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River floods are a common environmental hazard, often causing severe damages, loss

of lives and livelihood impacts around the globe. The transboundary Lower Mono River

Basin of Togo and Benin is no exception in this regard, as it is frequently affected by river

flooding. To enable adequate decision-making in the context of flood risk management,

it is crucial to understand the drivers of risk, their interconnections and how they

co-produce flood risks as well as associated uncertainties. However, methodological

advances to better account for these necessities in risk assessments, in data-scarce

environments, are needed. Addressing the above, we developed an impact chain via

desk study and expert consultation to reveal key drivers of flood risk for agricultural

livelihoods and their interlinkages in the Lower Mono River Basin of Benin. Particularly,

the dynamic formation of vulnerability and its interaction with hazard and exposure is

highlighted. To further explore these interactions, an alpha-level Bayesian Network was

created based on the impact chain and applied to an exemplary what-if scenario to

simulate changes in risk if certain risk drivers change. Based on the above, this article

critically evaluates the benefits and limitations of integrating the two methodological

approaches to understand and simulate risk dynamics in data-scarce environments. The

study finds that impact chains are a useful model approach to conceptualize interactions

of risk drivers. Particularly in combination with a Bayesian Network approach, the method

enables an improved understanding of how different risk drivers interact within the

system and allows for dynamic simulations of what-if scenarios, for example, to support

adaptation planning.
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INTRODUCTION

Floods are one of the most devastating hazards, regularly
causing considerable damage to goods, infrastructure, human
well-being, and livelihoods (Nguyen et al., 2020; UNDRR
- UN Office for Disaster Risk Reduction, and CRED -
Centre for Research on the Epidemiology of Disasters, 2020).
Damages and losses due to flooding are predicted to further
increase in the future (Jongman et al., 2012; Hirabayashi
et al., 2013; Dottori et al., 2018; Intergovernmental Panel on
Climate Change, 2021) calling for knowledge-based solutions to
reduce current and prevent future flood risks. Understanding
the root causes, drivers, patterns, and dynamics of flood
risks for people, assets, sectors and systems, and associated
uncertainties is important to inform adequate risk management
(Adger et al., 2018; Hagenlocher et al., 2020). Yet, a limiting
factor for effective decision-making is a lack of understanding
of the highly dynamic processes and uncertainties within
flood risk assessments (Di Baldassarre et al., 2014). Only
a clear understanding of the system, its dynamic behavior,
and specific risks (e.g., risk of loss of life, risk of impacts
on livelihoods, risk of infrastructure damage, etc.) allows
to e.g., identify potential unintended outcomes of intended
adaptation measures. This implies also a sound understanding of
interconnections as well as associated uncertainties. Therefore,
to enhance decision-making for flood risk reduction and
adaptation, improved methodologies for assessing flood risk
dynamics are required.

One of the most frequently mentioned dimensions of risk
dynamics refers to processes and variations of risk and risk
drivers over time (Villa et al., 2014; Sinare and Gordon, 2015;
Di Baldassarre et al., 2019; Michaelis et al., 2020). A further,
frequently considered dimension of risk dynamics refers to a
variation over space (Bagstad et al., 2013; Villa et al., 2014;

Sinare and Gordon, 2015; Sinare et al., 2016; Di Baldassarre
et al., 2019; Shinn and Hall-Reinhard, 2019). Furthermore,
dynamic interactions within and among systems in the form

of interactions of risk drivers or feedback loops are identified
in the literature (Turner et al., 2003; Villa et al., 2014; Di
Baldassarre et al., 2019; Michaelis et al., 2020). In addition to
risk dynamics, the concept of uncertainty is commonly addressed
in the scientific discourse of water and flood risk management

