with observed water points to control for spatial
variation in water point mapping effort and resultant sampling
bias. Administrative boundaries were obtained from the Global
Administrative Areas (GADM) database, version 3.6 (https://
gadm.org/; Accessed on 2nd Mar 2021). All available functional
transformations of the covariates (i.e., “linear,” “quadratic,”
“product,” “threshold,” “hinge” and “discrete”) (Merow et al.,
2013) were employed to capture potential non-linear, complex
relationships between the covariates and water points. For
each water source type in each country, the subsampling of
training/test data, model fitting, performance evaluation and
prediction were repeated 500 times to generate summary grids
of final predictions and performance metrics. An optimal model

was selected corresponding to the regularisation multiplier
(swept from 0.5 to 10 with an increment of 0.5) with the
largest Area Under the Receiver Operator Curve (AUC) (DeLong
et al., 1988). AUC was used instead of information criteria (e.g.,
theAkaike Information Criterion) due to known issues with
threshold and hinge features (Warren et al., 2014). The AUC
value lies between 0.5 and 1, where denotes a perfect predictive
power, whilst 0.5 denotes a useless prediction no better than a
random distribution All model default settings were kept, whilst
logistic output was used for ease of interpretation. The original
logistic output arbitrarily assumed an occurrence prevalence of
0.5 (Merow et al., 2013) and thus can be interpreted as the
relative ranking of each grid across the landscape instead of true
occurrence probability. The model for the years 2000, 2010, and
2019 with the best performance was selected for prediction and
projected by applying it to the covariate sets of the other 2 years.
For each water source type in each country, we converted the final
predicted relative site suitability surfaces to binary grids depicting
areas potentially occupied/unoccupied by boreholes and dug
wells by setting an optimal cut-off value based on the maximum
sum of sensitivity and specificity as previously recommended
(Liu et al., 2013).

Quantification of Changes in Land Cover
Our analysis focused on land cover conversion to croplands,
grasslands and shrublands in relation to water point locations,
with their definitions corresponding to Inter-governmental Panel
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TABLE 1 | Data sources used to model the spatial distribution of water points and examine potential conflicts with agricultural land use and dam-mediated flooding.

Dataset Name Spatial scale Temporal scale Sources****

Input datasets for Water Point Data Exchange (WPDx) – 2000, 2010, 2019 * WPDx portal

modelling water points Equilibrium Water Table Africa Model

version 2

1 km – ** GLOWASIS

Africa Groundwater Atlas Country

Hydrogeology Maps, Version 1.1

– – ** British Geological Survey

(BGS)

Geospatial covariate data layers:

SRTM-based elevation

100m 2000 ** WorldPop portal

Open Street Map (OSM) – 2020 ** Geofabrik portal

Population Density Unconstrained

individual countries 2000–2020 UN

adjusted

1 km 2000, 2010, 2019 WorldPop portal

Global Built-Settlement Growth 100m 2000, 2010, 2019 WorldPop portal

Geospatial covariate data layers:

Resampled DMSP-OLS night-time lights

2000–2011

100m 2000, 2010 WorldPop portal

Geospatial covariate data layers:

Resampled VIIRS night-time lights

2012–2016

100m 2016 *** WorldPop portal

Water point dataset Boreholes and wells points – 2000, 2010, 2020 mWater Portal

Modelled Boreholes and dug wells maps 1 km 2000, 2010, 2019 From this study

Land cover dataset GlobeLand30 30m 2000, 2010, 2020 GlOBELLAND30

ESACCI land cover 250m 2000, 2010, 2020 ESA climate change

initiative

MCD12Q1 500m 2000, 2010, 2020 Google Earth Engine Data

Catalog

Flooding dataset JRC Surface Water dataset 30m 2000–2020 Global Surface Water

Explorer

Flood extent through participatory

mapping

– 2020 From this study

*Water points without temporal information were only included in 2019 models.

