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Impacts on global water resources may be intensifying due to the growing and

differentiated forms of land use and occupation, which influence the water cycle and

thus the maintenance of life. In the Amazon, the effect may be even worse, as it is one

of the world’s most vulnerable regions to these changes. This work aimed to analyze

the response of the components of the water balance to changes in land use and cover

in the Eastern Amazon over three decades (1980–2013). First, soil texture maps were

prepared. These combined with the classes of use in each decade let us estimate the

values of storage and variation in storage (1S) of water in the soil. The behavior of

the components of the water balance [precipitation, potential evapotranspiration, actual

evapotranspiration (E), and 1S] were analyzed according to the Budyko model on the

annual scale as a function of the aridity and evaporative indices. For the seasonal scale,

a new parameter (y0) was introduced to explicitly represent the additional water available

for E, in addition to instantaneous precipitation. The seasonality of the rains and the

seasonal dynamics of storage were directly incorporated into the model developed,

which allowed us to understand what the dominant control factors of water balance

are. In the decade from 2000 to 2009, the remaining forest cover is only 48.91%, while

the cover formed by pasture is 50.47%, meaning the water storage capacity in the soil

decreased 8.1%. In the 1990s, to 1999, precipitation shows a reduction, probably as a

reflection of the very strong events of La Niña and El Niño (1988–1989 and 1997–1998).

Observing the sum of the surface area of water bodies in the region and the relationship

of forest vs. pasture, it is possible to infer that the elevation in evapotranspiration is

more related to the increase in evaporation due to the increase in the pasture area

than to the reduction transpiration due to forest loss, reinforcing the hypothesis that

evapotranspiration increases with pasture area.

Keywords: hydrological response, Budyko model, water resources management, soil degradation,

evapotranspiration
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INTRODUCTION

Anthropogenic activities alter the landscape, vegetation, climate,
and atmospheric composition, resulting in changes in the
terrestrial water balance, water resources, and ecohydrological
patterns (Van der Velde et al., 2014; Wang et al., 2016).
The effects of changes in hydrology show strong spatial and
temporal variations due to variability in climatic factors such as
precipitation and watershed heterogeneity. An rising trend in air
temperatures and a falling trend in potential evaporation have
been reported in many parts of the world (Golubev et al., 2001;
Hobbins et al., 2004; Roderick and Farquhar, 2004; Souza-Filho
et al., 2016).

Research on the hydrological role of vegetation has been
conducted over several decades (Horton, 1919; Wicht, 1941;
Penman, 1963; Bosch and Hewlett, 1982; Turner, 1991).
Experimental results show that reductions in forested areas
produce increases in streamflow, although the magnitudes of
these increases may be different (Bosch and Hewlett, 1982;
Bruijnzeel, 1990). Large watersheds, with an area greater than
10,000 km², tend to show a mosaic of uses and practices, with
heterogeneities in geology, topography, and soil. This factor,
added to the spatial and temporal variability in climate, causes
the hydrological responses in large and small watersheds to be
different (Wilk et al., 2001).

Forests and cerrado vegetation have given way to pasture,
agricultural cultivation, economic development, expansion of
cities andmining enterprises, etc. In Brazil, forest has been widely
replaced by pasture, which covers large-scale watersheds, but
there are still few studies on the impacts of land-use changes
in these watersheds, and there is a lack of a common method
for such investigations (Bayer, 2014; Lucas-Borja et al., 2020).
In the Amazon basin, one of the most important watersheds in
the world, territorial planning andwatermanagement are critical,
as nearly 370,000 km2 of the native vegetation has been cleared
since 1990 (Pailler, 2018).

Characterizing the water balance behavior at various time
scales (especially in the Amazon region) remains an important
but challenging research task because the factors controlling
precipitation partitioning vary with the time scale, such as
rainfall intensity, vegetation cover type, and topography, and
are fundamental to all types of runoff (Dunne and Black, 1970;
Beven and Kirkby, 1979; Rizzo et al., 2020; Moniruzzaman
et al., 2021). The regional water yield at a mesoscale can be
estimated as the difference between input (precipitation) and
output (evapotranspiration). Evapotranspiration (evaporation +

transpiration) is an important flow term in the water cycle
and a key variable for understanding the complex interactions
between climate, vegetation, and soil (Dooge, 1992; Zhang et al.,
2001; Donohue et al., 2007; Huo et al., 2013; Wang et al.,
2016). Evapotranspiration is also used to diagnose changes in
hydrological processes at the watershed scale (Liu and Yang,
2010).

Budyko (1958, 1974) created a widely used system to
investigate energy andwater flows in watersheds. It considers that
the available energy (expressed as potential evapotranspiration,
ETo) and water supply (expressed as precipitation, P) control

the current long-term mean evapotranspiration and runoff rates
on a regional or watershed scale. The Budyko model results
from the coevolution of vegetation, soil, and geomorphology
with climate and explains hydrology as a system without
focusing on physical processes in isolation (Gentine et al.,
2012; Troch et al., 2013; Wang and Wu, 2013; Harman
and Troch, 2014; Wang and Tang, 2014; Wang et al.,
2016).

Therefore, understanding and quantifying the impacts of
land use and land cover variation on hydrological responses
is important for devising strategies to manage water resources
and land use and resolve conflicts over the use of water
resources, especially in areas where the water supply is limited
during the dry season (Kumar et al., 2019). This assertion
establishes a hydrological paradox associated with the paradigm
that in the Amazonian environment, one of the largest water
sources on the planet, despite the high precipitation rates,
many rivers and water bodies, such as the Itacaiúnas River
Watershed (IRW), have intermittent regimes, reduced water
storage capacity, and lack of watershed regulation (Iriondo and
Latrubesse, 1994; Alves and Beserra Neta, 2018; Salomão et al.,
2019).