(Höllermann and Evers, 2015, 2019; Di Baldassarre et al., 2016;
Höllermann, 2018) as well as in the context of risk assessment

and risk modeling (Döll and Romero-Lankao, 2017; De Brito
et al., 2019; Di Baldassarre et al., 2019; Hagenlocher et al., 2020).
Uncertainty in the context of participatory risk assessment and
modeling results frommultiple sources. Examples are ontological
and epistemic uncertainty (Di Baldassarre et al., 2016; Döll
and Romero-Lankao, 2017; Jurgilevich et al., 2017; Hagenlocher
et al., 2020), uncertainty related to software and data (Walker
et al., 2003; Hagenlocher et al., 2020), uncertainty regarding
the conceptual representation of the system and methodological
approach (Döll and Romero-Lankao, 2017; Jurgilevich et al.,
2017; Hagenlocher et al., 2020), as well as bias, ambiguity
and linguistic uncertainty in participatory processes (Döll and
Romero-Lankao, 2017; Hagenlocher et al., 2020).

Based on the high level of uncertainty and dynamic processes
regarding flood risks, a need for innovative assessment and
modeling approaches has been identified (Terzi et al., 2019).
In addition, Di Baldassarre et al. (2014) and Merz et al.
(2014) criticize that flood risk assessments have historically been
conducted from a rather narrow hazard perspective. Following
the widely acknowledged understanding of risk as a function of
hazard, exposure, and vulnerability (IPCC - Intergovernmental
Panel on Climate Change, 2014; UNDRR - UN Office for
Disaster Risk Reduction, 2019), Sivapalan et al. (2012), Merz
et al. (2014) and Di Baldassarre et al. (2019) emphasize the
need to better understand the interactions between society and
floods. Over the past decades, a large array of approaches and
methods for comprehensive climate, natural hazard and disaster
risk assessments that consider hazard, exposure and vulnerability
drivers have been developed and applied across sectors, systems,
spatial and temporal scales (see e.g., Jurgilevich et al., 2017;
Adger et al., 2018; Ward et al., 2020 for recent reviews of the
literature). However, existing reviews focusing specifically on
flood risk assessments (e.g., Apel et al., 2009; de Moel et al.,
2015; Díez-Herrero and Garrote, 2020; Ward et al., 2020; Nguyen
et al., 2021) reveal that despite these developments the focus is
still largely centered around the hydrological part of flood risk
or the use of damage functions to represent the vulnerability of
specific assets to flooding. More comprehensive assessments that
also take into account social, economic, political or governance-
related drivers of flood risks, and their dynamic interaction, are
still rather the exception.

Moreover, it is evident that the inclusion of participatory
methods and transdisciplinary approaches in risk assessments is
crucial for an adequate reflection of local needs and knowledge
(Döll and Romero-Lankao, 2017; Cains and Henshel, 2019;
Hagenlocher et al., 2020). To enhance the understanding of how
different drivers of risk interact with a focus on specific possible
impacts, impact chains have been introduced as a novel approach
to assess vulnerabilities and risks associated with climate change
and natural hazards in a participatory manner (Fritzsche et al.,
2014; Zebisch et al., 2017; Hagenlocher et al., 2018). Despite their
focus on inter-driver relations and specific risks, impact chains
have mainly been used for static index-based vulnerability and
risk assessments that, per definition, do not enable the analysis of
how different drivers of risk influence each other. For example,
the methodology has been applied to assess the vulnerability of
smallholders pertaining to water supply in Bolivia (Zebisch et al.,
2021), vulnerability to climate change and adaptation impacts
in Pakistan (Zebisch et al., 2021), as well as to identify priority
areas for adaptation to climatic impacts on agriculture in Burundi
(Schneiderbauer et al., 2020). Nevertheless, approaches to using
the impact chain methodology as a starting point for more
dynamic risk assessments are still lacking.

