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Perfect foresight hydroeconomic optimization models are tools to evaluate impacts of

water infrastructure investments and policies considering complex system interlinkages.

However, when assuming perfect foresight, optimal management decisions are found

assuming perfect knowledge of climate and runoff, which might bias the economic

evaluation of investments and policies. We investigate the impacts of assuming perfect

foresight by using Model Predictive Control (MPC) as an alternative. We apply MPC

in WHAT-IF, a hydroeconomic optimization model, for two study cases: a synthetic

setup inspired by the Nile River, and a large-scale investment problem on the Zambezi

River Basin considering the water–energy–food nexus. We validate the MPC framework

against Stochastic Dynamic Programming and observe more realistic modeled reservoir

operation compared to perfect foresight, especially regarding anticipation of spills

and droughts. We find that the impact of perfect foresight on total system benefits

remains small (<2%). However, when evaluating investments and policies using

with-without analysis, perfect foresight is found to overestimate or underestimate

values of investments by more than 20% in some scenarios. As the importance of

different effects varies between scenarios, it is difficult to find general, case-independent

guidelines predicting whether perfect foresight is a reasonable assumption. However,

we find that the uncertainty linked to climate change in our study cases has more

significant impacts than the assumption of perfect foresight. Hence, we recommend

MPC to perform the economic evaluation of investments and policies, however, under

high uncertainty of future climate, increased computational costs of MPCmust be traded

off against computational costs of exhaustive scenario exploration.

Keywords: Model Predictive Control, perfect foresight, hydroeconomicmodels, water–energy–food nexus, climate

change, water infrastructure planning, IWRM
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INTRODUCTION

Developing hydropower and irrigation while preserving
ecosystems will contribute to the Sustainable Development
Goals (UN General Assembly, 2015), but might also increase
competition for the scarce water resource. Therefore, decision-
makers need tools that consider the interdependencies within the
water–energy–food nexus (Bhave et al., 2016; Miralles-Wilhelm,
2016; Albrecht et al., 2018; Baldassarre et al., 2019; Rising,
2020). Hydroeconomic optimization models, which associate
an economic impact to each management decision and thus

transform a complex multi-objective management problem into
a simpler single-objective problem (Harou et al., 2009; Bauer-
Gottwein et al., 2017) are attractive candidates. In this category,
models representing numerous nexus interactions and multiple

reservoirs (Draper et al., 2003; Block and Strzepek, 2010; Kahil
et al., 2018; Khan et al., 2018; Payet-Burin et al., 2019; Vinca
et al., 2020) often assume perfect foresight. Perfect foresight is
a common approach used in sectorial planning models (Keppo
and Strubegger, 2010; Expósito et al., 2020), where the system
is optimized over the whole planning period with assumed
perfect knowledge of the future. This means that optimization
models with perfect foresight anticipate future conditions, such
as droughts, and adjust, for instance, by selecting crops with

lower water requirements or storing additional water. In actual
operation, water planners and managers do not have perfect
foresight, and are limited by the availability and skill of existing
forecasting systems. A more realistic way of modeling reservoir
operation and agriculture decisions could improve the reliability
of the results of investment evaluation and cost benefit analysis
(Anghileri et al., 2016; Jahani et al., 2016; Sahu, 2016; Khadem
et al., 2018).

Stochastic Dynamic Programming (SDP) (Soleimani et al.,
2016; Scarcelli et al., 2017) and Stochastic Dual Dynamic
Programming (SDDP) (Tilmant et al., 2012; Pereira-Cardenal
et al., 2016) have been used to represent water management
problems and infrastructure evaluation in a nexus context while
considering the stochastic nature of the water inflow. However,
SDP suffers the curse of dimensionality as problem complexity
increases exponentially with problem size, hence it is restricted to
applications with a limited number of reservoirs and interactions;
while SDDP can be applied to larger systems, it is still limited to
convex future benefits.

Simulation frameworks (Yates et al., 2005; Howells et al.,
2013; Cervigni et al., 2015), do not assume perfect foresight, as
the system management is determined for each time step using
allocation rules. However, allocation rules are usually based on
current or past socio-economic conditions and might not be
economically optimal in another context (Pereira-Cardenal et al.,
2016). This might lead to biased performances when exploring a
range of possible scenarios, which is a key process when exploring
robust decisions considering the large uncertainties of the future
climate and socio-economic development (Herman et al., 2015,
2020; Bhave et al., 2016; Giuliani and Castelletti, 2016). In order
to remediate this, the rules can be optimized by wrapping the
simulation framework with an (multi-objective) optimization
algorithm (e.g., Hadka and Reed, 2013; Kasprzyk et al., 2013;

Maier et al., 2014; Bertoni et al., 2019; Gonzalez et al., 2020;
Tomlinson et al., 2020). This does not only enable the evaluation
of planning alternatives, but also gives insights on how specific
infrastructure can be operated. The downside is that it can lead to
computational barriers when analyzing a large range of scenarios
for complex systems: Quinn et al. (2017) use a total of 1.7 million
CPU hours with such a framework applied on the Red River
basin. Therefore, it remains challenging to apply simulation-
based optimization to large-scale problems considering multiple
interactions between the water, agriculture, and energy sector.