The IRW is located in the Amazonian deforestation arc, where
50% of the area was deforested between the 1970s and 2010s
(Pontes et al., 2019). Changes in land use in the IRW (Souza-Filho
et al., 2015, 2016, 2018; Silva Júnior et al., 2017a) associated with
the development of agriculture, which has been replacing forest
with pastures, together with the increase in agricultural area,
have caused an imbalance in the hydrological regime, leading
to increased soil and water degradation in recent decades. To
investigate this further, this study quantified the response of long-
term (annual) and seasonal (monthly) water balance components
to changes in land use and vegetation cover from 1980 to 2013 in
the IRW, Eastern Amazon.

MATERIALS AND METHODS

Study Site
The IRW, included in the Tocantins–Araguaia hydrographic
region (Brazil., 2003), drains an area of∼42,000 km2. In the relief,
the Serra dos Carajás mountain range stands out, with altitudes
ranging from 400 to 900m, in contrast to the adjacent areas of
80-300m altitude. Two types of land cover predominate, tropical
forest and montane savanna, and the land use is dominated by
extensive pasturelands surrounding a mosaic of forest remnants
composed of indigenous lands and conservation units, which
occupy 11,700 km2 (Figure 1), or approximately a quarter of
the watershed area (Souza-Filho et al., 2016; Silva Júnior et al.,
2017b).

Thin soils with low water storage capacity, predominantly
dystrophic red-yellow argisols, are located in the less sloping
regions and are made mostly of mineral material with a low
degree of saturation (<50%). The two other soil classes are
dystrophic red-yellow latosols and dystrophic litholic neosols
(according to the Brazilian Soil Classification System). Latosols
are mainly present in land units in the Southern Amazon
Residual Plateaus (Carajás Mountains and plateaus) and in
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FIGURE 1 | Temporal and spatial variation in land cover and land use in the IRW in 2013. Polygons define the boundaries of indigenous lands and conservation units.

The Marabá station is located in the extreme northeast. Source: Adapted from Souza-Filho et al. (2016).

hills with medium slopes. Latosols vary from strongly to well
drained, and moderately or imperfectly drained soils also occur
(Embrapa, 2006). Neosols are usually present in areas with more
undulating relief.

Alvares et al. (2013) define the climate of the region as
typical tropical monsoon (Am). According to the Brazilian
National Institute of Meteorology (INMET, 1992), the mean
air temperature is above 26◦C, with a mean value recorded for
the watershed region of 27.2◦C and a relative air humidity of
∼80%. The wet (November to May) and dry seasons (June to
October) are well-defined, with total annual precipitation indices
ranging from 1,420 to 2,159mm, including amean annual total of
∼1,452mm in the wet season and 236mm in the dry season. The
highest rainfall indices are concentrated between December and
May, reaching between 71 and 84% of the mean annual rainfall,
while the driest period runs from June to August, with a mean
of 2.4 to 5.5% of the total annual rainfall recorded (Silva Júnior
et al., 2017b).

Water Balance Components in the IRW
The water balance concept, expressed in Equation (1), is useful
to evaluate how changes in catchment conditions can alter the
partitioning of rainfall into different components (Zhang et al.,
2001):

P = ET+Q+ 1S (1)

where P is precipitation, ET is evapotranspiration, Q is the sum
of surface and subsurface runoff measured as streamflow, and
1S is the variation in soil water storage. Precipitation is the
largest term in the equation and varies temporally and spatially.
In most hydrological applications, it is appropriate to assume
that precipitation is independent of vegetation type (Calder,
1998). However, on the continental scale, some studies using
general circulation models suggest that vegetation type can affect
precipitation regime (Rowntree, 1988; Gash et al., 1994; Xue,
1997; Gandu et al., 2004; Coe et al., 2009). Evapotranspiration
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is the second-largest term in the equation and is directly
linked to vegetation characteristics. In arid and semiarid regions,
evapotranspiration is almost always equal to precipitation, and
in humid areas, it is limited by the available energy. Runoff is
affected by vegetation structure, interception, and transpiration
(Zhang et al., 2001). In annual terms, surface runoff generally
has a good correlation with rainfall, particularly in areas where
potential evaporation and precipitation are out of phase (Budyko,
1974). The last term in the equation corresponds to the change
in soil water storage. In a long-term estimate (5–10 years), it is
reasonable to assume that the changes in soil water storage are
negligible compared to the mean annual precipitation intensity.
Available energy is represented by potential evaporation and
water availability by precipitation. However, water storage
dynamics are significant at the monthly and seasonal scales
and therefore should be considered when calculating available
water supply (Chen et al., 2013). Recharge, the smallest term
in the equation, is usually inferred from precipitation and
evapotranspiration measurements.

Budyko (1958, 1974) postulates the following relationships as
valid under very dry conditions:

Q/P → 0 ET/P → 1 Rn/P → ∞ (2)

where Q is runoff, P is precipitation, ET is evapotranspiration,
and Rn is the net radiation. Under very wet conditions, the
relationships are as follows:

ET/P → Rn Rn/P → 0 (3)

The rational function that satisfies the conditions presented in
Equations (2, 3) is:

ET

P
=

1

+
w
ETo

P
1+ w

ETo

P
+ (

ETo

P
)
−1

(4)

where w is the plant-available water coefficient and represents
the relative difference in the way the plants use soil water
for transpiration.

It is important to emphasize that there was no measurement
of groundwater recharge, so it could not be considered in the
calculations developed. Because IRW is located in the Carajás
Mineral Province, the largest mining district in Brazil with active
mines of iron, copper, nickel and manganese, the soil in the
region is mostly crystalline, very fractured, which makes storage
difficult. large amounts of water that may make some difference
in our study (Sahoo et al., 2019; Salomão et al., 2020).