To account for risk dynamics and uncertainty the use of
sophisticated assessment tools such as Agent-based Models or
Bayesian Networks (BN) is on the rise (Terzi et al., 2019).
Frequently, BN modeling is referred to in the literature as a
well-suited approach for the integration of multiple data sources,
including qualitative information (Balbi et al., 2016; Terzi et al.,
2019). Moreover, BNs are appropriate for reflecting uncertainty
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in a transparent way, which is especially beneficial in complex
systems with a high level of dynamic processes and a low level of
certainty (Chen and Pollino, 2012). While BNs have already been
widely used in disciplines such as medical diagnostics (Lauritzen
and Spiegelhalter, 1988), their popularity is increasingly growing
also in other disciplines such as environmental and ecological
management (Marcot et al., 2006; Harris et al., 2017; Graham
et al., 2019) as well as in the context of coastal and riverine flood
risk assessment and management (Balbi et al., 2016; Maskrey
et al., 2016; Abebe et al., 2018; Jung et al., 2021). Though the
idea for a structured integration of BN with participatory expert
consultation for environmental management emerged at least
two decades ago (Cain, 2001; Marcot et al., 2006; Maskrey et al.,
2016), the integration of BN remains widely unexplored in the
realm of flood risk science. For instance, a study by Wu et al.
(2020) integrates BN modeling with geographic information
system (GIS) methods to assess urban flood risk. Yet, the
study refrains from stakeholder consultation. The integration
of stakeholder-validated impact chains with BN modeling to
account for flood risk dynamics and uncertainty as illustrated in
this article remains a novel approach.

To apply this novel approach, the Lower Mono River
Basin in Benin was selected as a case study area. The basin
is regularly negatively affected by recurring fluvial floods,
which pose a real threat to local livelihoods (Nicholson et al.,
2021). Since agriculture is a crucial source of income for
many rural households in Benin (ILO - International Labour
Organization, 2019), this research focuses on the specific

risk of loss of agricultural livelihoods due to flooding in
the Lower Mono River Basin. Regarding the study area,
several flood risk assessments have been carried out (Kissi
et al., 2015; Ntajal et al., 2017). Kissi et al. (2015) provide
a static, indicator-based flood vulnerability assessment for
selected communities in the Lower Mono River Basin in
Togo, while Ntajal et al. (2017) considered hazard, exposure,
vulnerability, and capacities to describe flood risk. In contrast
to Kissi et al. (2015) and Ntajal et al. (2017), Schudel et al.
(forthcoming) take a more holistic approach by assessing flood
risk including hazard, exposure, and vulnerability for the whole
transboundary LowerMono River Basin using an indicator-based
approach. Yet, specific impacts of flooding (e.g., agricultural
livelihoods), as well as the dynamic relation among the different
drivers of risk, are not sufficiently acknowledged in existing
assessments. The study area can be considered data-scarce
regarding the specific flood risk for agricultural livelihoods. First,
qualitative information on drivers of flood risk for agricultural
livelihoods in the region is limited since no study, to our
knowledge, has focused on this impact-specific risk. Second,
while general socio-economic indicators are available for the
region (INSAE - Institut National de la Statistique et de l’Analyse
Economique, 2016b), the amount, scale, and scope of available
quantitative data is not sufficient to adequately assess this
highly context-dependent risk. Hence, the need for an improved
understanding of the dynamic interaction of risk drivers to
support the formulation of adequate strategies and policies
to reduce the risk of severe impacts is pressing. Addressing

FIGURE 1 | Context of methodological approach. 1: objectives; 2: methodology; 3: outcome.
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the above-outlined research gaps the main objectives of this
study are:

(i) to improve the understanding of how different risk drivers
interact to co-produce flood risk for agricultural livelihoods
in the research area; and,

(ii) to illustrate and critically discuss benefits and limitations
of integrating impact chains with BN analysis as a tool
for understanding and simulating risk dynamics in data-
scarce environments.

To structure the article, first, the methodology (section
Methodology) is introduced, containing information regarding
the study area, the methodological approach for impact
chain development and validation as well as the rationale
for qualitative BN development. Second, the results are
presented (section Results) including results obtained through
the impact chain as well as results from an illustrative
what-if scenario that was applied to the qualitative BN.
Third, the benefits and limitations of the methodology,
and their implications are critically discussed (section
Discussion). Ultimately, the article concludes with final
remarks (section Conclusion).

