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As a result of canopy interception and transpiration, trees are often assumed to

have negative effects on the local hydrological budget resulting in reduced soil and

groundwater resources. However, it has also been shown that trees can have positive

effects through reducing surface run-off and improving soil infiltrability and groundwater

recharge, especially in many tropical ecosystems characterized by high rain intensity

and degradation-prone soils. In this study, we used isotopic measurements of soil

water to better understand the main processes by which trees influence local soil

water dynamics within a tropical pasture with scattered tree cover in the Copan River

catchment, Honduras. We also determined the stable isotope signature of xylem water

in grasses and trees to assess potential competition for water sources during the wet

and dry seasons. During the wet season, when soil water availability was not limiting,

both grasses and trees primarily utilized soil water near the soil surface (i.e., 0–10 cm).

In contrast, during the dry season, we observed niche partitioning for water resources

where grasses primarily utilized soil moisture at deeper soil depth (i.e., 90–100 cm) while

trees relied heavily on groundwater. Moreover, isotopic data of soil water suggest that

trees reduce evaporative water losses from the soil surface, as indicated by the lack

of correlation between soil water content and lc-excess (line condition excess) values

of surface soil water under trees, and enhance preferential flow as suggested by less

negative lc-excess values under trees compared to open areas during the dry season.

Taken together, our findings provide further support that trees can have positive effects

on the local water balance with implication for landscape management, promoting the

inclusion of scattered trees to provide water ecosystem services in silvopastoral systems,

adding to other ecosystem services like biodiversity or carbon sequestration.

Keywords: niche partitioning, groundwater recharge, land management, ecosystem, tree-grass coexistence,

isosource mixing model

INTRODUCTION

In tropical Central America, 74% (i.e., 84 million hectares) of the total agricultural land was used
for meadows and pastures in 2019 (FAOSTAT, 2019), and this area is expected to increase by
32% by 2030 (Acosta and Díaz, 2014). At the same time, the sustainable use of pastures is at
risk due to ongoing degradation (Szott et al., 2000; Muchagata and Brown, 2003), resulting in

https://www.frontiersin.org/journals/water
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://doi.org/10.3389/frwa.2021.736824
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2021.736824&domain=pdf&date_stamp=2021-10-20
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles
https://creativecommons.org/licenses/by/4.0/
mailto:laura.benegas@catie.ac.cr
https://doi.org/10.3389/frwa.2021.736824
https://www.frontiersin.org/articles/10.3389/frwa.2021.736824/full


Benegas et al. Scattered Trees Impact on Soil Water Dynamics

negative consequences on productivity, erosion, and water
resources (Martínez and Zinck, 2004). Trees are commonly
integrated into pastoral systems for various reasons including
reducing soil degradation, increasing carbon stocks, providing
protecting shade, and reducing financial risks due to farmers’
income diversification (Erdmann, 2005; Verchot et al., 2007;
Wassenaar et al., 2007; Harvey et al., 2014; Mulugeta, 2014).
Despite their multiple benefits, trees are commonly assumed
to decrease valuable soil and groundwater resources due to
their higher interception and transpiration compared to shorter
vegetation, leading to increased transport of water back to the
atmosphere (Giambelluca, 2002, Calder, 2001; Fisher et al., 2009;
Ellison et al., 2012, 2017). However, given the prevalent high
rain intensity (Lal, 1990; Labrière et al., 2015) and severe soil
degradation in many tropical ecosystems, trees could potentially
have positive effects on the local water balance by reducing
surface run-off and improving soil water infiltrability and
groundwater recharge (Bargués Tobella et al., 2014; Benegas
et al., 2014; Ilstedt et al., 2016; Bargués-Tobella et al., 2020).
According to the optimum tree cover theory, intermediate
tree densities on soils prone to degradation may maximize
groundwater recharge, as the hydrologic gains attributed to tree
cover can be proportionally higher than the additional losses
from increased transpiration and interception (Ilstedt et al.,
2016). Given the importance of water availability for human
health, economy, ecosystem functioning, geophysical processes,
and social-ecological system resilience at large (Cazenave et al.,
2004; Mooney et al., 2005; Falkenmark et al., 2019), the lack of
studies on water dynamics, including water source partitioning,
in tropical pastures with open tree cover is alarming.