**Corresponding environmental covariates are assumed to be temporally static.

***The latest VIIRS night-time light data available by the time when this study was conducted.

****See data availability section for links of downloading data.

on Climate Change (IPCC) land categories. Grasslands and
shrublands were used as a proxy for rangeland, which together
with croplands served as indicators of agricultural land use.
These three land cover classes account for around 69 and 55%
of land area in Malawi and Ghana respectively in 2020 based
on the GlobeLand30 land cover dataset (Chen and Chen, 2018).
Whilst various land cover datasets are available globally and
nationally, there are quite large spatial inconsistencies between
different land cover products, particularly concerning cropland
and in Sub-Saharan Africa (Pérez-Hoyos et al., 2017; Hua
et al., 2018; Xu et al., 2019). To understand uncertainties in
land cover products and maximise the reliability of land cover
representation, multiple land cover products were therefore
compared and a composite land cover map created for both
Ghana and Malawi. Three land cover products were selected,
namely GlobeLand30, ESACCI land cover (European Space
Agency Climate Change Initiative), and MCD12Q1 (a MODIS-
derived land cover product, Friedl and Sulla-Menashe, 2019),
since all cover the period from 2000 to 2020. As these land
cover products use different detailed class labels, relevant
land cover classes were harmonised to the same broad-level
classes of croplands, grasslands and shrublands for comparison

among three land cover products (Supplementary Table 1). To
retain spatial detail, the ESACCI (300m spatial resolution)
and MODIS (500m spatial resolution) datasets were resampled
to the higher spatial resolution (30m) of the GlobeLand30
data set. Two composite binary layers depicting croplands and
grasslands/shrublands were created based on a voting method,
where the land cover was classified as present when at least
two of the three datasets agreed, but otherwise classed as
absent. Temporal changes between 2000, 2010, and 2020 in
croplands and grasslands, shrublands area were analysed based
on the three land cover products as well as the composite
map. All four land cover products were further used for
subsequent overlap analysis with the spatial distribution of
water points.

Flooding Patterns, as Mediated by Hydropower
Flooded areas in the White Volta catchment of northern
Ghana were detected via the JRC Yearly Water Classification
dataset, which was generated using Landsat 5, 7, and 8
satellite imagery from 1984 to 2019 (Pekel et al., 2016).
This dataset maps the location and temporal distribution of
seasonal and permanent surface water over a 38-year period
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at a spatial resolution of 30m. For our study, areas classified
as seasonal surface water were considered as flooding. For
consistency with the temporal coverage of estimated water point
potential geographic occupancy, the maximum areal extent of
inundation was calculated for three 10-year periods (1991–
2000, 2001–2010, 2011–2020) for the White Volta catchment
in Ghana. Inundation extent was again used for overlap
analysis with the spatial distribution of water points. We
also obtained data on daily levels of the Bagre Dam from
2015 onwards via Ghana’s National Disaster Management
Organisation (NADMO), examining the timing of its overspill
relative to flooding.

Changing Spatial Overlap Between Water Points,

Cropland, and Dam-Mediated Flooding
To investigate trends in overlap between agricultural land cover
classes and dam-mediated flooding, a spatial overlap index
between target land cover classes and water points was calculated
for each of the years 2000, 2010, and 2020. Rather than using
relative site suitability or probability values, for simplicity, the
overlap index was based on binary classifications of flood,
cropland, rangeland and water point extent as described above.
Following a commonly used metric in spatial ecology (Fieberg
and Kochanny, 2005), the overlap index was defined as the
proportion of flooded or rangeland/cropland within the area with
high potential occupancy of water points.

Local Case Studies in Northern Ghana and
Malawi
Impacts of Hydropower-Related Flooding on Water

Point Use in Northern Ghana
Within each of two flood-prone districts of Savelugu Nanton
and Talensi in northern Ghana, four flood-affected communities
were identified via satellite imagery and stakeholder consultation
for more detailed mapping of flood-affected sites. In each of
these eight communities, the local assembly person (an elected
representative) was asked to map the locations of water points
and maximum flood extent on hardcopy basemaps of the area.
Colour basemaps showing grid coordinates were generated
from high resolution Google satellite imagery, with acquisition
dates between 2016 and 2019. Map scales varied between
communities from 1:5,000 to 1:20,000, following recommended
practise for participatory mapping (Forrester and Cinderby,
2015). Subsequently, in each community, four focus group
discussions (FGDs) were convened with groups of eight local
residents per discussion. Eligible FGD respondents were over 18
years’ old, resident for at least 10 years, and owning property
or land. Each focus group discussed flooding impacts on water
sources and the communities’ coping strategies or alternative
water sources used in response to flooding. All interviews and
discussions took place in the Farafra and Dagbani dialects in
September 2020 and were audio-recorded. Recorded interviews
were translated into English and transcribed verbatim, then
analysed using the NVivo 12 software. Thematic and content
analysis methods were used to analyze the data both inductively
and deductively (Braun and Clarke, 2006). A codebook was

created based on the research questions, findings, field notes, and
reading transcripts, to guide coding.