METHODOLOGY

To address the first objective, an impact chain was developed
and validated applying a qualitative, participatory, multi-method
approach. In a second step, a qualitative alpha-level BN was
created based on the impact chain. Its utility for simulating
risk dynamics was illustrated and evaluated with an exemplary
what-if scenario (Figure 1).

Study Area
Benin forms part of a geographic region that is highly
affected by extreme weather and climate change (Niang et al.,
2014). The tropical regions of West Africa are estimated to
be affected by climate trends 10 to 20 years earlier than
the international average (Niang et al., 2014). In contrast
to the clear warming trends, precipitation trends for the
study area are subject to greater variability and uncertainty.
Projected precipitation developments of different models present
considerable inconsistencies regarding the amplitude and
direction of change (Niang et al., 2014). The high uncertainty of
precipitation development is further underlined by the diverging
trends identified for the region (Lamboni et al., 2019). Even
though precipitation development under climate change for
West Africa remains scientifically contested, increasing trends in
river floods since 1980 are observed for the region (Emmanuel
et al., 2019; Tramblay et al., 2020). For the time period from 1961
to 2016, Obada et al. (2021) have identified a decrease in the
amount of consecutive wet days, but an intensification in extreme
precipitation in Benin. This development leads to an increase in
flash floods in the region. Also, for southern Benin, including
the Mono River Basin, trends of increasing flood frequency and
extreme rainfall are observed (Sanchez et al., 2012; Baudoin,
2014).

The Lower Mono River, describing the Mono River south of
the Nangbeto Dam, is a significant hydrological and political
factor for Benin, demarcating the southern part of the border
between Benin and Togo (Figure 2). The Lower Mono River
Basin is characterized by its low elevation and flat to gentle slopes
and valleys (INSAE - Institut National de la Statistique et de
l’Analyse Economique, 2016b; Ntajal et al., 2017). Furthermore,
land use/land cover is dominated by savanna vegetation and
rainfed agricultural land (INSAE - Institut National de la
Statistique et de l’Analyse Economique, 2016b; ESA - European
Space Agency, 2020). Regarding socio-economic configurations
of the study area, a first generic impression may be derived
from the Human Development Index (HDI). Benin has an
HDI value of 0.52, corresponding to the 163rd position in the
international ranking (UNDP - United Nations Development
Programme, 2019). Especially in the rural areas, agriculture
remains the main economic sector in terms of employment rates,
with 38.3% of the total workforce in Benin engaged in agriculture
(The World Bank, 2021). Also, a lack of income diversity was
identified for the rural population which is mostly dependent on
subsistence farming (Kissi et al., 2015; Ntajal et al., 2017). On the
Beninese side of the Lower Mono River Basin, more than 97%
of the agricultural households focus on crop production, while
livestock farming and fisheries are negligible. Cassava, maize
and beans are the most cultivated products, followed by peanuts
(Couffo district) and vegetables (Mono district) (INSAE - Institut
National de la Statistique et de l’Analyse Economique, 2016a).

One of the central issues for concern is the destructive impact
of flooding on agricultural livelihood systems and the population
directly depending on agriculture (Ntajal et al., 2017). Generally
driven by heavy precipitation, flood events mostly occur during
the rainy seasons which extend fromMay to June and September
to October (Kissi et al., 2015). A crucial component of the
hydrological system of the Mono River is the Nangbeto Dam,
located in Togo. Due to its hydroelectric power station, Nangbeto
Dam is also an important socio-economic factor in the region.
However, its contribution to flood events in the Lower Mono
River Basin is contested among the population (Ago et al., 2005).
Nevertheless, the presence of the Nangbeto Dam has reduced the
intra-annual discharge variability of the Mono River leading to
the eradication of former seasonal dry outs in the lower basin
(Ago et al., 2005). In conclusion, the frequent occurrence of river
floods, combined with the socio-economic configurations of the
region including the high dependency on subsistence farming
suggests the potential for elevated flood risk in the study area.