Model Predictive Control (MPC) is an alternative that
replicates potential operation, by iteratively solving the optimal
management decisions using the available knowledge of the
future at each time step (e.g., forecasts). Model Predictive Control
was originally developed for power plants and refineries in 1970
and is now used in a large variety of fields from food processing
to aerospace applications (Qin and Badgwell, 2003). MPC has
many advantages: (1) it makes use of an existing optimization
framework, (2) it does not suffer the curse of dimensionality, as
computation costs do not increase exponentially with problem
size (3) it can be applied to non-linear frameworks, (4) it is
not limited to hydrologic uncertainty. The MPC framework has
been applied in water resource studies: Khadem et al. (2018)
apply a specific form of MPC, by solving the CALVIN perfect
foresight model (Draper et al., 2003) year by year, still assuming
perfect foresight of a year; Anghileri et al. (2016) apply MPC
to a simple water resource system model to evaluate the value
of forecasts; Ficchì et al. (2016) use MPC to optimize the
simultaneous operation of reservoirs, Beh et al. (2015) apply
the MPC framework over a 10-year rolling planning horizon
to select flexible water supply infrastructure with a simulation-
based multi-objective optimization algorithm considering future
uncertainties, andMartinsen et al. (2021) useMPC to evaluate the
impact of assuming perfect foresight when evaluating the value of
a water transfer project for irrigated agriculture. However, these
studies all adopt a water-centered approach and have little or no
consideration for the agriculture and energy sectors. The novelty
of this study is to apply the MPC framework to an integrated
model considering the water, energy, and agriculture sectors.

The purpose of this work is to investigate the impacts of
assuming perfect foresight when evaluating the economic value
of infrastructure and policies within the water–energy–food
nexus. We use the open-source hydroeconomic optimization
model WHAT-IF (Payet-Burin et al., 2019), which links
representations of the water, energy, and agriculture systems in
a holistic framework.

The study is organized as follow:
In Methods section we present the WHAT-IF model and the

Model Predictive Control Framework. Overview of Two Study
Cases section describes the study cases: a synthetic setup inspired
by the Nile River and a large scale problem in the Zambezi River
Basin from Payet-Burin et al. (2019), where water infrastructure
and policies are planned to satisfy growing food and energy
demands. In Discussion and Conclusion section we investigate
the impacts of assuming perfect foresight when performing
economic evaluation of investments through with-without
analysis. In the Nile case, we validate the MPC framework
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against Stochastic Dynamic Programming and highlight some
of effects of the perfect foresight assumption. We also compare
it to a rule-based simulation framework. Using a large range
of scenarios, we investigate in which cases the perfect foresight
assumption affects the economic evaluation of two hypothetical
projects. Finally, we perform the same analysis for the economic
evaluation of hydropower expansion, irrigation development,
and an environmental flow policy on the Zambezi River Basin.

METHODS

The Hydroeconomic Optimization Model:
What-If
WHAT-IF is a hydroeconomic optimization model, linking
representations of the water, energy, and agriculture systems in
a holistic framework (Payet-Burin et al., 2019). The model is
open-source, and the latest code can be accessed at https://github.
com/RaphaelPB/WHAT-IF. In WHAT-IF decision variables for
water management (e.g., water storage and supply), energy
management (e.g., power capacity construction, production,
transmission, and supply) and agriculture management (e.g.,
crop choice, irrigation, transport, and supply) are solved to
maximize the welfare economic objective function which is the
sum of all consumer and producer surpluses (Figure 1). The
model operates at a monthly time step for long hydrologic
time series. It is a perfect foresight framework as optimal
decisions are found with full knowledge of the future over the
planning horizon.

The objective function of the model considers consumer and
producer surplus for all commodities (ϕ0) and is formulated as:

ϕ0 = WSB−WSC+ CSB− CSC− CPC+ ESB− ETC− EPC

where WSB represents the water supply benefits, WSC the water
supply costs, CSB the crop supply benefits, CSC the crop supply
costs, CPC the crop production costs, ESB the energy supply
benefit, ETC the energy transmission costs, and EPC the energy
production costs which are the sum of the energy operational
costs, fuel consumption and CO2 emission costs.

In addition to the description of WHAT-IF in Payet-Burin
et al. (2019), in the current version of the model, hydropower
production is the product of releases and a volume-dependent
head, which leads to a non-linear optimization model and more
realistic reservoir release decisions.