Local Trends in Water Point Installation in Zomba

District, Malawi
To explore the relationship between installation programmes
and spatial patterns of water point expansion through a local
case study, we downloaded water point data for Zomba District
from a national Malawian database (https://portal.mwater.co/)
that contains installation programme details. We then examined
installation programme trends, mapping individual water points
in relation to land cover and testing for differences in recorded
installation funders by decade using chi square analysis.

RESULTS

National Spatial Analysis
Changes in Water Points
In this study, 0.5 was the optimal regularisation multiplier (a
parameter to address model over-fitting) for both borehole and
dug well models in Ghana, whilst 1 was the optimal multiplier
for both water source types in Malawi. Our models display good
predictive power according to the AUCs (for Ghana, AUCboreholes
= 0.79; AUCdugwells = 0.83; and for Malawi, AUCboreholes = 0.83;
AUCdugwells = 0.77). For Ghana, the areas predicted to have high
borehole occupancy were concentrated in Upper East, Upper
West and a substantial area of western Ghana, with isolated
hotspots in Northern Region and Eastern Ghana (Figure 3A).
For dug wells, the potential occupancy showed broadly similar
geographic patterns to that of boreholes, except in Upper West
where only isolated hotspots of relatively high occupancy were
found (Figure 3B).

The analysis suggested that overall potential geographic
occupancy of both boreholes and dug wells had expanded over
the last 20 years as a proportion of Ghana’s land area (Figures 3,
4): from 18.7% in 2000 to 20.3% in 2010 to 23.8% in 2019 for
boreholes and from 18.7% in 2000 to 21.4% in 2010 to 25.7%
in 2019 for dug wells. For Malawi, the areas with high borehole
occupancy were mainly concentrated in Southern Malawi, with
isolated hotspots in Central Malawi and along the shores of
Lake Malawi (Figure 3C). Patterns of dug well occupancy in
Malawi differed from that of boreholes, with more areas of high
occupancy found in Northern and Central Malawi (Figure 3D).
Potential occupancy areas also expanded over time in Malawi,
from 10.4% in 2000 to 16.8% in 2019 for boreholes and from
16.6% in 2000 to 25.0% in 2019 for dug wells (Figure 4).

Food-Related Conflicts: Changes in Overlap Between

Water Points and Agricultural Land Use
There was notable inconsistency in the cropland and
shrubland/grassland area identified via the four land cover
products (i.e., the three land cover datasets and the composite)
for both Ghana and Malawi in 2000, 2010, and 2020
(Supplementary Figure 2). Although there were very large
differences in land cover areas between the three products, each
showed consistent temporal trends. Three out of four datasets
showed a slight increase in area of both cropland area and
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FIGURE 3 | Maps depicting areas of high potential occupancy in the years 2000, 2010 and 2019 of (A) boreholes in Ghana; (B) hand-dug wells in Ghana; (C)

boreholes in Malawi; and (D) hand-dug wells in Malawi, as derived via presence-only spatial distribution modelling of water point locations.

FIGURE 4 | Total national area with high potential occupancy of boreholes and hand-dug wells in Ghana and Malawi in the years 2000, 2010 and 2019.

grasslands/shrubland in Malawi (Supplementary Figure 2).
For Ghana, three out of four datasets showed increased
grasslands/shrublands, with the highest area in 2010. Cropland
area however declined slightly, particularly from 2000 to 2010
(Supplementary Figure 2). All four land cover products were
included in subsequent overlap analysis.

Overall, the area of overlap between agricultural land use
(croplands, grasslands/shrublands as a proxy for rangeland)
and water points increased for both boreholes and dug
wells, and for both Ghana and Malawi (Figures 5, 6).
However, the proportion of cropland within the water

point occupancy area (measured by the cropland overlap
index) declined for both countries and both boreholes and
dug wells. In contrast to the cropland overlap index, the
shrubland/grassland overlap index generally increased for
both countries and for boreholes and dug wells (Figures 5,
6). However, for boreholes in Ghana, it declined from 2010 to
2020 based on the composite, ESACCI and GLC30 products.
To conclude, there is growing overlap between agricultural
land use and water points, predominantly driven by water
point and shrubland/grassland expansion rather than by
cropland expansion.
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FIGURE 5 | Overlap area and overlap index between agricultural land use (cropland, grassland and shrubland) and potential geographic occupancy with boreholes

and dug wells in Ghana for 2000, 2010, and 2020 [analysis based on four land cover products, namely a composite based on a voting method, ESACCI, Globeland

30 (GLC30) and MODIS. Left-hand vertical axis indicates the total overlap area, whilst the right-hand axis shows an overlap index].