Estimate of Potential and Actual
Evapotranspiration
Evapotranspiration is a complex process that is affected by
precipitation interception, net radiation, advection, turbulent
transport, canopy resistance, leaf area, and plant-available water
(McNaughton and Jarvis, 1983; Zhang et al., 1999, 2001). Under
arid conditions, the main factors controlling evapotranspiration
are water and canopy resistance, and under humid conditions,
advection, net radiation, leaf area, and turbulent transport.

TABLE 1 | Equations used to estimate actual annual evapotranspiration.

Equation References

ET = P [1− exp (−ETo/P)] Schreiber (1904)

ET = P/

[

1+ (P/ETo)
2
]0.5

Pike (1964)

ET =
{

P [1− exp (−ETo/P)]Eotanh (P/Eo)
}0.5

Budyko (1974)

ET = P+ Eo − [Pm
+ ETo

m]
1�m Fu (1981)

ET is the annual evapotranspiration (mm); P is the annual precipitation (mm); ETo is

the potential evapotranspiration (mm); m is an integration constant representing the

watershed characteristics (vegetation type and soil properties and/or topography).

For this study, ETo was taken from Silva Júnior et al.
(2017a), who calculated it by eight empirical methods [Penman-
Monteith (PM), Priestley-Taylor, Hargreaves-Samani, Camargo,
Thornthwaite, Hamon, Kharrufa, and Turc (TC)], among which
TC showed the best statistical fit and was used to estimate
the potential evapotranspiration (Doorenbos and Pruitt, 1977;
Pereira et al., 1997) of the IRW. The input variables in the period
from 1980 to 2013 were obtained from data provided by Xavier
et al. (2015).

The long-term (annual) ET was calculated by four methods:
Schreiber (1904), Pike (1964), Budyko (1974), and Fu (1981), as
described in Table 1.

Hydroclimatic Seasonality: Dry and Wet
Months
Taking as a conceptual basis the applications performed byWang
(2012), Chen et al. (2013), and Wu et al. (2017), the concept of
effective precipitation was adopted to define the monthly and
seasonal climatic aridity indices and evaporation rates.

Water storage dynamics are significant on a monthly and
seasonal scale and therefore should be considered for calculating
available water supply, which in dry months includes not only
precipitation but also the depletion of stored water in the
watershed soil, while watershed storage is replenished by the
portion of infiltrated rainwater during wet months. Therefore,
the increase in storage should be subtracted from the amount of
precipitation (Chen et al., 2013).

According toWang (2012) and Chen et al. (2013), the effective
precipitation (Pm-1Sm) represents the water availability; thus,
the monthly aridity index (Am) and mean monthly aridity index
(Ām) are defined by the relationship between the available energy
and water (Equations 5, 6):

Am =
Epm

pm − 1sm
(5)

and

Ām =
Ēpm

p̄m − 1̄sm
(6)

where EPm and Pm are the monthly potential evaporation and
precipitation, respectively, and1Sm is the monthly change in soil
water storage.
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The dry and wet months were defined according to their Am

values: wet months had Am < 1 and drymonths had Am ≥ 1. This
limit may not be valid for all years since the definition of dry and
wet months is based on Ām (Equation 6). If the monthly aridity
index of a year (AI) significantly deviates from its mean value, it
is possible that the seasonal aridity indices are greater than 1 in
the wet season (or <1 in the dry season).

After the constantly wet and dry months were identified
(Equation 6), the aggregate monthly values for the intensities of P,
ETo, Q, and 1S were calculated for each year from 1980 to 2013.
For example, the precipitation intensity in the wet (Pw) and dry
seasons (Pd) was calculated by Equations (7a,b):

Pw =

nw
∑

i=1

Pwi (7a)

and

Pd =

nd
∑

i=1

Pdi (7b)

where nw and nd are the numbers of wet and dry months in a
year (considered constant for the IRW). Similarly, the seasonal
EPw and EPd, Qw and Qd, and 1Sw and 1Sd values were
calculated from the monthly values of the defined wet and dry
seasons, respectively.

The evaporation rate is defined as the ratio between actual
evaporation and water supply. It is represented by the effective
seasonal precipitation, and the evaporation rates of the wet and
dry seasons were calculated by Equations (8a,b):

Aw =
EPw

Pw − 1Sw
(8a)

and

Ad =
EPd

Pd − 1Sd
(8b)

where Aw and Ad are the seasonal AIs for the wet and dry
seasons, respectively. Thus, the climatic seasonality of the IRW
was modeled using the seasonal AI, whose P intensities and
potential evaporation are included in Aw and Ad.

Budyko System and Seasonal Water and
Energy Balance in the IRW
Budyko (1958, 1974) established that the mean long-term
(annual) ratio between mean evapotranspiration and mean
precipitation (ET/P) is mainly controlled by the water–energy
balance in a watershed, being a function (F) of the AI (φ= ETo/P,
where ETo is the potential evapotranspiration), i.e., E/P = F(φ).
For a watershed under humid conditions (φ < 1), the energy
supply controls evapotranspiration, while under arid conditions
(φ > 1) the water supply is the limiting factor. The limit of F
approaches 0 when φ tends to 0 under a humid climate and
approaches 1 when φ tends to infinity (∞) under an arid climate
(Zhang et al., 2001; Yang et al., 2014; Gao et al., 2016; Wang

et al., 2016). However, the Budyko structure is limited to stable
conditions, assuming as a premise an insignificant change in soil
water storage. That is, it does not consider processes that promote
changes in this storage at any spatial and/or temporal scale.