The model is coded in the python programming language; the
problem is formulated with Pyomo (Hart et al., 2017) and solved
with the non-linear solver IPOPT (Wächter and Biegler, 2005)
using the HSL mathematical software library (Research Councils
UK, 2020).

Model Predictive Control Framework
The basic concept of Model Predictive Control (MPC) is
to iteratively optimize decision variables (also called “control
actions”) of a system over a forward moving time window
at a given sampling interval. The MPC framework suits real-
time water management, repetitively answering the question
“given the current system state and the currently available

information about the future what is the best decision now?” For
example, every month, for the Colorado Reservoir System, the
Bureau of Reclamation updates the “24-Month study” (Bureau
of Reclamation, 2019) describing the expected behavior of the
system for the next two years, based on which the operation rules
for the current month are set. In this study, the MPC framework
is implemented to simulate a more realistic operation of the
water infrastructure than the one resulting from perfect foresight
optimization runs, and thus, evaluate more accurately the
potential economic impacts of nexus infrastructure investments
and policies.

Figure 2 summarizes the framework: In every time step,
a forecast of the hydrologic parameters is generated for the
prediction horizon. The forecast might be an ensemble forecast,
or a single forecast as in Figure 2. The prediction horizon is the
time window for which the system is optimized (e.g., 2 years).
The choice of the prediction horizon depends on the quality
of the forecast, the time scales and memory effects inherent in
the problem and the available computational resources. Over
the prediction horizon all the decision variables are solved (e.g.,
water storage, and supply) using the perfect foresight model
with the forecast information, but only the decision variables for
the current time step are implemented. The process is repeated
over the planning horizon (e.g., 30 years), at each time step the
prediction horizon is moved forward, a new forecast is generated
considering the new information available, and the optimal
decision variables for the current time step are implemented.
If the model contains a mix of monthly and yearly decision
variables, the prediction horizon is adjusted to cover a complete
year. Yearly decision variables of the model (e.g., crop choice and
power capacity investments) are only determined for time steps
that start a new year.

Regarding reservoir operation, the decisions taken in a given
month might impact reservoir levels several years later. Because
for large models it would be computationally too expensive to
consider a very long prediction horizon (e.g., several decades), a
storage target or hedging rule (You and Cai, 2008) at the end of
the prediction horizon is implemented in order to account for
the value of water in the reservoir beyond the prediction horizon.
Khadem et al. (2018) suggest a complex but general method to
evaluate the storage value; the MPC framework presented here is
not as sensitive to the assumed end storage value, because only
the first decisions are implemented, hence we choose a simple
method based on the shadow value (or dual value) of water from
a perfect foresight run.

To find the optimal decision variables from the forecast,
different methods can be used. For a single forecast Fs the
optimization model M is run once DVs = M(Fs) and resulting
optimal decision variables for the current time step t0 are
implemented DVt0 = DVs

t0. For an ensemble forecast of n

members {Fk, k ǫ 1..n}, a simple approach is to run the model
separately for each ensemble member {DVk = M(Fk), k ǫ 1..n}
and assume that the optimal decision variables are the average
of the ensemble of optimal decision variables DVt0 =

average(DVk
t0, k1..n). A third probabilistic method is to merge

the individual problems from the different ensemble members
into a single optimization problem DVe = M(Fk, k ǫ 1..n), in
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FIGURE 1 | Representation of the main interrelations in the water–energy–food nexus in WHAT-IF. All flows are solved holistically by maximizing total consumer and

producer surplus for the water, power, and crop commodities. This figure is reproduced from Payet-Burin et al. (2021).

FIGURE 2 | Model Predictive Control (MPC) framework. The methodology is illustrated with runoff as forecasted parameter with a single forecast, and reservoir

storage as a decision variable; in the model all forecasted parameters and decision variables are solved simultaneously.
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FIGURE 3 | Conceptual scheme of the Nile synthetic study case. Water units are in Billion Cubic Meters (BCM).

which the decision variables for the first time step are shared
DVe,1

0 = DVe,2
0 . . . = DVe,n

0 and the objective function obje is
an average of the individual objective functions weighted by their
respective likelihood K: obje =

∑
objk · Kk, k ǫ 1..n.

Here we assume that only the hydrology is uncertain and
that other parameters, such as energy demand and renewable
energy production can be predicted. If intermittent renewable
power sources play an important role, the same approach can
be implemented with wind and sun forecasts in addition to
hydrologic forecasts.

The parametrization of the MPC framework can be found
in the Supplementary Materials where we evaluate: (1) the
bootstrapping forecast performance and the impact of forecast
quality, (2) the method to derive optimal decision variables based
on the type of forecasts, and (3) the impact of the length of
the prediction horizon. We use nearest neighbors bootstrapping
(Lall and Sharma, 1996) to generate an ensemble forecast for
the hydrologic parameters with 20 members. This ensemble
forecast is converted to a 2-members forecast (high and low
flow), for which the optimization model is solved over a 2-
year prediction horizon, in a single probabilistic optimization
problem merging the low and high-flow problems using equality
constraints between decision variables in the current time step.