Water is a key resource in determining the structure and
composition of vegetation in savanna-like ecosystems (van Wijk
and Rodriguez-Iturbe, 2002). It is commonly thought that the
coexistence of tree-grass communities is the result of niche
partitioning whereby woody and herbaceous plant species do not
compete for the same limiting resource, i.e., soil water (Jeltsch
et al., 2000; Ward et al., 2013). One possible explanation for
the lack of competition between trees (or shrubs) and grasses
may be the result of differences in root morphology (Lehmann
et al., 1998; Dulormne et al., 2004). Previous studies in temperate
ecosystems have shown that trees tend to be more deep-rooted,
accessing deeper water sources compared to grasses, which have
more fibrous rooting systems and thus rely on soil moisture
near the soil surface (Sala et al., 1989; Weltzin and McPherson,
1997; Sankaran et al., 2004; Nippert and Knapp, 2007; Ward
et al., 2013). However, evidence for niche-partitioning in tropical
and subtropical ecosystems is mixed, and there is disagreement
about the extent to which trees and grasses partition soil moisture
in these ecosystems (Verweij et al., 2011; Kambatuku et al.,
2013; Kulmatiski and Beard, 2013; Ward et al., 2013). Moreover,
seasonality may strongly influence the degree to which soil
water is partitioned between trees and grasses. For example, in
a savanna ecosystem in South Africa, trees used soil moisture
near the soil surface (i.e., 25 cm depth) during the wet season
and water from deeper depths in the dry season, whereas grasses
accessed soil water from the topsoil layer throughout the year
(Priyadarshini et al., 2015). In pastures, determining the sources

of water for trees and grasses is highly relevant, as competition
for water between trees and grasses can reduce grass growth and
production (Dulormne et al., 2004).

The analysis of the hydrogen (δ2H) and oxygen (δ18O) stable
isotope ratios of water is a useful tool to assess where individual
plants are accessing water within the soil profile (Ehleringer
and Dawson, 1992; Brunel et al., 1995; Querejeta et al., 2007).
During plant water uptake and transport within woody tissues,
the isotopic signature of plant xylem water is assumed to remain
unaltered, thereby reflecting the various zone(s) and depth(s)
from which plants extract soil water (White et al., 1985). As a
result of evaporative water losses from the soil surface, water in
the upper soil layers often becomes enriched in the heavy isotopes
(2H and 18O), resulting in a vertical variation of soil water δ

2H
and δ

18O throughout the soil profile (Barnes and Turner, 1998).
Thus, the isotopic signature of potential soil water sources at
different depths can be compared to the isotopic signature of
plant xylem water to better understand the sources of water used
by individual plants (Ehleringer and Dawson, 1992; Jackson et al.,
1995; Bonal et al., 2000; Hasselquist et al., 2010; Bargués Tobella
et al., 2017).

The isotopic signature of soil water can also be used to
examine how plants influence local soil water dynamics. We
recently developed a conceptual model that describes how the
isotopic signature of soil water and variation in soil water content
(SWC) can be used to better understand the relative influence
of canopy cover on local soil water (Hasselquist et al., 2018).
The model uses the relationship between soil moisture and lc-
excess (line condition excess, Landwehr and Coplen, 2006) of
surface soil water to tease apart different processes by which trees
can influence local soil water dynamics through transpiration,
canopy interception, and evaporation. Additionally, the isotopic
signature of mobile soil water at deeper soil depths can be useful
to differentiate between preferential and matrix flow (Brooks
et al., 2010; Zhao et al., 2013; Evaristo et al., 2015; Bargués-
Tobella et al., 2020). Under preferential flow, watermoves quickly
through the soil profile through macropores, thereby by-passing
much of the soil matrix, and as a result, is subject to less
evaporative water losses. Thereby, under preferential flow, the
isotopic signature of deep soil water is more similar to the
isotopic composition of recent precipitation (i.e., less negative
lc-excess values). In contrast, more negative lc-excess values
of deeper soil water would suggest matrix flow as a result
of previously evaporated water slowly percolating downward
through the soil profile (Hasselquist et al., 2018).

In this study, we measured soil moisture and the isotopic
composition of soil and xylem water to assess how trees influence
local water dynamics and the potential competition between
grasses and trees for soil water within a pasture landscape in the
Copan River catchment, Honduras. Measurements were made in
both the wet and dry seasons to see how seasonality affects the
role trees play in the local soil water dynamics. More specifically,
we hypothesized that (1) grasses utilize soil water near the soil
surface regardless of season, (2) trees use surface soil water during
the wet season but shift to deeper water sources as the upper soil
layers dry out during the dry season, and (3) soil water content
is higher under trees compared to adjacent open areas (covered
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FIGURE 1 | Field site location in pasture landscapes in the Copan River catchment, Honduras. Yellow circles show the three sites: (1) El Malcote (Byrsonima

crassifolia (L.) Kunth), (2) Sesesmiles (Ficus colubrinae Standl.), and (3) El Zapote (Lonchocarpus hedyosmus Mig.); white stars show the location of the two wells.

by grasses) because of reduced soil evaporation and greater soil
infiltrability and preferential flow under trees.