The equations of Fu (1981) and Choudhury (1999), which
consider climate and a specific watershed parameter, have
received more attention and applications (Zhang et al., 2004;
Zhou et al., 2015; Gao et al., 2016). In the present study, the
functional analytical derivation between E/P and 8 = Ep/P
(Equation 9) was used at mean annual scales based on simple
physical assumptions introduced by Fu (1981) and Zhang et al.
(2004):

E

P
= 1+ 8 − (1+ (8)ω)1/ω (9)

where ω is a free model parameter. The original formulation
introduced by Budyko (1958, 1974) is best represented by
setting ω = 2.6 (Zhang et al., 2004). These authors suggested
that for a given potential evaporation, the rate of change
in evapotranspiration as a function of the rate of change
in precipitation (∂E/(∂P) increases with the residual potential
evaporation (Ep–E) and decreases with precipitation.

On monthly time scales, changes in water storage (due to
changes in storage components, e.g., soil moisture, groundwater,
topography, vegetation cover) potentially play an important
role in E and Q and are not negligible. These changes may
represent a significant source of additional available water
(in addition to P) for E. Therefore, the analytically derived
modification (Equation 10) proposed by Greve et al. (2016)
explicitly represents the additional water available for E, in
addition to instantaneous precipitation. The modified structure
shows that this additional parameter can represent the conditions
in which E monthly or annually exceeds the monthly or annual
precipitation, respectively.

E

P
= F(8,,k,y0)

= 1+ 8 −

(

1+ (1− y0)
k−1(8)k

)
1
k

(10)

This derivation (Equation 10) is similar to the classic solution
(Equation 9) but includes y0 as a new parameter. If y0= 0 (being
the original limit condition), the response obtained corresponds
to the structure of the steady state of Fu (1981) and Zhang et al.
(2004). If y0 > 0, the supply limit is systematically exceeded.
The exceedance of the supply limit increases with y0. If y0 = 1,
the curve follows the demand limit. All curves are continuous
and strictly increasing. The y0 parameter explicitly explains the
maximum value of additional water (in addition to the water
provided by P) at a given location and within a given time that
is available for E.

RESULTS AND DISCUSSION

Although the curve number (CN) theoretically varies from 0 to
100, in practice the validated values (Mishra and Singh, 2003) are
in the 40–98 range. The higher the CN value is, the greater the
runoff potential in the watershed. The CN values calculated for
the IRW are always above 70 (Table 2). The results obtained for
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TABLE 2 | Evolution of totals (%) corresponding to land use and vegetation cover and the respective curve number and water storage calculated for the IRW over the

decades.

Period CN S (mm) F (%) P (%) M (%) U (%)

1973 71.65 100 99.27 0.72 0.00 0.001

CN1973 = 71.62 × 99.27% + 76.28 × 0.72% + 0.01%

1984 72.01 98.73 89.85 10.07 0.05 0.03

CN1984 = 71.60 × 89.85% + 75.63 × 10.07% + 75.12 × 0.05% + 72.92 × 0.03%

1994 72.73 95.23 71.73 28.07 0.12 0.08

CN1994 = 71.40 × 71.73% + 76.14 × 28.07% + 70.99 × 0.12% + 73.03 × 0.08%

2004 73.31 92.49 53.18 46.51 0.17 0.14

CN2004 = 70.45 × 53.18% + 76.58 × 46.51% + 71.07 × 0.17% + 73.47 × 0.14%

2013 73.44 91.85 48.91 50.47 0.28 0.34

CN2013 = 70.06 ×48.91% + 76.73 × 50.47% + 73.82 × 0.28% + 72.18 × 0.34%

CN, weighted curve number; S, soil water storage; area percentages (%): F, forest; P, pasture; M, mining; U, urban.

storage indicate an 8.1% decrease in the water retention capacity
of the watershed soil. The CN values represent the potential
water losses of a watershed. As the CN value increases, the initial
storage of a watershed decreases, increasing the likelihood of
runoff (Tyagi et al., 2008).

Cavalcante et al. (2019) studied the effects of climate
variability and human activity on the annual water balance in
the IRW and found that the mean annual runoff coefficient
underwent major changes between the 1973–1984 period and
the 1985–1994 period. Even with the continuous reduction in
the forested area in the last two decades (1994–2004 and 2003–
2016), the changes in the mean annual runoff coefficient were
relatively small, probably due to the intensity of the cutting and
burning activities and vegetation regeneration. Figure 2 shows
the evolution of the conversion of forest to pasture over the
decades along with the soil textures identified in the IRW.

In the 1980s (1980–1989), vegetation cover consisted of forest
(89.85%) and pasture (10.07%) (Silva Júnior et al., 2017a). In the
following decade (1990–1999), the conversion process increased,
forest cover decreased (71.73%), and pasture increased (28.07%)
(Souza-Filho et al., 2016). In the last analyzed period (2000–
2013), this trend intensified, resulting in the predominance of
pasture (50.47%) over primary forest cover (48.91%). Variables
such as albedo, temperature, and net radiation (Rn) are directly
affected by these changes, especially when they occur on a large
scale (Pavão et al., 2017).

Removal of the forest results in less absorption of global solar
radiation by the surface and in greater re-emission of longwave
radiation from the surface; consequently, the Rn is lower over
the deforested area (Andrade et al., 2014). The reduction in
the roughness length in deforested area can affect the turbulent
transport of heat and water vapor near the surface (Eltahir and
Bras, 1994). The higher albedo and surface temperature and
lower Rn in deforested areas result in lower evapotranspiration in
these locations, thus reducing the available energy for convection
and precipitation (Santos et al., 2014).

The annual and seasonal variability in ETo in the IRW and at
the Marabá weather station is shown in Figures 3a,b in terms of
the mean values calculated by the TC and PM methods. Between

1980 and 1992, the ET shows a trend toward maintenance of the
mean values. From 1992 to 2004, there was an increasing trend in
themean annual rates of ET. In this period, the forest cover (53%)
is still higher than the pasture cover (46%), and the expected
behavior of ET in this period would be a reduction in the mean
evapotranspiration values (Wohl et al., 2012). However, there is
an increase, which may be associated with the intensification of
land use and occupation and the decrease in vegetation cover
(Silva Júnior et al., 2017a).