OVERVIEW OF TWO STUDY CASES

The Nile synthetic study case is used to demonstrate the MPC
framework and evaluate the effects for a large range of scenarios.
The Zambezi River Basin study case is used to demonstrate the
applicability of the MPC framework to large-scale water–energy–
food nexus models.

Nile Synthetic Study Case
To illustrate the methodology, we use a synthetic study case
inspired by the High Aswan Dam (HAD) in Egypt (Figure 3).
The dam receives inflow from Sudan and has an active capacity
of 90 BCM (Billion Cubic Meters). We represent Egypt as a
single water demand node of 53 BCM/year, with a seasonal
profile and a demand curve. The demand curve is inspired
from El-Gafy and El-Ganzori (2012), the average economic
value of irrigation water is around 2 L.E/m3 (0.130$/m3),
and there is about a factor 10 between high value crops
such as vegetables and low value crops such as rice. The
hydropower plant linked to the dam has a capacity of 2100
MW, producing around 10 000 GWh per year. The head in the
reservoir varies from 36 to 64m and the hydropower turbine
capacity from 1,200 to 2,500 m3/s; for simplicity, we assume
a linear head-volume dependence. Hydropower production is
valued using a fixed output price of 50$/MWh. We use a
monthly runoff time series at Dongola from 1970 to 2000.
To simplify, the water share of Sudan (18.5 BCM/year) and
the average evaporation from the dam (10 BCM/year) is
subtracted from the inflow, leaving an average water availability
of 58 BCM/year.

The operation rule used in the simulation (SIM) framework is
fromMobasher (2010), and works as follows: If the reservoir level
in July is above 60 BCM, the water releases for the rest of the year
are proportional to the July reservoir level (from 1,800 m3/s for
60 BCM to 2,850 m3/s for 90 BCM) or higher to fully satisfy the
agricultural demand. If the reservoir level in July is lower than
60 BCM, the agriculture demand is curtailed by: 5% from 55 to
60 BCM, 10% from 50 to 55 BCM and 15% under 50 BCM. The
releases are then proportional to the agricultural demand and no
extra water for hydropower is released.
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FIGURE 4 | Zambezi River Basin water–energy–food nexus framework.

As a benchmark, we also implemented the stochastic dynamic
programming (SDP) framework for this study case [see Loucks
and Van Beek (2005) for a didactic presentation of the SDP
method]. The main limitation of SDP is that it cannot be applied
to larger systems, however, for this simple study case SDP is
straightforward and can be used to validate theMPCmethod.We
divide the inflow in three classes for each month: low, average,
and high inflow, which correspond respectively to the 0 to 30th,
31 to 60th, and 61 to 100th percentiles of the inflows.We consider
the 15th, 45th and 80th inflow percentiles to be representative
inflows for the 3 classes. We find that the definition of classes
has little impact on results. We then obtain storage water values
in the High Aswan Dam for the different classes of inflow (see
Supplementary Material) and use those to determine optimal
release decisions.

Zambezi River Basin Study Case
We use the modeling framework and dataset of the Zambezi
River Basin from Payet-Burin et al. (2019). The river basin is
divided into 26 catchments with runoff and precipitation time
series covering 40 years; the average yearly runoff is 114 109

m3. In each catchment, domestic, agricultural, and industrial
water demands are represented, as well as environmental flow
constraints at the level of the main wetlands (Kafue flats, Barotse
plain, and Mana pools) and the Zambezi delta (Figure 4). The
main reservoirs of the river basin (Itezhi-Tezhi, Kariba, and
Cahora Bassa dams) have an active storage capacity of 127 109

m3 and are the main consumptive water user of the river basin
through evaporation losses. The agricultural water demand is
calculated based on FAO 56, crop yields are based on FAO 33, and
the crop choice is part of the optimization framework. Unlike in
Payet-Burin et al. (2019), rainfed production and crop markets

are not represented, only irrigated agriculture is represented
and valued at the farm level using FAO data (FAO, 2018).
Thermal power is represented as aggregated production units per
country. A power market per country is represented, including
South Africa, with corresponding power demands. The power
transmission network is represented with a transport model
considering aggregated transmission lines between countries. A
capacity expansion model represents additional investments in
thermal and solar power.

We use the reference “2030” scenario from Payet-Burin
et al. (2019), considering the forecasted water, crop and energy
demands in the river basin in 2030 and the natural flooding
environmental policy of 7,000 m3/s in February. The evaluated
water infrastructure development plan (World Bank, 2010;
Payet-Burin et al., 2019) considers 15 hydropower projects with
7.2 GW of new operating capacity and 336 000 ha of new areas
equipped for irrigation, almost doubling the current irrigated
area. To evaluate the MPC framework in different water scarcity
levels, we consider three different climate change scenarios from
Cervigni et al. (2015) as in Payet-Burin et al. (2019).