MATERIALS AND METHODS

We selected a study area in the Copan River catchment, a
620 km2 catchment located near the border between Honduras
and Guatemala (14◦94

′

N, 89◦15
′

W) (Figure 1). Pastures are the
predominant land use within the catchment, covering 30% of
its area (CATIE-MESOTERRA, 2009). The soils are classified
as Typic Argiustolls, according to the USDA Soil Taxonomy
1999. The textural class of the topsoil is sandy clay loam and
sandy loam, and at deeper depths (> 1m) it varies between
loam, clay loam and sandy loam. The climate is described as
tropical savanna according to the Köppen-Geiger classification
system (Peel et al., 2007). Average annual precipitation is
1,772mm based on data collected during the past 32 years (Victor
López, personal communication), with a pronounced dry season
between November and April (Figure 2).

Within the Copan River catchment, we selected three sites:
El Malcote, Sesesmiles and El Zapote (Figure 1). In all cases,
these sites were characterized by an agroforestry system that has
been under cattle pasture for the past 20 years, with a ground
cover of native and introduced grass species, including Cynodon
dactylon (L.) Pers., Cynodon plectostachyus (K.Schum.) Pilg.,
Panicum maximum Jacq., and Brachiaria brizantha (A.Rich.)
Stapf. Within the landscape, there are scattered clumps of native
tree species with three trees per clump on average as well as
living fences of introduced tree species (e.g., Gliricidia sepium
(Jacq.) Walp.) to mark farm boundaries. We selected three sites
that represented one of the three dominant tree species each,

sampled as follows: site 1, El Malcote (Byrsonima crassifolia
(L.) Kunth); site 2, Sesesmiles (Ficus colubrinae Standl.); and
site 3, El Zapote (Lonchocarpus hedyosmus Mig.). Average tree
density in the pasture landscape ranged between 5 and 7
trees ha−1, based on Google Earth images acquired in 2007.
Although we identified representative grass species in the sites,
but besides they were well mixed spatially, their differences
were not statistically significative, thus, we pooled all species
under the category of “grasses.” The root system of Cynodon
dactylon mostly develops within 0–25 cm depth but can go as
deep as 70–80 cm in sandy soils, with underground biomass
mostly rhizomatous. Creeping solons of 0.5–1.5m length, but can
reach 20m, spread rapidly with numerous culms (8–40) (Heuzé
et al., 2015). While Brachiaria brizantha have deep roots (down
to 2m) and short rhizomes (Heuzé et al., 2016). And the roots of
Panicum maximum are fibrous, long and and occasionally have
rhizomes, which confer some drought tolerance; the roots are
fibrous, long and gnarled and occasionally have rhizomes, which
confer some drought tolerance (Peters et al., 2010).

The mean animal load was 1.8 AU ha−1 (Animal Unit
equivalent to 400 kg live weight per ha) n Sesesmiles, where the
reference for sustainable livestock management is between 1 and
1.3AU ha-1 (Cristobal Villanueva, personal communication). At
El Malcote and El Zapote we estimated that the animal load could
be even greater. At all three sites, there were visible signs of soil
degradation due to cattle trampling and overgrazing.

Vegetation Sampling for Isotopic Analysis
In each site, we collected three samples from three trees located
within a clump, which were of the same species in each site,
together with three samples of grasses located underneath the
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FIGURE 2 | Mean monthly rainfall (on the right) and temperature (on the left) distribution (average 1990-2019), in the Copan River catchment, Honduras

(Zepner et al., 2020).

trees and another three samples of grasses in the adjacent open
area at a distance from the center of the clump equivalent to one
length of the tallest tree (ca. 20m). Samples were collected in both
the dry (January 2013) and wet (June 2013) seasons.

We randomly selected three trees per clump. For each selected
tree, twig samples were collected from three locations in the tree
crown at random cardinal directions. We cut suberized twigs,
∼10mm in diameter and 50–80mm long, from individual trees.
Twigs were collected at 150 cm height or from the lower branches
in taller trees at three different locations within each tree canopy
to minimize any bias based on location within the canopy.