Energy-Related Conflicts: Changes in Overlap

Between Water Points and Dam-Mediated Flooding
Over the two decades studied, the extent of inundation,
exacerbated at times by overspill from the hydropower Bagre
Dam, progressively increased in the White Volta basin in
Ghana (Supplementary Figure 3). Similarly, there are increases
in overlap area and overlap index between inundation extent and
water points for both boreholes and dug wells (Figure 7). These
increased overlaps indicated that water points were increasingly
affected by flooding downstream of the Bagre Dam, with dam
overspill occurring almost annually from 2015. NADMO records
for 2015–2020 indicated that the Bagre Dam level reached 235m,
the threshold for triggering overspill, in every year except 2017.
This level was reached on 14 Sept in 2015, 24th Sept 2016,
31st August in 2018, 21st October in 2019, and 10th August
in 2020.

Local Case Studies in Northern Ghana and
Malawi
Hydropower-Related Flooding and Water Safety

Management in Northern Ghana
As shown in Figure 8, the flood-affected communities where
focus groups took place in Talensi and Savelugu districts, Ghana,
used a mixture of boreholes, hand-dug wells, and surface water
sources (dams and ponds). During flooding from the Bagre Dam
overspill, the risk of drowning disrupted focus group participants’
usual patterns of source use:

“All our boreholes have been submerged in water. Our dams are

also covered by the flood, so we are unable to go near the dams to

fetch water. It is very risky for one to get drowned at the dam when

flooded. We see it as a death trap, so nobody goes near.” (Male
respondent, Savelugu)
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FIGURE 6 | Overlap area and overlap index between agricultural land use (cropland, grassland and shrubland) and potential geographic occupancy with boreholes

and dug wells in Malawi for 2000, 2010, and 2020 [analysis based on four land cover products, namely a composite based on a voting method, ESACCI, Globeland

30 (GLC30) and MODIS. Left-hand vertical axis indicates the total overlap area, whilst the right-hand axis shows an overlap index].

“My own nephew drowned and died at a water point when it was

flooded and he tried to go and fetch water. A similar event happened

in the past, so people get scared to go near a water source during

flooding.” (Male respondent, Talensi)

Following inundation, focus group participants in both districts
described obvious contamination issues with boreholes and
surface water:

“When the water subsided in one of the submerged boreholes,

we noticed that there’s so much dirt in the water when

we fetched some. Maggots came from it when we pump

the water. Sometimes, the water gets a certain rotten scent,

which makes the water unhygienic to drink or use.” (Female
respondent, Savelugu)

“We have to force and drink the affected water, which will in effect

cause some diseases because all the water sources have been affected

and we do not have any other option than to drink the affected

water.” (Male respondent, Talensi)

To cope with the disruption, participants reported that some
households were able to switch to harvested rainwater, whilst
others attempted water treatment:

“My household as well as some of the community members harvest

rainwater for drinking whenever our water source is affected by the

floods.” (Female respondents, Savelugu)

“What we do is to use something to tie a sieve on the mouth of the

borehole and then we pump the water and sieve out the maggots.”

(Female respondents, Savelugu)

Whilst district health authorities reported promoting boiling
and home water treatment through chlorination, focus group
participants did not mention adopting these strategies.
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FIGURE 7 | Overlap between inundation extent and areas with high borehole or hand-dug well potential geographic occupancy in downstream of the Bagre Dam

White Volta basin of Ghana for the years 2000, 2010, and 2020 (left-hand vertical axis indicates the total overlap area, whilst the right-hand axis shows an overlap

index).