Recent simulations of hydroclimate-related models (Khanna
et al., 2017) have shown that horizontal variations in surface
roughness between aerodynamically smooth pasture and rugged
forests may represent a spatial redistribution of precipitation
not explained only by thermal processes. The results indicate a
transition from the thermal convective regime to a dynamically
dominated one associated with increasing deforestation
scales. The direct influence of this transition is a substantial
humidification of the downwind sectors of the deforested areas
and a similar dryness of the downwind sectors. This contrasts
with a thermally dominated convective regime, which resulted
in most of the non-precipitating cloudiness and, therefore, may
be consequential to ecosystem adaptation in regions deforested
downwind. This general behavior may perhaps explain the
maintenance of high ETo rates in the IRW, especially between
1990 and 2006, as shown in Figure 3.

A greater pasture area causes greater surface exposure of
water bodies (Figures 3c,d), higher albedo, and consequently
a higher evaporation rate. The analysis of evapotranspiration
(transpiration + evaporation) together with the sum of the
surface area of the water bodies and the forest-vs.-pasture
relationship suggests that the increase in evapotranspiration
is more closely related to the increase in evaporation as
a function of the increase in pasture area than to the
reduction in transpiration due to forest loss, reinforcing
the hypothesis that evapotranspiration increases with
pasture area.

Starting in 2004, there is a reversal in the increasing trend in
the annual and seasonal mean ETo values, whose decrease is in
accordance with the expected behavior (Von Randow et al., 2004;
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FIGURE 2 | Evolution of the conversion from forest to pasture over the decades along with the soil textures identified in the IRW (1984–2013). Source: Silva Júnior

et al. (2017a).

Da Rocha et al., 2009) since the decrease in the area of native
vegetation reduces local ET due to the decrease in water demand
by plants.

Table 3 and Figure 4 show the temporal variability in
precipitation, E, and ET calculated by the methods of Schreiber
(1904), Pike (1964), and Budyko (1974), in addition to the annual
aridity index (AI).

ETo shows an upward trend throughout the period, and
the annual mean values for 1980–1989 and 1990–1999 were
1,326.8–1,357.0mm, whose increase represents a rate of 2.0

mm·y−1 in the first period and 5.3 mm·y−1 in the second
(Figure 4). However, there was a decrease of 2.7 mm·y−1 in
ETo for 2000–2013. Overall, ET shows a decreasing trend
by the three methods throughout the study period, though
different behaviors are observed: between 1980 and 1986,
there is an upward trend; between 1987 and 1997, there is a
decreasing trend; between 1998 and 2004, there is an increasing
trend; and last, after 2005, there is a decreasing trend in the
annual mean values. The highest values were estimated by
the Pike equation, with an annual mean of 815.0 mm·y−1,
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FIGURE 3 | Annual and seasonal variability in ETo by the (a) Penman-Monteith method for Marabá station and (b) the Turc method for the IRW (1980–2013). In (c,d),

the evolution of forest conversion into pasture and the sum of the surface area of water bodies in each year from 1985 to 2013 are shown, respectively. Source: ETo
data from Silva Júnior et al. (2017a) and land use and cover and water body data from the (Project MapBiomas Alerta, 2017) (https://mapbiomas.org/).
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TABLE 3 | Annual observed and calculated data for the IRW in the 1980–2013

period.

Year Precipitation

(mm)

ETo (TC)

(mm)

Actual Evapotranspiration (mm) AI

ETsch ETpk ETbdk ETo/P

1980 1,789.7 1,270.6 669.6 735.1 720.2 0.7

1981 1,450.2 1,309.9 621.2 687.8 673.3 0.9

1982 1,596.8 1,315.8 688.9 761.9 746.4 0.8

1983 1,420.0 1,429.7 655.4 723.6 709.8 1.0

1984 1,865.9 1,412.2 790.7 875.1 856.6 0.7

1985 3,009.8 1,265.7 788.2 862.2 841.7 0.4

1986 2,159.2 1,300.6 824.3 907.5 887.9 0.6

1987 1,648.8 1,341.8 768.5 854.2 837.6 0.8

1988 1,778.4 1,332.9 720.6 795.2 778.4 0.7

1989 1,883.8 1,288.7 796.4 878.0 860.8 0.6

1990 1,514.3 1,357.8 745.4 820.7 805.7 0.9

1991 1,674.1 1,238.1 684.9 767.3 749.4 0.7

1992 1,456.7 1,314.5 667.6 730.1 717.2 0.9

1993 1,303.2 1,319.8 704.8 777.4 764.0 1.0

1994 1,616.5 1,345.7 740.8 825.0 807.5 0.8

1995 1,658.7 1,357.6 685.4 769.4 751.2 0.8

1996 1,556.4 1,365.1 691.7 768.9 752.5 0.8

1997 1,550.6 1,409.3 690.7 765.3 749.6 0.9

1998 1,577.7 1,456.8 774.5 855.4 839.4 0.9

1999 2,110.3 1,405.8 785.8 882.1 860.2 0.6

2000 2,035.2 1,433.9 815.2 897.1 878.4 0.7

2001 1,860.0 1,429.2 788.3 876.9 857.8 0.7

2002 1,619.9 1,470.4 779.3 864.7 847.4 0.9

2003 1,761.9 1,453.5 817.0 902.4 884.9 0.8

2004 1,971.8 1,421.3 804.5 883.3 866.4 0.7

2005 1,517.5 1,490.5 722.5 798.0 782.7 0.9

2006 1,794.1 1,468.8 723.9 805.2 787.0 0.8

2007 1,491.1 1,470.7 687.1 755.4 741.4 0.9

2008 1,984.4 1,404.2 742.6 823.1 803.7 0.7

2009 2,285.2 1,331.0 775.9 847.8 829.8 0.5

2010 1,668.9 1,406.9 694.3 769.8 752.8 0.8

2011 2,050.9 1,357.7 727.3 810.1 789.8 0.6

2012 1,652.4 1,326.4 680.2 747.7 732.4 0.8

2013 1,475.1 1,284.0 695.9 769.0 754.0 0.8

CT, potential evapotranspiration calculated by the Turc method; actual evapotranspiration

calculated by the methods of Schreiber (ETsch ), Pike (ETpk ), and Budyko (ETbdk ). Aridity

index (AI = ETo/P) according to Budyko (1974).

and the lowest by the Schreiber equation (737.0 mm·y−1),
while the Budyko equation resulted in an intermediate value of
798.1 mm·y−1.