Grass samples were collected also following random cardinal
directions both below the tree canopy and in the open areas. We
collected culms, the non-photosynthetic part of the stem near the
junction with roots, from individual grasses.

Both collected twigs and culms were immediately placed in
a capped vial, wrapped in parafilm and stored in a refrigerator
(4◦C) until water extraction for stable isotope analyses.

Soil Sampling for Soil Water and Isotopic
Analyses
At the same time and location where grass samples were
collected, we also collected soil samples using a soil core (8 cm
diameter) to a depth of 100 cm. From individual soil cores, two
samples were taken for water extraction and isotopic analyses;
one corresponding to topsoil (0–10 cm depth), and the other to
subsurface soil (90–100 cm depth). Freshly collected soil samples
were placed in capped glass vials, wrapped in parafilm and
refrigerated at 4◦C until water extraction for isotopic analyses.

Rain and Groundwater Sampling
Rain water samples were collected during the rainy season of
2013 (from 64 events in total) in two open areas within the
catchment using plastic funnels (25 cm in diameter) connected to
opaque collection bottles.Water was collected from the collection

bottles immediately after each rain event and placed in 20ml
bottles, sealed with parafilm, and stored in a refrigerator (4◦C)
until isotopic analysis.

Two wells of 3m depth were installed to collect shallow
groundwater samples; one well was located next to sites 1 and
2, whereas the second well was located closer to site 3 (Figure 1).
Groundwater samples were collected using a stick fastened to a
plastic bottle (20ml) when water was available in the well, which
was usually after heavy rain events.

Isotopic Analysis
A cryogenic vacuum distillation line (Ehleringer et al., 2000) was
used to extract water from vegetation and soil samples following
the procedure described in Bargués Tobella et al. (2017) and
Hasselquist et al. (2018).

Gravimetric soil water content (SWC) was calculated as:
[(fresh weight—dry weight)/dry weight x 100], where fresh and
dry weight correspond to the sample weight before and after
thorough water extraction (100 ◦C, 1.5 h), respectively. The
isotopic composition of water extracted from soil and plant
material was analyzed using Cavity Ring-Down Spectroscopy
(CRDS) on a Picarro L2130-i isotopic water analyzer (Picarro
Inc., Sunnyvale, CA, USA, Picarro, 2012) at the SLU Stable
Isotope Laboratory (SSIL) at the Department of Forest Ecology
and Management, Swedish University of Agricultural Sciences
(SLU), Umeå. We use the delta notation (‰) to the Vienna
Standard Mean Ocean Water (VSMOW) to express all isotopic
values (van Geldern and Barth, 2012). We obtained an analytical
precision of 0.05‰ for δ

18O and 0.26‰ for δD, based on repeated
analysis of control samples.

lc-excess values of soil water were calculated as described
by Landwehr and Coplen (2004) to obtain a relative index of
evaporation. To do this, we used the measured δ

18O signature
of soil water (topsoil water and at 100 cm depth) (δ18OM)
and the Local Meteoric Water Line (LMWL) we obtained for
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Copan [δD = 8.05 (δ18O) + 16.55]. We then calculated the
predicted δD signature (δDP) of each topsoil water sample
as δDP = 8.05 δ

18OM +16.55. Finally, we calculated the lc-
excess values of our samples by subtracting the predicted δD
signature from the measured one (lc-excess= δDM–δDP). Values
close to zero indicate little difference between the samples and
local precipitation, whereas more negative values indicate a
greater degree of evaporation (Landwehr and Coplen, 2006).
These analyses are based on the conceptual model on how
trees can potentially influence soil water dynamics proposed by
Hasselquist et al. (2018).

Data Analysis
The proportion of different water sources used by trees and
grasses was estimated using the IsoSource mixing model (Phillips
and Gregg, 2003, available at http://www.epa.gov/wed/pages/
models/stableIsotopes/isosource/isosource.htm). In this model,
the mean δ

18O signature of xylem water was compared to that
of soil water at two different depth intervals (0–10 cm and 90–
100 cm), and to that of shallow groundwater (water table at 3m
depth) to estimate the relative contribution of surface, subsurface
and groundwater sources to water uptake by trees and grasses.
Using an isotopic mass balance approach, this model provides
the distribution and mean contribution from each potential
water source. We used a source increment of 1% as suggested
by Phillips and Gregg (2003) and a mass balance tolerance of
0.1‰. The mixture was defined for each vegetation type/location
(tree, grass underneath tree, grass in open area) according to its
mean δ

18O xylem water signature at each site (3 replicates per
site). We defined a total of 18 mixtures [3 sites x 3 vegetation
types/locations x 2 seasons-dry and wet-].