RESULTS—IMPACT OF PERFECT
FORESIGHT ON THE ECONOMIC
EVALUATION OF INVESTMENTS AND
POLICIES

Nile Study Case
In this section we compare the Perfect Foresight (PF), Model
Predictive Control (MPC), Stochastic Dynamic Programing
(SDP), and Simulation (SIM) frameworks on the Nile synthetic
case for a range of scenarios. The objective function of the
PF, MPC, and SDP frameworks is to maximize total economic
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TABLE 1 | Key indicators for the different frameworks on the Nile study case.

Framework PF MPC SDP SIM

Total benefits (M$/year) 7,229 7,204 7,189 7,087

Difference to MPC (%) +0.3% – −0.2% −1.6%

Hydropower production (GWh/year) 9.6 9.2 9.2 9.2

Hydropower spill (109m3/year) 3.2 4.5 5.3 5.0

Hydropower value (M$/year) 479 463 458 462

Demand curtailment (109m3/year) 1.3 1.4 1.7 4.8

Demand Value (M$/year) 6,750 6,741 6,732 6,626

benefits from water demand satisfaction and hydropower
production. The SIM framework follows the operation rule
presented previously (Nile Synthetic Study Case section).

We observe that the global economic output in the four
frameworks is very similar (Table 1); the main difference is
that the PF framework leads to higher hydropower production
and lower demand curtailments. The operation rule of the SIM
framework might not be optimal for this synthetic case because
it was designed for the real conditions, but we observe that
it performs closely to the other frameworks in terms of total
system benefits.

Regarding reservoir management, we observe two effects of
perfect foresight: (1) high flows are anticipated by releasing
additional water before, thus avoiding spills (release higher
than turbine capacity), (2) low flows are anticipated by storing
additional water before, achieving a better head management and
leading to less water demand curtailment (Figure 5). Both effects
together explain the higher hydropower production observed
for the PF framework. We also observe that MPC and SDP
lead to almost identical reservoir operations. MPC and SDP
frameworks can be implemented in actual operation. Hence,
we can assume that they represent a potential reality and that
differences observed for PF and SIM are biases linked to the
assumptions inherent in these frameworks.

To investigate how these effects vary depending on the
context, we compare results between the frameworks for different
scenarios by varying runoff and water demand. Change in runoff
and water demand is implemented by multiplying all values by
a constant factor. Change in water demand is implemented as
a scaling factor on the baseline demand curve. We see that the
effects highlighted in Figure 5 vary in importance depending on
the scenario (Figure 6).

The analysis of scenarios of total system benefits (Figure 6A)
confirms that MPC and SDP behave similarly, even if trends of
differences are visible, they are considerably smaller compared
to other frameworks. That said, all frameworks are close
in terms of total system benefits: PF overestimates benefits
by +0.2% to +1.7%, while SIM underestimates benefits by
−1 to −12%. The results by indicators are available in the
Supplementary Material. The SIM framework assumes the same
reservoir operation rule applies in all scenarios; as expected, it
underperforms in scenarios different from the reference scenario,
particularly when increasing water scarcity. However, for total

system benefits, the uncertainty linked to the framework is small
compared to other sources of uncertainties inherent in this type
of analysis (e.g., data, temporal and spatial aggregation, other
model assumptions).

In a second step, we investigate how the choice of framework
affects the economic valuation of projects in a with-without
analysis. We consider two (hypothetical) projects: (1) an
irrigation extension project, corresponding to an increase in the
water demand by 10% (implemented as a global scaling factor on
current demand curves); and (2) a water transfer project adding
10% of water upstream of the dam, represented by a constant
additional inflow of 0.45 109 m3 per month. We evaluate the
economic impact of these projects (computed as total benefits
with the projects minus total benefits without the project)
for the different scenarios of runoff and initial water demand
(Figures 6B,C). The impact of the irrigation project (Figure 6B)
corresponds to two horizontal moves right in Figure 6A, and the
impact of the water transfer project (Figure 6C) is similar to two
vertical moves up.

We observe that:

(1) SDP and MPC behave similarly as for total system benefits,
even if trends of differences are visible, they are smaller
compared to other frameworks (Figures 6B,C).

(2) PF overestimates irrigation project benefits by 5–12% in the
diagonal where water demand is close to water availability
(Figure 6B). The reason is that the increase in water demand
due to the irrigation project moves the system from a state
where foresight has low value toward a state where foresight
has high value (Figure 6A). PF underestimates transfer
project benefits by−20 to−35% in the diagonal where water
demand is slightly above water availability (Figure 6C). The
value of additional water is underestimated with perfect
foresight, because it moves the system from a state where
foresight has high value toward a state where foresight has
low value (Figure 6A). Outside the diagonal, PF is close to
both MPC and SDP. With water abundance or stress, the
value of foresight is respectively either low or stable, hence
it does not affect the with-without analysis significantly.