Table 4 shows the estimated monthly seasonal values of
the water balance components. The seasonality of rainfall
and the seasonal dynamics of soil water storage are directly
incorporated into the seasonal model derived, revealing
the dominant control factors in the water balance. For
each component, for example, Pu or Ps, and so for the
others, the value in the table represents the cumulative
number of months identified as wet (Pw) or dry (Pd)
within each year. The values of 1Su and 1Ss for the
years 2009 and 2012 showed outlier behavior, without

FIGURE 4 | Long-term (annual) behavior of precipitation (P), potential

evapotranspiration (ETo), and actual evapotranspiration (ET) estimated by the

equations of (A) Schreiber (1904), (B) Pike (1964), and (C) Budyko (1974). The

dotted lines represent the trends for each parameter.

any known explanation, so they were excluded from
the analysis.

The Budyko model is based on the water “supply–demand”
concept and addresses two extreme conditions: very dry and
very wet. The results for the IRW fall within the relatively
wet condition. On the annual scale (Figures 5a–c), there is an
increasing trend in all three methods, both for EI (ET/P) and
AI (ETo/P), whose data set meets the criterion ET/P < 1 and
has available energy as the factor controlling ET. However, when
considering the amount of plant-available water (w), all points
are below the 0.5 line, and more than half of them are below
the 0.1 line, i.e., for the IRW, these points are located near the
lower water limit. Cavalcante et al. (2019) concluded that the
IRW shows a greater variation in the AI than in the EI, suggesting
that it has a high elasticity related to climatic changes.
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TABLE 4 | Response of the water balance components from 1980 to 2013 in the IRW according to the wet (w) and dry (d) periods, along with the aridity (AI) and

evaporative (EI) indices for the IRW.

Year Independent variables AI IE

Pw Pd Epw Epd Qw Qd 1Sw 1Sd Aw Ad EwSch EdSch EwPk EdPk EwBdk EdBdk

1980 1,404.85 384.87 597.39 619.85 355.91 30.92 −163.89 188.32 0.38 3.15 0.27 1.17 0.30 1.27 0.29 1.26

1981 1,083.17 367.01 631.34 621.05 277.84 21.34 −252.96 202.87 0.47 3.78 0.30 1.26 0.34 1.37 0.33 1.36

1982 1,234.56 362.19 607.79 672.94 384.86 32.84 −125.00 98.56 0.45 2.55 0.32 0.91 0.36 0.99 0.35 0.98

1983 1,058.50 361.48 643.12 640.17 195.59 13.04 −104.22 137.76 0.55 2.86 0.36 0.96 0.40 1.04 0.39 1.03

1984 1,435.66 430.20 617.69 672.03 298.49 38.04 −85.05 100.32 0.41 2.04 0.31 0.83 0.35 0.91 0.34 0.90

1985 2,443.60 566.21 555.22 652.76 604.31 90.47 42.72 114.48 0.23 1.45 0.20 0.64 0.22 0.70 0.21 0.69

1986 1,488.54 670.69 608.01 666.04 594.84 109.41 −390.42 130.42 0.32 1.23 0.25 0.64 0.28 0.70 0.27 0.69

1987 1,133.00 515.81 630.66 644.19 282.63 45.83 −85.19 141.47 0.52 1.72 0.36 0.80 0.41 0.89 0.40 0.87

1988 1,346.88 431.51 599.31 681.41 423.01 98.31 −194.48 215.58 0.39 3.16 0.29 1.17 0.33 1.26 0.32 1.25

1989 1,386.50 497.34 567.58 693.95 559.45 106.16 29.38 121.55 0.42 1.85 0.33 0.89 0.37 0.96 0.36 0.95

1990 1,093.63 420.65 634.02 680.95 501.47 69.63 −202.28 110.84 0.49 2.20 0.34 0.94 0.38 1.02 0.37 1.01

1991 1,306.50 367.62 567.73 612.47 386.22 67.34 −92.42 12.78 0.41 1.73 0.32 0.60 0.36 0.66 0.35 0.65

1992 1,124.44 332.22 595.51 663.58 309.51 62.90 −120.38 136.17 0.48 3.38 0.33 1.21 0.37 1.28 0.36 1.28

1993 935.61 367.63 614.81 678.67 265.24 29.84 −62.97 85.41 0.62 2.40 0.43 0.94 0.49 1.01 0.47 1.00

1994 1,209.77 406.77 594.13 708.79 503.92 86.79 −80.84 84.19 0.46 2.20 0.35 0.84 0.40 0.92 0.39 0.90

1995 1,270.30 388.37 597.07 707.21 495.98 98.06 −160.87 94.09 0.42 2.40 0.33 0.67 0.37 0.74 0.36 0.73

1996 1,165.90 390.53 620.83 697.56 453.97 76.97 −220.92 183.97 0.45 3.38 0.34 1.04 0.38 1.13 0.37 1.11

1997 1,224.66 325.92 631.49 722.79 473.27 60.93 −44.29 90.16 0.50 3.07 0.36 0.91 0.40 1.00 0.39 0.99