Although we recognize the advances in the Bayesian mixing
models which include posterior parameter estimates and the
extent of uncertainty in source contributions to the mixture
population (Semmens et al., 2013), we still rely in simplicity of
earlier linear mixing models (e.g., IsoSource), which are easier to
evaluate, such that if a consumer’s isotopic signature is outside
the mixing polygon bounding the proposed mixture sources,
then mass balance cannot be established and there is no logical
solution. Such assumption is not inherent in the Bayesian mixing
models, because the source data are distributions not average
values, and these models will quantify source contributions even
when the solution is very unlikely (Smith et al., 2013). Also
recognizing the limitations of IsoSource, Phillips and Gregg
(2003) emphasized that the outputs of IsoSource should be
characterized in terms of the distribution of the solutions, not
just of a single value such as the mean or most likely value.
For practicality, we choose the single isotope framework (δ18O),
based on previous studies showing no significant differences
using only δ2H and only δ

18O by IsoSource model (Wang et al.,
2019), and for practicality, we decide to use only d18O.

To test differences in soil moisture we used a general linear
model (one way ANOVA) with SWC as response variable and
season, soil depth and location (i.e., under trees and open areas)
as fixed explanatory variables and site as a blocking factor.
However, blocking for site was never significant in this or any
other analysis, and we therefore removed it from all statistical

analyses. We tested the relation between soil water content at
0–10 cm depth with lc-excess to assess different mechanisms by
which trees may influence local soil water dynamics following
the model of Hasselquist et al. (2018). This is a conceptual
model able to explain that trees can directly affect surface
soil moisture by either transpiration and/or interception of
incoming precipitation. Surface soil moisture derived by changes
in evaporative water losses from the soil surface is also affected
by trees. Different isotopic fractionation processes that can be
disentangled by examining the relationship between surface
soil water content and the isotopic composition of surface soil
water. The model also allows to assess different pathways in
which water moves throughout the soil profile (i.e., matrix vs.
preferential flow).

For this purpose, we used a general linear model (one way
ANOVA)with lc-excess as response variable and season and
location (under trees vs. open areas) as dependent variables
together with the corresponding interactions. To assess the
presence of preferential flow, we use a second GLM to check the
relationship between lc-excess at 0–10 cm and lc-excess at 90–
100 cm (topsoil vs. subsoil water lc-excess), again with season
and location as additional dependent variables. To test if the
proportion of water used from each of the three considered
sources (i.e., 0–10 cm, 90–100 cm and groundwater) varied with
season and vegetation type we used three general linear models
with the mean percentage of uptake from each source as separate
response variables and vegetation type/location (tree, grass under
trees and grass in open areas), and season as explanatory
fixed variables. All data were tested for normal distribution
and homogeneous variance using the Shapiro-Wils test and the

FIGURE 3 | Dual-isotope plot diagram of the study site and sampling process.
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FIGURE 4 | Mean (±SE) soil water content at 0–10 cm (A) and 90–100 cm (B) under trees (white bars) and in adjacent open areas (gray bars) during the wet and dry

season. Bars with different lowercase letters have statistically significant differences (p < 0.05).

Levene statistic, respectively.We used InfoStat statistical software
(National University of Cordoba- FCA-UNC, Argentina) for the
analyses of mean proportional water uptake partitioning, and
Minitab 19 (Kowalski and Montgomery, 2010) for the general
linear regressions.

RESULTS

Distribution of Water Sources and
Vegetation Isotope Signatures
The dual-isotope plot diagram (Figure 3) confirms precipitation
and groundwater signatures proximity, and the presence of
evaporation and mixing processes given that soil water samples
deviate from the GMWL, falling below it in most cases.
Vegetation samples of trees and grasses underneath trees plotted
mostly above the GMWL showing little overlap with soil samples.

Soil Water Content Under Trees and in
Open Areas
During the dry season, mean SWC at 0–10 cm and 90–100 cm
depth was ca. 1.3 times higher (p < 0.05) and 1.6 times higher
(p < 0.05) under trees compared to the adjacent open areas,
respectively (Figures 4A,B). In this study, open areas represent
zones in between trees which are covered by grasses. In contrast,
during the wet season, there was little difference in SWC between
open areas and areas under trees at both 10 and 100 cm depth
(Figures 4A,B).