Local Trends in Water Point Installation and Cropland

Conversion in Zomba District, Malawi
Figure 9 shows the detailed local pattern of borehole and well
expansion from 1991 to 2020 in the case study district of Zomba,
Malawi, in relation to changes in cropland. Densification of
both types of groundwater point is apparent within the area
that was already cropland in the year 2000, with relatively small
additional areas being converted to cropland elsewhere. The
number of recorded well and borehole installations progressively
increased by decade, rising from 487 in 1991 to 2000 to 1154
in 2011 to 2020 for boreholes and from 42 to 122 for wells
(Supplementary Tables 2, 3). Examining the underlying funding
records for water point installation in the mWater database, a
chi square test indicated the proportion of borehole installations
funded by the Malawian government decreased significantly
from 52.8% (215 of 407) in 1991–2000 to 31.3% (206 of 658) by
2011–2020 (p < 0.001) (proportions are of those wells where a
funder was recorded). Meanwhile, the proportion of boreholes
installed byNon-Governmental Organisations (NGOs) increased
significantly from 16.2% (66) to 34.5% (227) over these decades.
Funding arrangements for wells remained similar however, with
most wells community-funded in all decades (comprising 24 or
64.9% in 1991–2000 and 39 or 52.7% in 2011–2020).

DISCUSSION

Challenges of Examining Water Points
Safety Through a WEF Approach
This study, for the first time, integrates geospatial analysis with
qualitative fieldwork to address complex WEF challenges at
multiple scales. It examines the water–energy nexus whereby

hydropower dams affect flood regimes and water point safety,
and the water–food nexus whereby proximity with agriculture
may compromise groundwater point safety. In contrast to
the focus on water scarcity challenges in most studies, this
study examined contamination hazards and water point safety,
understanding and addressing these challenges through a
WEF approach. This reflects the close connection between
water point safety and the energy sector, since construction
of hydropower dams may sometimes exacerbate flood risk
for downstream water points (Richter et al., 2010), both as
sources become contaminated and as consumers switch to
alternative, riskier water sources during or following flooding
(Levy et al., 2016). In addition, the interactions between water
points and agriculture expansion are complex, with potential
contamination pathways including exacerbated salinisation and
fertiliser leaching into groundwater points (Scanlon et al., 2007)
and faecal contamination as livestock share water points with
people (Daniels et al., 2016; Penakalapati et al., 2017). Our study
highlighted the growing spatial overlap between water points,
flooding and agricultural land use, thereby providing insights
into managing water points, as well as highlight difficulties in
quantifying impacts on water point safety from hydropower
dams and agriculture expansion.

The increasing absolute area of overlap between water points
and cropland suggests the management of a growing number
of water points needs to take account of the surrounding arable
landscape. These increased overlaps are consistent for both
boreholes and hand-dug wells in both Malawi and Ghana
from 2000 to 2019, though the proportion of area with high
potential occupancy overlapping with cropland has remained
similar throughout (Figures 5, 6). As illustrated by the Zomba
District case study, this growth in overlap was primarily due
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FIGURE 8 | Maps of water points and maximum historical inundation extent mapped by local political representatives in selected communities of Tamale and

Savelugu Nanton districts, Ghana. Map data: Google, © 2021 CNES/ Airbus, Maxar Technologies.

to an expansion in the distribution of both boreholes and
hand-dug wells over this period, rather than an expansion of
cropland. This trend is broadly apparent in each of three global
land cover products. Hand-dug wells are often regarded as
a form of “self-supply” installed by communities themselves
without external intervention (Butterworth et al., 2013), whereas
borehole installation requires specialist expertise. Formal
regulatory oversight of both source types remains partial in
much of SSA (Wijnen et al., 2012). Despite these differences in
installation processes, both water point types showed similar
overlap trends. Similarly, greater grassland and shrubland
expansion was apparent in both Malawi and Ghana, leading to
closer proximity of these land covers to water points, although
a declining overlap trend was apparent for boreholes in Ghana
(Figure 5).

Analysis of Ghana’s White Volta catchment similarly
suggests that the proportion and absolute area of both
boreholes and hand-dug wells lying in flood-prone areas
has also increased from 2000 to 2019 (Figure 6). This reflects
both an expansion of water points, but also an apparent

increase in flood-affected area within this period. Focus
group discussions in affected communities indicate consistent
reports of public health risks from this flooding, both as
sources become contaminated but also through the risk
of injury or drowning whilst fetching water. Integration
of geospatial flood products is valuable in understanding
where flooding and water points overlap, which could be
used to target campaigns for flood-proofing of water points,
for example.