(3) SIM underestimates irrigation project benefits by −40 to
−80% (Figure 6B) in water-scarce scenarios (high demand
and low availability). In water-abundant scenarios (high
availability and low demand), SIM performs similarly to
other frameworks, as the release rules are not stressed by
water shortages. SIM overestimates transfer project benefits
by +30 to +60% in water-scarce scenarios (Figure 6C),
because the transfer project eases the water stress that SIM
does not cope well with.

In contrast to global system benefits, the differences found in
the with-without analysis can impact decision-making on project
development. When performing the with-without analysis, the
impact of assuming perfect foresight is more important in
scenarios where the value of foresight varies between the with
and the without run. This does not necessarily correspond to
scenarios for which the impact of perfect foresight on total
benefits is strongest. However, the value of investments varies
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FIGURE 5 | Modeled reservoir management of the High Aswan Dam (HAD) for the different frameworks. MPC, PF, SIM, and SDP indicate Model Predictive Control,

Perfect Foresight, Simulation, and Stochastic Dynamic Programming, respectively.

significantly depending on the water demand and available runoff
(with a factor 3–7), hence uncertainty in these parameters is
likely to have more impact than the bias introduced by perfect
foresight. In general, it is clearly inappropriate to use a non-
adaptative simulation rule to explore scenarios with a different
system state: as observed here, even small changes (e.g., +10%
demand combined to −10% runoff) can lead to considerably
different results (respectively −34% and +23% for the irrigation
and water transfer project benefits).

Zambezi River Basin Study Case
We now apply the Model Predictive Control (MPC) framework
to a large-scale nexus problem on the Zambezi River Basin
considering multiple interactions between the water, energy
and food systems. We evaluate the economic impact of
different projects and policies from World Bank (2010) by
performing with-without analyses for three different climate
change scenarios from Cervigni et al. (2015). We compare
the Perfect Foresight (PF) to the MPC framework in order to
evaluate the bias introduced by the perfect foresight assumption
(Table 2). The individual results of the largest hydropower
and irrigation projects are highlighted, while “all projects” also
include other investments.

The climate change scenarios from Cervigni et al. (2015),
correspond to different water-scarcity levels; in the semi-wet,
semi-dry and driest scenarios the water consumption represents
respectively 17, 23, and 34% of the available runoff. We observe
that for the semi-wet and semi-dry scenarios the differences
between the PF and MPC frameworks are mostly under 5%
(Table 2), which is small compared to other possible sources

of uncertainty (e.g., climate, socio-economic development).
However, for the driest scenario important differences appear for
some investments (Figure 7).

The aggregated economic value of all irrigation investments
is only overestimated by 4% with perfect foresight (Table 2),
but up to 90% for the Shire Irrigation investment, while the
value is almost the same for the Delta irrigation investment.
In Payet-Burin et al. (2019) the Shire River is found to be the
most water-scarce zone with high inflow variability and low
storage capacity, which explains why, with perfect foresight, the
project is more profitable as water scarcity can be anticipated.
The Delta irrigation project is in the Zambezi Delta, where there
is the most flexibility due to all upstream reservoirs and where
the water has the lowest value as there are no downstream
uses, which might explain the small difference between the
MPC and PF frameworks. When implementing all irrigation
projects (Table 3), perfect foresight leads to higher agricultural
production (+45 M$/year), which is partially due to higher
irrigation water allocation (+241 Mm3/year) as less water is
spilled downstream (−127 Mm3/year).

Environmental flow (e-flow) opportunity costs, which are
the direct forgone benefits by ensuring a minimum flow
to ecosystems (excluding the direct and indirect benefits of
protecting ecosystems), are underestimated by 23% with the
perfect foresight assumption. The difference is explained by
lower trade-offs with agricultural production (−61 M$/year),
energy production (−11 M$/year), and domestic and industrial
water users (−6 M$/year) (Table 3). With perfect foresight
low flows can be anticipated, hence extra water can be stored
to accommodate ecosystems and other water users, while in

Frontiers in Water | www.frontiersin.org 8 December 2021 | Volume 3 | Article 778003

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Payet-Burin et al. The Impact of Assuming Perfect Foresight

FIGURE 6 | Economic evaluation of baseline (A) and project development (B, C) with the different frameworks. For Model Predictive Control (MPC) the absolute value

is shown, for Stochastic Dynamic Programming (SDP), Perfect Foresight (PF), and Simulation (SIM) the incremental value compared to MPC is shown. Irrigation and

Transfer benefits are calculated through with-without analysis.

actual operation, when low flows are not anticipated, high
value water users might be curtailed in order to satisfy the
environmental constraint (as we assume environmental flows
have the highest priority).