Water Sources Used by Trees and Grasses
During the wet season, both trees and grasses primarily utilized
topsoil water, whereas during the dry season, they shifted to
deeper water sources. The relative contribution of topsoil water
to grasses water uptake was only ca. 25% on average during the
dry season, a value significantly lower than that for the wet season
with 62% on average (p < 0.001; Figure 5, top panel). In the

dry season, grasses obtained 45% of their water from the subsoil,
while trees relied mostly on groundwater (79 %) (Figure 5). The
distribution of the mean fractional contribution of the three
considered water sources to the water uptake of each sampled
plant is shown in Figure 6.

Soil Water Dynamics—Relationships
Between Soil Water Content and lc-excess
Under Trees and in Open Areas
There was anearly significant positive relationship between SWC
and lc-excess of topsoil water for treatment (under trees and open
areas, p < 0.09), but not for the season (p > 0.05). We also tested
these relationships separately by treatment and season (Figure 7);
Results showed no significant relationship between SWC and
lc-excess under trees neither during the dry (p > 0.05) or wet
seasons (p > 0.05). In the open areas, there was a significant
positive relationship between SWC and lc-excess during the dry
season (p < 0.05), but not during the wet season (p > 0.05).

Preferential Flow—Relationships Between
lc-excess Values at Different Soil Depth
Under Trees and in Open Areas
In general, lc-excess values of bulk soil water samples did not
differ between treatment (p > 0.05) or seasons (p > 0.05;
Figure 8). However, the interaction between treatment and soil
depth was nearly significant (p < 0.09, Table 1), indicating more
negative lc-excess values near the surface compared with deeper
soil depths under trees, with the opposite situation in open areas.

DISCUSSION

Forest hydrology models intended for policy decisions on
tree-water interactions often only consider evapotranspiration
effects of trees. It is also commonly assumed that enhanced
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FIGURE 5 | Proportion of water uptake from the three considered water

sources (0–10 cm depth, 90–100 cm depth, groundwater) by vegetation

type/location in pasture landscapes in Copan, Honduras. White boxplots =

trees, light gray=grasses in open areas, and dark gray = grasses underneath

trees. Different letters at upper case show statistically significant differences

between seasons, and at lower case, statistically significant differences

between vegetation types/location (p < 0.05).

FIGURE 6 | Summary distribution of the mean fractional contribution of each

of the three considered water sources (0–10 cm depth, 90–100 cm depth,

groundwater) to the water uptake of the 18 plants that were sampled (3 sites

× 3 vegetation types/location (trees—T, grasses underneath tree -GuT, and

grasses in open areas -G) x 2 seasons) in pasture landscapes in Copan,

Honduras.

transpiration by trees can reduce deep soil water drainage and
thus groundwater recharge compared to croplands without trees
(Jobbagy and Jackson, 2004). However, these generalizations may
be biased since studies like ours from degraded seasonally dry
tropical areas with an open tree cover are largely absent (Malmer
et al., 2010; Ellison et al., 2017). Results from this study show that
such assumptions oversimplify the impacts of trees on soil water
dynamics in tropical agroforestry pastures with scattered trees.
Specifically, we found that during the dry season, soil moisture
was higher under tree canopies compared to open areas both at
0–10 and 90–100 cm depth. We also present soil isotopic data
that suggests that evaporation of soil water is the main process
influencing topsoil moisture, occurring when rainfall is low (dry
season), as shown by the positive relationship between SWC and
lc-excess of topsoil water in open areas, with greater isotopic
enrichment of topsoil water in drier soils.

We used a combination of measurements, including stable
isotopes of soil and plant xylem water, together with soil
moisture at different depth intervals to gain insight on the
main processes influencing soil water dynamics under trees in a
tropical agroforestry pasture. Using the framework described in
Hasselquist et al. (2018), we investigated potential relationships
between soil water content and lc-excess of surface soil water
as a way to gain a better understanding of how trees influence
local soil water dynamics. Although only nearly significant (p
< 0.09), we found a positive relationship between SWC and
lc-excess of topsoil water in open areas during the dry season,
suggesting that variation in surface soil water in open areas was
largely driven by evaporation (Figure 7A). This relationship was
not observed under trees, suggesting that, in this case, evaporative
soil water losses were not the main driver influencing topsoil
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FIGURE 7 | Relationships between lc-excess of soil water and SWC at 0-10 cm depth under trees and open areas (squares) in a pasture landscapes in Copan,

Honduras during the dry (A) and wet seasons (B).