1998 1,135.24 442.49 673.42 723.83 188.53 45.14 −138.43 142.27 0.53 2.41 0.38 0.90 0.43 0.96 0.42 0.95

1999 1,618.60 491.68 624.12 749.81 344.70 70.53 −4.79 89.38 0.38 1.86 0.31 0.65 0.35 0.73 0.34 0.72

2000 1,610.08 425.08 668.68 738.96 595.27 103.70 −199.67 147.33 0.37 2.66 0.29 1.04 0.32 1.12 0.31 1.11

2001 1,457.90 402.14 645.48 734.32 415.87 95.78 −65.26 59.41 0.42 2.14 0.34 0.75 0.38 0.82 0.37 0.81

2002 1,271.70 348.16 666.72 747.69 366.60 80.47 −74.65 62.39 0.50 2.62 0.38 0.90 0.42 0.97 0.41 0.95

2003 1,307.03 454.86 654.76 729.39 391.24 73.90 −164.83 124.08 0.44 2.21 0.33 0.92 0.37 1.00 0.36 0.99

2004 1,495.88 475.89 625.25 730.75 666.33 164.46 −106.49 119.68 0.39 2.05 0.30 0.86 0.33 0.93 0.32 0.92

2005 1,204.50 313.00 631.64 753.15 411.20 70.47 −64.65 83.64 0.50 3.28 0.37 0.98 0.41 1.06 0.40 1.05

2006 1,478.90 315.21 629.12 764.03 608.24 121.81 −117.79 98.02 0.39 3.52 0.31 0.93 0.35 1.01 0.34 1.00

2007 503.06 221.76 662.92 738.09 356.97 89.84 −114.40 119.05 1.07 7.19 0.75 2.04 0.83 2.18 0.81 2.16

2008 550.66 235.10 611.92 730.86 503.99 86.22 −21.45 84.91 1.07 4.87 0.88 1.47 0.99 1.59 0.96 1.57

2009 522.00 294.44 571.63 712.04 586.26 224.31 257.99 −236.15 2.17 1.34 1.84 0.52 2.04 0.56 1.98 0.55

2010 511.40 222.66 617.70 705.79 421.64 79.41 −143.90 108.79 0.94 6.20 0.72 1.82 0.80 1.98 0.78 1.96

2011 533.85 238.93 601.74 695.84 625.67 168.99 −156.70 64.00 0.87 3.98 0.71 1.27 0.80 1.39 0.77 1.37

2012 467.90 238.21 578.96 658.14 522.00 70.07 −173.08 194.78 0.90 15.16 0.67 5.18 0.75 5.55 0.73 5.49

2013 492.24 252.00 589.65 651.22 389.95 95.63 −88.50 33.76 1.02 2.98 0.77 1.09 0.87 1.16 0.85 1.15

Figures 5a1-c2 shows, on the seasonal scale, the behavior
of the new parameter (y0) introduced by Greve et al. (2016),
which explicitly represents the additional water available for E, in
addition to instantaneous precipitation. The separation between
the wet and dry seasons is clear. In the wet season, under all
threemodels, the set of points does not exceed the limits (demand
and energy). In the Pike and Budyko methods (Figures 5a1,b1),
the behavior is very similar, and most of the points are between
y0 = 0.6 and 0.8, unlike the Schreiber method (Figure 5c1),
whose points concentrate between y0 = 0.4 and 0.6. For the most
recent period (2007–2013), a different behavior is observed under
all models (Figures 5a1,b1,c1). Table 4 shows AI > 0 for all the
dry seasons analyzed. In Figures 5a2,b2,c2, the exceedance of
the water supply limit in the IRW increases with the increase in

y0, suggesting that this additional parameter can represent the
conditions in which E monthly or annually exceeds the monthly
or annual precipitation, respectively. With the Pike and Budyko
methods (Figures 5a2,b2), the behavior is very similar, and most
points exceed the curve y0 = 0.4 to 0.2, unlike with the Schreiber
method (Figure 5c2), in which the points concentrate below
y0 = 0.4 to y0 > 0. This result suggests that water storage plays
a significant role in maintaining evaporation, especially during
years with aridity indices >1.

The mean monthly variations in soil water storage estimated
for the IRW as residuals of the water balance closure, using
the available data for P, ET, and Q (Figure 6), were compared
with the El Niño/South Oscillation (ENSO) extremes analyzed
by Kayano et al. (2016) for the last three decades (1986–2015),
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FIGURE 5 | Left, relationship of AI (ETo/P) vs. EI (ET/P) on the annual scale for different w values, according to Pike (a), Budyko (b), and Schreiber (c) for the IRW

(1980–2013). ET is the actual evapotranspiration, P is the precipitation, and Ep equals potential evapotranspiration (ETo). In the center and to the right, the seasonal

behavior of AI [E P/(P–1S)] vs. IE [E/(P–1S)] is analytically derived (Greve et al., 2016), introducing a new parameter (y0) that represents the additional water available

for E, in addition to P. The colored circles represent the mean values of the 1985–1989, 1990–2000, 2000–2006, and 2007–2013 data sets.

whose types and intensities were determined by the sea-surface
temperature anomaly index. The most intense El Niño (EN)
events ever recorded (1997–1998 and 2015–2016) occurred in
this period, along with two strong La Niña (LN) events (1988–
1989 and 1998–2001) of long duration. The EN of 1997–1998
was the one with the most marked climatic impacts around the
globe, and it developed rapidly and decayed abruptly (McPhaden,
1999). The 2015–2016 EN presented sea-surface temperature
indices much higher than those of previous events, with strong
influences on the Amazon, especially in the eastern part (Costa
and Blanco, 2018; Tavares et al., 2018). The two LN events overall
had point impacts throughout the Amazon region (Aguiar et al.,
2019; Coutinho et al., 2019).