The economic values of all hydropower projects are
overestimated by 9% on average with perfect foresight (Table 2),
and the variation between individual investments is small (+8%
for Batoka Gorge, +12% for Mphanda Nkuwa). However,
we see two opposite effects compensating each other: the
value of the additional reservoir capacity in Mphanda Nkuwa
is considerably underestimated with perfect foresight (−25
M$/year, −53%), while the value of the hydropower turbines is
considerably overestimated (+47 M$/year, +71%). Hence, we
find that the value of reservoirs tends to be underestimated
with perfect foresight, while the value of hydropower plants
is overestimated. When implementing all hydropower projects
(Table 3), perfect foresight leads to an underestimation of trade-
offs with the industrial and domestic water users (−8 M$/year)
and agricultural production (−31M$/year). While the additional
hydropower production is almost the same for both frameworks,
perfect foresight avoids more energy production costs by
alternative sources (−31 M$/year). Similar effects are found for

the impact of the e-flow policy and the irrigation development
(Table 3): with perfect foresight the projects/policies lead tomore
hydropower curtailment, but to a lower economic impact on the
energy system (lower energy production costs). The reason is
that with perfect foresight hydropower curtailments are timed to
minimize the need of extra power capacity development, while in
actual operation, this is not feasible.

These numbers can be compared to the uncertainty linked
to climate change (Figure 7); from the driest to the semi-wet
scenario, the value of all irrigation projects varies from 723
to 883 M$/year (+22%), the value of all hydropower projects
from 736 to 1,163 M$/year (+58%), and the opportunity costs
of the environmental policy from 284 to 55 M$/year (−80%).
Furthermore, in Payet-Burin et al. (2019), other factors such as
yield growth, international crop prices, carbon taxes, and cost of
renewable technologies are found to be as important regarding
the uncertainty of the future value of investments.

In conclusion, when evaluating the economic impact of
investments in the Zambezi River Basin, we find that the perfect
foresight assumption has negligible impacts for the semiwet
and semidry climate scenarios. In the driest climate scenario,
some investment values are over or under-estimated by more
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TABLE 2 | Impact of the perfect foresight assumption on the economic evaluation of infrastructure development and policies.

Climate scenario CAPEX Investment benefits (M$/year)

Semi-wet Semi-dry Driest

Investment M$ MPC PF Diff. MPC PF Diff. MPC PF Diff.

Irrigation Shire 280 109 109 0% 110 109 −1% 32 61 90%

Delta 573 138 138 0% 138 138 0% 144 137 −5%

Kariba 787 346 344 −1% 319 322 1% 285 308 8%

All projects 2,501 883 884 0% 836 843 1% 723 754 4%

e-flow Opportunity costs – 55 52 −5% 123 116 −5% 284 218 −23%

Hydropower Batoka Gorge 3,603 407 406 0% 392 392 0% 328 355 8%

Reservoir 5 2 5 1 −8 1

Hydropower 402 404 0% 387 390 1% 336 354 5%

Mphanda Nkuwa 2,142 326 333 2% 272 279 3% 101 113 12%

Reservoir 14 16 13% 25 21 −17% 48 23 −53%

Hydropower 311 317 2% 247 258 5% 53 90 71%

All projects 10,972 1,163 1,196 3% 1,033 1,039 1% 736 804 9%

Reservoir 26 27 5% 33 33 −1% 86 82 −5%

Hydropower 1,137 1,169 3% 1,000 1,006 1% 650 721 11%

Diff. indicates the relative difference as (PF-MPC)/MPC. All projects includes also other projects as in World Bank (2010). The infrastructure investments costs (CAPEX) are provided as

an indicative value.

FIGURE 7 | Impact of the perfect foresight assumption on the economic evaluation of infrastructure development and policies. “All projects” includes also other

projects as in World Bank (2010). IR, irrigation; HP, hydropower, and e-flow costs represent opportunity costs of environmental flows, excluding direct and indirect

benefits from enhanced ecosystems.
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TABLE 3 | Key indicators for the with-without analysis of selected investments and policies.

Investment All irrigation projects E-flow policy All hydropower projects

Key indicators (M$/year) MPC PF Diff. MPC PF Diff. MPC PF Diff.