moisture. This, in turn, may help explain why SWC at 0–
10 cm depth was ca. 1.3 times higher under trees compared to
open areas during the dry season (Figure 4A). Similar results
were attributed to shade tree effects by Akpo et al. (2005). It
is well known that tree canopies drastically reduce incoming
solar radiation in open grassland ecosystems (Belsky et al.,
1989; Ko and Reich, 1993; Scholes and Archer, 1997) thereby
lowering soil temperatures and consequently evaporative water
losses from the soil surface (Jackson and Wallace, 1999; Lin,
2010). Other studies in savanna ecosystems in Africa (Georgiadis,
1989; Weltzin and Coughenour, 1990; Belsky et al., 1993), as
well as in Central and South America (Kellman, 1979; Garcia
Miragaya et al., 1994) have also reported improved soil water
contents beneath isolated trees. During the wet season, although
not significant, we found a negative relationship between SWC
and lc-excess of surface soil water under trees, which according
to the conceptual model described by Hasselquist et al. (2018)
would suggest that canopy interception (Allen et al., 2014)
plays an important role in the spatial variation of soil water

dynamics in this ecosystem and may help explain the lack of
differences in SWC under trees compared to open areas during
the wet season.

Although not significant, we observed that lc-excess values
of soil water were less negative under trees compared with
open areas at the subsoil (Figure 8), which suggests a significant
amount of recent rainwater quickly by-passing the topsoil
thereby escaping evaporative water losses at the soil surface.
Additionally, these results also suggest that trees lead to less
evaporation of topsoil water. This finding supports the idea
of enhanced preferential flow under trees compared to open
areas, which is consistent with previous dye-tracing studies
in the same pasture showing greater levels of macroporosity
and occurrence of preferential flow in the vicinity of the trees
(Benegas et al., 2014). Similar results have been observed in an
agroforestry parkland in semiarid Burkina Faso, where the degree
of preferential flow was highest close to trees, and minimal in
large open areas (Bargués Tobella et al., 2014; Bargués-Tobella
et al., 2020). Preferential flow is more easily initiated when the
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FIGURE 8 | Mean ± SE lc-excess values of bulk soil water collected at

different soil depths (0-10 cm vs.90-100 cm) under trees and in adjacent open

areas in pasture landscapes in Copan, Honduras.

TABLE 1 | Summary of the general linear model for preferential flow analysis

(relationships between lc-excess values at different soil depth under trees and in

open areas).

Source of variation Degree of freedom Mean Square P value

Model 7 282.18 0.22

Treatment 1 252.91 0.27

Season 1 93.99 0.49

Soil Depth 1 41.74 0.64

Treatment*Season 1 369.61 0.18

Season*Depth 1 106.88 0.47

Treatment*Depth 1 632.01 0.08

Treatment*Season*Depth 1 478.12 0.13

Error 64 200.63

Total 71

Bold values represent the nearly significant term in the linear model.

topsoil layer approaches near-saturated conditions (Alaoui et al.,
2011) which in turn may explain the less negative lc-excess
values of deep soil water under trees compared with open areas
(Figure 8). Macroporosity and soil water holding capacity are
enhanced by biological processes (i.e., bioturbation, release of
organic acids, production of root exudates, etc) (Coleman et al.,
1991; Rhoades, 1996; Lavelle et al., 2006; Villalobos-Vega et al.,
2011; Beven and Germann, 2013), which in turn favors soil
infiltration, thereby reducing surface runoff (Weiler and Naef,
2003). Therefore, in some ecosystems it has been shown that trees
can enhance groundwater recharge and reduce surface runoff
(Sandström, 1998; Bruijnzeel, 2004; van Dijk and Keenan, 2007;
Xiong et al., 2008; Niemeyer et al., 2014; Ilstedt et al., 2016).

At the wet season, but in open areas, lc-excess of soil water
collected at 100 cm, although no significantly different, was less

negative compared to soil water collected at 10 cm depth. This
result could imply the presence of preferential flow in open areas
in the wet season, whenwater on the soil surface ismore available.
Streamflow and groundwater recharge are generated by non-
uniform infiltration processes across the landscape, particularly
at hillslope scales. Variables such as soil thickness, depth to water
table, and rainfall characteristics may influence these processes
(Berry et al., 2018).