We identified growing spatial overlap over the past two
decades between flooding and water points, however there
are difficulties specifically attributing flood risk to hydropower
dams, such as the Bagre Dam in our study. Interviewees
in previous qualitative studies have however attributed the
cause of frequent flooding to spillage from the Bagre Dam
(Adomah Bempah and Olav Øyhus, 2017; Abass et al.,
2019). Previous flood modelling work (Udo et al., 2012)
suggests that some of this risk is attributable to dam
construction, but it is unclear how much, without further
flood modelling of the natural vs. modified catchment or
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FIGURE 9 | Map showing expansion of boreholes, wells, and cropland area in Zomba district, Malawi, from 1991–2020 (water point data from the mWater Portal).

an understanding of flood risk prior to dam construction.
In addition, dams can also mitigate flood risk. There is
potential to examine the flood-related impacts of individual
hydropower dams via geospatial flood products for the
periods pre- and post-operation, for example where a dam
became operational between 2010 and 2015. In future studies,
there would be scope to assess spatio-temporal patterns
of flooding pre- and post-dam construction in catchments
downstream of such dams, so as to understand this interaction
between water point management and the growing number of
dams worldwide.

Opportunities and Limitations of
Integrating Geospatial Data for
Understanding the WEF Nexus
Given the complex nature of the WEF nexus, specific methods
to analyse WEF interactions remain limited (Albrecht
et al., 2018). The WEF nexus requires interdisciplinary and
transdisciplinary approaches to advance nexus assessments
and achieve optimal solutions (Albrecht et al., 2018;
Botai et al., 2021), together with numerous and diverse
analytical tools from environmental management, economics
and social science (Albrecht et al., 2018). These include
indicator-based approaches (Mabhaudhi et al., 2019;

Nhamo et al., 2020a), scenario analysis (De Stercke et al.,
2020), and stakeholder engagement (Hoolohan et al.,
2018; Bielicki et al., 2019). Using geospatial water point
mapping data, land cover classification, and flood mapping
from satellite imagery, our study illustrates a methodology
for potential integration of such geospatial products to
examine the WEF nexus at catchment or regional scale,
and evaluates the impacts of land use change on the
community at local scale. For the first time, our study
integrates geospatial analysis with qualitative fieldwork
to address complex WEF challenges at multiple scales,
thereby highlighting opportunities and limitations in
using geospatial analysis and products for addressing WEF
nexus challenges.

Geospatial analysis allows integration of all components
of the water–food–energy–nexus at national scale, but also
targeting of localised fieldwork at specific locations. In our study,
examination of flood imagery enabled subsequent targeting
of areas for FGD fieldwork. Furthermore, our national-scale
analysis highlights specific locations where water points are
exposed to flooding and agriculture expansion, which could
be targeted for future microbiological testing surveys. In
addition, spatially explicit data provides potential to scale
up local studies to the national scale. For example, local
patterns of borehole and well expansion could also be
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driven by NGO funding elsewhere in Malawi apart from
Zomba, especially in the modelled, national-scale hotspots of
water point expansion (Figure 3). Similarly, other parts of
Ghana could also experience increased water contamination
and high accident risks when community members fetch
water during flooding, as identified by FGDs in the two
study districts.

Geospatial data, however, carry uncertainties that present
difficulties for WEF analysis. For example, the extent of cropland
varies between land cover products in SSA (Pérez-Hoyos et al.,
2017; Hua et al., 2018; Xu et al., 2019) and in Ghana and
Malawi as shown in this study. Such discrepancies reflect the
different spatial resolutions of these products and the region’s
relatively small field sizes and heterogeneous landscape. Whilst
we used a simple “voting” method to combine such products in
our work, an accuracy assessment study using African ground
validation data sets (Tsendbazar et al., 2015) suggests that more
sophisticated data fusion methods for combining land cover
products would yield more accurate estimates of cropland extent.
Such data fusion methods could be used to assess overlap
between water point distributions and cropland in future with
greater accuracy.

In addition, geospatial data mostly provide indicators, rather
than directly measuring water contamination hazards that
constitute conflicts in WEF analysis. For example, in this
study it remains problematic to map the spatial distribution
of livestock from land cover classes when assessing overlap
between water points and rangeland, despite growing evidence
that livestock pose a significant faecal contamination risk to
domestic water. Given the complexity of mixed crop-livestock
farming systems in areas such as northern Ghana (Penu and
Paalo, 2021), the use of land cover classes such as shrubland
remain a comparatively poor proxy for rangeland. In future
studies, an alternative approach would be to examine water
point overlaps with the Gridded Livestock of the World (Gilbert
et al., 2018) or related products (Da Re et al., 2020). Rather
than relying solely on land cover, such products downscale
livestock counts from agricultural censuses using ancillary
geospatial data.

