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Editorial on the Research Topic

Multivariate extremes and compound, interconnected and cascading

events: Understanding the past and projections into the future

The compound flood (CF) results frommultiple environmental drivers, such as peak

river discharge and high coastal water level co-occurrences, contributing to significant

environmental and societal impacts (Zscheischler et al., 2018). CF includes a diverse

set of event types, including pre-conditioned, multivariate, temporally, and spatially

compounding events, which might be challenging to attribute using a single set of

indices or hazard frameworks (Zscheischler and Lehner, 2022). Although there is

a considerable advancement in the recent literature on coastal (Zheng et al., 2014;

Moftakhari et al., 2017; Bevacqua et al., 2020; Gori et al., 2022) and inland CF

hazard (Khatun et al., 2022; Thieken et al., 2022) assessments, challenges remain

in characterizing multihazard attributes involving mutual interdependence among

inter-related and hidden environmental drivers (Ganguli and Merz, 2019; Renard et al.,

2022), lack of a credible impact-driven framework tomap such events (Hillier andDixon,

2020), and operational aspects in monitoring CF hazards (FEMA, 2020). Moreover,

non-stationarity (Ghanbari et al., 2019; Naseri and Hummel, 2022) and deep uncertainty

(Wong and Keller, 2017) of underlying environmental stressors further complicate CF

hazard projection. While non-stationarity is the shift in the climate system (Ghanbari

et al., 2019), deep uncertainty indicates climate model structural uncertainty (Knutti

et al., 2010) that propagates due to a lack of understanding of model physics and

natural variability (Horsburgh et al., 2021), which is intrinsic to the climate system. The

manuscript included in this research line aims to collect cutting-edge studies on the

compound and cascading flood hazards, their attribution, and projections in the face

of climate uncertainty, and provide prospects on adaptive responses to devise increased

preparedness in practice and modeling approaches.
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Following these motivations, three research articles and one

commentary were published as part of this Research Topic.

These papers can broadly be classified under three categories:

two papers dealt with coastal compound floods through a

numerical modeling approach; another paper presents shifts

in runoff generation processes due to warming-induced glacial

melts of a catchment in a remote location in central Asia,

potentially augmenting rain on snow-melt CFs, triggering

cascading hazards, such as landslides and other mass wasting

phenomena (Poschlod et al., 2020). Finally, the commentary

discusses a new perspective on societal and gender dimensions

of climate adaptations in low-lying Deltas focusing on the Bay of

Bengal (BoB) region of coastal India.

Using in-situ meteorological records and remotely-sensed

snow cover images in a physically-based hydrological modeling

setup, He showed the shifts in runoff dynamics of Ala-Archa

catchment, in Central Asia (Northern Tienshan range) from

pluvial to nival flood regimes. The high mountain Asian (HMA)

“water towers” (Immerzeel et al., 2010) are mainly at risk with a

shift from snow to rain, and catchments with a higher fraction of

glaciered area tend to show increasing trends in the runoff (Chen

et al., 2016; Barandun et al., 2020). Leveraging incremental

climate scenarios, the authors investigated the hydrological

responses to climate changes and highlighted the sensitivity

of glaciers to warming. Further, a decreasing groundwater

contribution is apparent, which could be compensated by

a precipitation increase. While considerable uncertainties in

projecting climate change consequences in HMA, e.g., poor

monitoring network, difficulties in bias correction of climate

model output due to orographic facets, and wind effects in

complex topography (Van Den Broeke, 1997; Bannister et al.,

2019), most assessments have shown the compounding effects

of projected changes in temperature and precipitation would

lead to hydrologic regime shifts with changes in magnitude

and timing of floods in the HMA (Hill et al., 2017; Armstrong

et al., 2019; Bhattacharya et al., 2021; Khanal et al., 2021).

The gradual shifts in hydrologic regime result in cascading

hazard chains across HMA, as evident from frequent glacier lake

outburst floods and landslides, adversely affecting downstream

food and energy systems and disrupting transportation networks

(Kirschbaum et al., 2019; Kattel et al., 2020; Li et al., 2022).

Santiago-Collazo et al. demonstrated the evolution of CF

hazard zones in the highly altered Mississippi River and

Deltaic System. Synthetic storm events were simulated using

a coupled hydrodynamic-hydrologic modeling framework over

two distinct coastal watersheds within southern Louisiana state.

Each scenario is compared over projected (2050 and 2090)

vs. historical (1890, 1930, and 1970) time windows. In the

projected scenario, for coastally-dominated catchments, the

lower magnitude pluvial floods (simulated by rainfall-runoff

modeling) are expected to impact CF hazard zones more than

the higher magnitude floods. Interestingly, with the effect of Sea

level rise (SLR), the near-future planning horizon (2010–2050)

shows shifts in coastal flood zones closer to inland over time.

SLR due to coastal subsidence, shoreline erosion, and wetland

losses are well evident in the Mississippi Deltaic system (Dixon

et al., 2006; Törnqvist et al., 2008). The nonstationarity of climate

further exacerbates shifts to coastal-fluvial transition near the

tidal limit due to differences in wave celerity during coastal

CFs (Dykstra and Dzwonkowski, 2021). In the tropics, Rezaie

and Haque developed an operational framework (storm surge

inundation model and associated database) to assess tropical

cyclone (TC)-driven storm surge vulnerability across the low-

elevated coastal plain of BoB, near coastal Bangladesh. One of

the significant difficulties experienced was the lack of good-

quality hydrometeorological records for recent years, such as

recent catastrophic cyclones, such as Amphan in 2020 and

Yaas in 2021, to validate their findings. The findings showed

that while storm intensity has a substantial role in controlling

inundation depths, inundation primarily varies with the landfall

locations. Despite two of the studies presented herein belongs to

disparate climate regions, both studies (1) map CF hazard across

the world’s large river basins such as the Ganga-Brahmaputra-

Meghna (Rezaie and Haque) and Mississippi (Santiago-Collazo

et al.) Delta systems, which are densely populated and highly

invested. (2) Highlights the non-stationarity driven by the SLR

and resulting deep uncertainty posed significant challenges in

informing climate adaptations and devising flood defenses in

marine-fluvial transitions.

Gangopadhyay et al. discussed gender dimensions of climate

adaptations in the BoB region of coastal India, where shoreline

erosions, SLR, and catastrophic cyclones resulting in “coastal

migration” (Lincke and Hinkel, 2021) pose significant concerns.

Further, the authors have highlighted that increasing climate

shocks due to cyclones and floods, together with a deteriorating

marine ecosystem have led to declining fish production,

resulting in long-term displacements of the skilled population,

especially outmigration of males. The outmigration of skilled

male populations or family re-settlements inland would divest

the women as their skills in coastal, household-based ancillary

aquaculture activities tend to be redundant.

Overall, a few aspects of these four studies are worth

highlighting: (1) Compound inland and coastal flood hazards

pose a significant risk to high mountain Asia and highly invested

deltas across the globe due to difficulties in characterizing the

risk of multiple drivers within a limited time window. (2)

Climate change, for example, more rains than snow events

in high mountains, would lead to shifts in hydroclimatology;

the high SLR leads to changes in marine-fluvial transition

zones, triggering the likelihood of cascade hazard chains and

affecting societal resilience. (3) Gender disparity, economic

inequality, and climatic shocks from compound climate and

weather hazards, and biological risks in combination with

natural hazards have further complicated the “disaster riskscape”
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(Patra and Kantariya, 2014; ESCAP, 2021), demanding a more

holistic approach to risk management.
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