In this study, we also determined the isotopic signature of
plant xylem water to better understand the sources of water
used by trees and grasses during the dry and wet season in
a tropical agroforestry pasture. During the wet season, both
trees and grasses primarily utilized soil water near the soil
surface (i.e., 0–10 cm depth; Figure 5 top panel). However,
during the dry season, both grass and trees utilized deeper
water sources, with grasses primarily accessing water at deep
soil depth (90–100 cm), and trees primarily utilizing groundwater
(Figure 5 lower panel). This finding of different water sources
for grasses and trees during the dry season supports Walter’s
two-layer hypothesis (Walter et al., 1971), which describes the
below-ground partitioning of soil resources between woody and
herbaceous vegetation. According to this hypothesis, grasses
primarily use soil water near the soil surface because of their
intense and shallow root system. In contrast, woody savannah
trees tend to be deeper rooted, and thus primarily rely on
soil moisture at depths below the rooting depths of grasses.
Walter‘s hypothesis generally holds for dry savannahs, which is
the ecosystem for which the hypothesis was developed, although
it is important to point out that some studies do not support
this hypothesis (Le Roux et al., 1995; Mordelet et al., 1997;
Kulmatiski et al., 2010; Verweij et al., 2011; February et al., 2013).
Our finding of trees utilizing deeper water sources compared to
grasses during the dry season suggests niche partitioning when
topsoil water availability becomes limiting, which is consistent
with Walter’s two-layer hypothesis and related studies (Strang,
1969; Sala et al., 1989; Ehleringer et al., 1991; Smit and Rethman,
2000; Miller et al., 2010; Rossatto et al., 2013). This finding is
not consistent with previous studies, including tropical systems,
that have shown similar water sources for trees and grasses (Le
Roux et al., 1995; Seghieri et al., 1995; Mordelet et al., 1997; Le
Roux and Bariac, 1998; Ludwig et al., 2003; February andHiggins,
2010; Verweij et al., 2011), thereby suggesting competition for
soil water sources between trees and grasses (Walter et al., 1971;
Walker et al., 1981; Walker and Noy-Meir, 1982). Even though
competition is a likely interaction between trees and grasses, it
often occurs only when soil water is not limiting (Maestre et al.,
2005; Brooker et al., 2008), which is consistent with the findings
from this study, which indicate that trees and grasses were
primarily accessing shallow water sources during the wet season.

It is interesting to note that during the dry season, when SWC
content near the soil surface was reduced, grasses also shifted to
deeper water sources, suggesting a plasticity response in grass
roots function in response to resource availability (Sala et al.,
1989; Doussan et al., 2003). Among the grass species in this study,
Cynodon spp. has the deepest root system, which can reach to
2m depth in ecosystems characterized by drought periods with
water limitations (Etemadi et al., 2005). Additionally, Panicum
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maximum, the most abundant grass in our system, has been
reported to take up water from below 1 meter depth in primary
forests and savanna-like abandoned pastures in eastern Amazon
(Moreira et al., 2000). Brachiaria spp also have a rooting system
that can penetrate depths > 1m (Rattan and Stewart, 2013),
with certain Brachiaria species having greater root biomass at
deeper depth (i.e., B. humidicola and B. dictyoneura) making
them better adapted to longer dry periods than other grass species
(i.e., B. brizantha and B. decumbens) (Guenni et al., 2002). These
morphological features of the grasses at our study site support
our finding that grasses would be able to utilize deeper (i.e., 90–
100 cm depth) water sources during the dry season. Moreover,
these findings provide a mechanistic understanding of how these
grasses can overcome seasonal water limitation, which is crucial
for improving the foliage value and carrying capacity in these
ecosystems (Sarmiento, 1992).

In conclusion, our results show that the positive coexistence
of grasses and trees in the studied pasture landscape is possible
through a spatiotemporal partitioning of water resources. During
the wet season, when topsoil water is not limiting, both trees
and grasses primarily utilized soil water near the soil surface
(i.e., 0–10 cm depth). In contrast, during the dry season,
both grasses and trees utilized deeper water sources, with
grasses primarily accessing soil water at deeper soil depths (i.e.,
90–100 cm) while trees relied heavily on groundwater. This
finding of niche partitioning during the dry season provides
a mechanistic understanding of the coexistence of trees and
grass in pasture landscapes with scattered trees. Additionally,
our results highlight that trees may have a positive effect on
local soil water dynamics through reduced evaporative soil water
losses during the dry season and enhanced preferential flow
under trees. Nevertheless, we recognize that different species with
higher water demands, and relatively greater planting densities
may result in different outcomes. In any case, providing further
support that trees can positively affect the local water balance,

which has important implications for landscape management.
Promoting the inclusion of scattered trees in pasture systems
to provide water ecosystem services in the silvopastoral systems
are adding to other ecosystem services like biodiversity or
carbon sequestration.
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