The mean annual variation in soil water storage shows
different behavior in the analyzed periods. The first period (1980–
1990) has higher amplitudes in the variation in storage between

the wet and dry seasons than the following periods. This behavior
probably reflects the occurrence of the strong LN event (1988–
1989), followed by the very strong EN event (1997–1998), in
addition to the occurrences of moderate EN and LN events
throughout the analyzed period, considering that in the Amazon,
EN causes a decrease in rainfall and LN does the inverse (Moura
et al., 2019).

In a study by Moura et al. (2019), it was observed that the
studied variables, among them evapotranspiration, was severely
affected in the rainiest months, the La Niña phenomenon,
and in the less rainy months, El Niño. The variation in
evapotranspiration showed that the lowest values were associated
with LN. The months with the lowest rainfall were those with
the highest average evapotranspiration, showing the influence
of EN on the increase in values. The region that has lower
anthropogenic pressures and has denser vegetation cover,
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FIGURE 6 | Monthly variations in soil water storage for the wet (1Sw) and dry months (1Sd) in the IRW, in mm. The dashed line (black) represents the mean annual

variation. Arrows: red = strong or moderate El Niño; blue = strong or moderate La Niña.

therefore, has a higher incidence of solar radiation, increasing
vegetative transpiration and evaporation of water bodies,
consequently, conditioning an increase in evapotranspiration.
This is different from what happens in the rainiest periods, where
the presence of greater cloud cover inhibits the incidence of solar
radiation, decreasing the temperature and consequently reducing
evapotranspiration (Flantua et al., 2016).

Likewise, Jiménez-Muñoz et al. (2016), calculated the self-
calibrating Palmer Drought Severity Index (scPDSI)19 during the
course of the El Niño 2015–2016 event in the Amazon rainforest.
Among the parameters used for its calculation, potential
evapotranspiration, corresponding to moisture demand, was
abnormally high during the period, with record warming at
the end of 2015. The authors concluded that this scenario
suggested that warming is responsible for about a fifth of the
abnormally high area under extreme drought severity observed
during 2015/2016.

At the beginning of the first period, the forest cover
represented 70%, and the pasture cover represented ∼30%; that
is, the starting decade was marked by a strong LN event, resulting
in higher rainfall over the region, which still had a vegetation
cover that allowed higher levels of soil water storage capacity. In
the second (1990–1999) and third (2000–2013) periods, there was
occurrence of a very strong EN event associated with the marked
advance of the conversion of forest into pasture, whose direct
consequence was a reduction in water infiltration and retention
capacity. This finding corroborates the study by Coutinho et al.
(2019), who concluded that there is a positive trend toward
evaporation in the Amazon, confirmed by the deforestation in
the region, and this impacts storage. In addition, in view of the

more frequent occurrence of climatic phenomena, it is necessary
to pay greater attention to the IRW because deforestation in the
watershed intensifies water flows, and the consequences can lead
to increased flooding in flat areas (Pontes et al., 2019).

Its consideration of subannual or interannual changes in water
storage in a watershed as insignificant is a major limitation
of the original Budyko structure. Additional water can also
be introduced by changes in the landscape (Jaramillo and
Destouni, 2015) and human interventions (Milly et al., 2008), for
example, increased pasture area causing greater surface exposure
of water bodies (Figures 3c,d), increasing the albedo, and thereby
increasing the evaporation rate or causing phase changes in
the water in the system or the water provided by precipitation
(Berghuijs et al., 2014; Jaramillo and Destouni, 2015). Long-term
changes in soil moisture can also result from transient climatic
changes (Wang et al., 2005; Orlowsky and Seneviratne, 2013). In
summary and corroborating the study by Cavalcante et al. (2019),
further research in the IRW needs to analyze water storage and
the dependence of the rainfall–runoff relationship on climate and
its main drivers, looking more closely at the relationship between
the transpiration and evaporation components, in order to better
manage the area and to avoid the impacts of extreme events, like
droughts or floods (Kumar et al., 2019).

CONCLUSIONS

From 1980 to 2013, there were marked changes in the vegetation
cover of the IRW, mainly due to the conversion of the forest
into pasture. Before, it was a trend; in the last decade, it has
become a fact: the forest remnant covers only 48.91% of the area,
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whereas pasturelands cover 50.47%. As a consequence, the water
storage capacity of the soil has decrease (8.1%) continuously.
Although, the IRW does not have low water availability, its
pedological characteristics indicate an increasing trend in runoff
rates (CN > 72).

The behavior of the water balance components (P, ETo, E, and
1S) was evaluated on annual and seasonal (monthly) scales. ETo

and E showed an upward trend over the decades. The analysis of
evapotranspiration together with the sum of the surface area of
the water bodies and the forest-vs.-pasture relationship suggests
that the increase in evapotranspiration is more closely related
to the increase in evaporation as a function of the increasing
pasture area than to the reduction in transpiration due to forest
loss, reinforcing the hypothesis that evapotranspiration increases
with pasture area. Precipitation in 1990–1999 shows a reduction,
possibly associated with the very strong La Niña (1988–1989) and
El Niño (1997–1998) events, whose rainfall indices were below
normal over much of the region.

Therefore, subannual or interannual changes in soil water
storage in a watershed need to be considered in the analysis

of water balance. Additional water may be introduced due
to changes in the landscape or human interventions, such as
increases in pasture area, causing greater surface exposure of
water bodies and elevation of the local albedo, the consequence
of which is an increase in the evaporation rate or water phase
changes in the system. Last, further research is needed in the
IRW to analyze water storage and its dependence on the rainfall–
runoff relationship and climate drivers, looking more closely
at the relationship between the transpiration and evaporation
components in the local and regional hydrological cycle.
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