Total economic impact 723 754 31 −284 −218 66 736 804 68

Water user benefits 7 0 −7 −6 0 6 −6 2 8

Energy supply benefits 0 0 0 0 0 0 0 0 0

Energy production costs 96 98 2 222 211 −11 −742 −773 −31

Crop supply benefits 1,065 1,110 45 −70 −9 61 −5 38 43

Crop production costs 253 257 4 −13 −1 12 −5 9 14

Downstream flow (106 m3/year) −4,761 −4,888 −127 954 560 −394 1,038 714 −324

e-flow fail (106 m3/year) −45 0 45 21 0 −21 20 0 −20

Hydropower production (GWh/year) −1,975 −2,142 −167 −3,571 −3,990 −418 17,476 17,501 25

Irrigation consumption (106 m3/year) 4,619 4,859 241 −597 −153 443 −705 −457 249

Irrigated area (1,000 ha) 292 292 0 −12 −2 11 −7 4 11

Diff. indicates the relative difference as (PF-MPC).

than 20%, but overall, the uncertainty linked to the climate is
more important than the bias linked to the perfect foresight
framework. However, the perfect foresight assumption could
impact the decision-making process when testing the robustness
of investments regarding climate uncertainty.

DISCUSSION AND CONCLUSION

In this paper, we show how the Model Predictive Control
framework can overcome the assumption of perfect knowledge of
the future in hydroeconomic optimization models. The method
is attractive as it does not necessarily require additional data and
can be applied to complex large-scale models. We validate the
method by comparing it to Stochastic Dynamic Programming
for a simple study case. We highlight impacts of assuming
perfect foresight: high flows are anticipated in the model by
earlier water releases avoiding spills; low flows are anticipated
by storing additional water avoiding curtailments. For a more
complex system such as the Zambezi River Basin, we show that
perfect foresight also results in better timing of hydropower
production leading to less power capacity construction. By using
a wide range of scenarios, we show that the importance of
these effects is highly dependent on the system state. We find
that perfect foresight overestimates total system benefits by
<2% for all scenarios (compared to Model Predictive Control),
while a pure simulation framework shows differences up to
12% for the water-scarcest scenarios. The specific focus of the
paper is to analyze the impact of assuming perfect foresight
in cost-benefit analysis of investments and policies through
with-without analysis. On the Nile synthetic case, for some
scenarios, the perfect foresight assumption is found to have
no impact. But for other scenarios, the value of an irrigation
project is overestimated by 5–12% while the value of a transfer
project is underestimated by 20–35%. We also show that using
a non-adaptative simulation rule is clearly inappropriate when
exploring scenarios with a different system state as economic
impacts are over and underestimated by more than 30% for

a large range of scenarios. Hence, while perfect foresight can
introduce bias in the economic analysis, the assumption seems
more reasonable than using a simulation framework with
static rules.

The impact of assuming perfect foresight is confirmed
when applying the methodology to a large-scale problem on
the Zambezi River Basin involving interactions between the
water, energy and agriculture systems. Perfect foresight does
not affect the economic evaluation of potential investments
in two out of three climate change scenarios. However, in
the driest climate change scenario, the value of one irrigation
project is overestimated by 90% while other projects show little
bias, the opportunity costs of an environmental flow policy
are underestimated by 23%, the value of reservoir capacity
development is underestimated by 5–53%, and the value of
hydropower turbines are overestimated by 5–71%. In general, we
find the impact to be less important for larger investments.

Contrary to total system benefits, the differences found in
the with-without analysis can impact decision-making on project
development. While perfect foresight provides an upper bound
to total economic benefits of a system, this does not hold
for economic evaluation of investments through with-without
analysis. In with-without analysis, the impact of the perfect
foresight assumption depends on the current system state, and
the state toward which project moves the system. Because
different effects have impacts on the results, it is difficult to
predict in which cases the perfect foresight assumption will lead
to biased cost-benefit results as it might vary from case to case.
We can, however, formulate these general insights:

In water scarce situations (where demand is large relative
to supply and/or variability is high relative to storage), perfect
foresight will tend to overestimate benefits of infrastructure,
because close to perfect water management generates large
extra values. In abundant situations, perfect management is less
valuable so perfect foresight will be closer to reality. With regards
to infrastructure, perfect foresight will tend to overestimate the
benefits of water use infrastructure (e.g., irrigation and turbines),
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while benefits of flow regulation infrastructure (e.g., reservoirs)
tend to be underestimated.

Hence when using perfect foresight models, we recommend
the use of a framework like Model Predictive Control to
perform the economic evaluation of investments and policies,
or to control the validity of the perfect foresight assumption.
As a result of this work, investment analysis with the MPC
framework can now be performed with little extra effort
and data compared to the perfect foresight framework in
the open-source WHAT-IF model. However, we find that
the uncertainty linked to exogenous parameters like climate
change (or socio-economic development not explored in this
paper) might have more impact than the bias introduced
by perfect foresight. While the framework is not limited by
the curse of dimensionality, it does increase computation
costs. If those become a burden when evaluating a large
range of scenarios for robust decision-making, a trade-off
must be found between uncertainty introduced by the perfect
foresight assumption and uncertainty introduced by exploring
fewer scenarios.
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