Aside from uncertainties in geospatial data, other limitations
affecting our findings relate to the underpinning water point
mapping data and overlap indices used. For example, water
point inventories often have incomplete installation date
recording and use inconsistent source typologies. Records
seldom differentiate water points for irrigation from those
for domestic purposes (Yu et al., 2019). Apparent trends
in water point installation and funding by decade could
thus reflect the changing incompleteness of underlying
record-keeping, with proportionately more installation
records being lost from earlier decades. We generated an
overlap index based on a binary representation of cropland,
flooding and water point distributions, but alternative overlap
indices used in spatial ecology could be used to compare
pairs of continuous map layers, such as potential water
point occupancy, percentage cropland within a pixel, or
flood frequency.

CONCLUSIONS

This study synthesised geospatial data concerning water
points, land cover, and flooding to quantify spatial interactions
between domestic water point safety, agricultural production,
and dam-mediated flooding. Particularly given expansion
of wells and boreholes through installation programmes,
it highlights an increasing area of overlap between water
points and cropland in both Malawi and Ghana, thus
illustrating spatial aspects of the WEF nexus. For the
White Volta basin in Ghana, we also show how geospatial
products can be used to quantify overlap between dam-
mediated flooding and water points, with the public
health consequences of this overlap apparent through
focus group discussion findings in case study communities
within this basin. Given differences between land cover
products, in future research, we recommend use of data
fusion techniques to integrate these products and thereby
better quantify spatial overlap with water points. Given
the potential faecal contamination risk to domestic water
points from livestock, we also recommend use of gridded
livestock density map layers to quantify such overlaps.

DATA AVAILABILITY STATEMENT

The water point datasets analysed for this study can be
found in the Water Point Mapping Data Exchange (https://
www.waterpointdata.org/), the mWater portal (https://portal.
mwater.co/#/). For the predictive covariates used in the
model, equilibrium water table depth can be downloaded
through the European Union Collaborative project of
Global Water Scarcity Information Service (GLOWASIS)
at https://glowasis.deltares.nl/thredds/catalog/opendap/opend
ap/Equilibrium_Water_Table/catalog.html; [Accessed on 16th
April, 2018] groundwater productivity and geology with
relevance to hydrogeology can be obtained from https://www2.
bgs.ac.uk/africagroundwateratlas/index.cfm; the NASA’s Shuttle
Radar Topography Mission (SRTM) DEM used to create
lineament density, elevation and slope can be downloaded from
the United States Geological Survey (USGS) EarthExplorer
at https://earthexplorer.usgs.gov/; inland water derived from
OpenStreetMap can be downloaded from http://download.
geofabrik.de/; population density, settlements and resampled
Visible Infrared Imaging Radiometer Suite (VIIRS) Night-
time Lights can be downloaded from WorldPop portal at
https://www.worldpop.org/. The land cover product can
be found in http://www.globallandcover.com/home_en.
html (GlobeLand30), http://www.esa-landcover-cci.org/
(ESACCI), https://developers.google.com/earth-engine/datasets/
catalog/MODIS_006_MCD12Q1?hl=en (MCD12Q1). The
JRC Yearly Water dataset for flooding detection can be
found in https://global-surface-water.appspot.com/, and also
https://developers.google.com/earth-engine/datasets/catalog/JR
C_GSW1_3_GlobalSurfaceWater?hl=en. The Africa and
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country Administrative Boundaries can be found in ArcGIS
online resources (https://www.arcgis.com/home/item.html?id=
64aff05d66ff443caf9711fd988e21dd (Africa country boundaries),
https://data.humdata.org/dataset/malawi-administrative-level-0
-3-boundaries (Malawi Administrative Boundaries), https://data.
humdata.org/dataset/ghana-administrative-boundaries (Ghana
Administrative Boundaries)). The Bagre dam location can be
found in Global Reservoir and Dam (GRanD) https://sedac.ci
esin.columbia.edu/data/collection/grand-v1/sets/browse. Above
dataset was accessed before July 2021. Participatory flood extent
mapping output generated in this study are available on https://
doi.org/10.5258/SOTON/D1956 (after 1st October, 2021).
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