Impact Chain Development and
Participatory Impact Chain Validation
To apply the impact chain methodology, first the specific
risk of interest (here: impacts on agricultural livelihoods) was
selected. This was followed by the identification of risk drivers
and their interactions, and further refinement and validation
of the impact chain based on a multi-method approach. A
draft impact chain was developed based on the flood risk
drivers identified in a participatory approach by Schudel et al.
(forthcoming) and based on the experiences of several of the
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FIGURE 2 | Characteristics of the Lower Mono River Basin. (A) Extent of a 10-year return period flood hazard in the Lower Mono River Basin (Almoradie and

Houngue, 2021), (B) land use in the Lower Mono River Basin (CENATEL - Centre National de Télédétection et de Suivi Ecologique, 2015; MEDDPN - Ministry of

Environment Forest Resources, 2015), (C) share of agricultural households per administrative area (INSAE - Institut National de la Statistique et de l’Analyse

Economique, 2016b; NSEED - Institut National de la Statistique et des Etudes Economiques et Démographiques et AFRISTAT, 2019), (D) location of Lower Mono

River Basin in West Africa.

co-authors from a field visit to the study area. To specify the
impact chain for the risk of loss of agricultural livelihoods, a
literature review (Supplementary Data Sheet 3) was conducted,
followed by two rounds of expert consultations, which refined the
impact chain. For the literature review, sources used by Schudel
et al. (forthcoming) were screened with a particular focus on
agricultural livelihoods. Subsequently, the draft impact chain was
validated via stakeholder consultation.

Due to the global COVID-19 pandemic, in-situ workshops
were not feasible, calling for alternative approaches to
stakeholder engagement. In response to this, a series
of online workshops (08/2020) were organized. The
group of 17 participants consisted of representatives from
academic, governmental, and non-governmental institutions
(Supplementary Data Sheet 4). The group was homogeneous
considering their local expertise from the Lower Mono
River Basin and heterogeneous from a thematic perspective.
The group’s heterogeneity of thematic expertise reduces the
potential for epistemic uncertainty and thematic bias but
increases the potential for ambiguity and linguistic uncertainty
(Döll and Romero-Lankao, 2017). Consequently, a common
understanding of key terminology and concepts was established
with two introductory videos, one explaining the concept
of risk following the IPCC fifth assessment report (IPCC -
Intergovernmental Panel on Climate Change, 2014), the other

explaining the conceptual framework of impact chains in the
French language. The first session aimed at validating general
drivers of flood risk and associated indicators derived from
literature and a field survey in October 2019 (Schudel et al.,
forthcoming). Specific questions pertaining to key drivers of
flood risk for agricultural livelihoods were included in this
session as well (Schudel et al., forthcoming). The second
workshop did not focus on key drivers of risk, but on their
dynamic interactions and interplay that co-produces the
particular risk. From a methodological perspective, online
surveys were followed by group discussions. The survey asked
for the evaluation of the strength of each causal link contained
in the impact chain. The potential answer options included “no
influence,” “low importance,” “high importance” and “I don’t
know.” All links with at least one answer of “no influence” were
selected for further discussion. Also, all links without a ≥75%
tendency toward one answer option were selected for subsequent
discussion (Supplementary Data Sheet 1).

Development of a Bayesian Network
Based on Impact Chain
Based on the final impact chain which was validated by the
stakeholders, a BN was developed to illustrate how these
methodological approaches can be combined. Next, the BN was
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TABLE 1 | Six-step methodology from impact chain to Bayesian Network.

Step Rationale Action taken

(1) Simplification Simplification of the model (parsimony) is crucial since less complex models

are easier to grasp for model users (Cain, 2001) and have reduced uncertain

interactions (Chen and Pollino, 2012; Döll and Romero-Lankao, 2017).

Number of drivers in the impact chain was reduced from

49 to 33 (see Supplementary Figure 1 for details).

(2) Creation of graphical

component (DAG) of BN

The general structure of the BN is based on the logic of the impact chain. A main BN model was created containing the final risk,

which is influenced by three submodels (hazard,

exposure, vulnerability).

(3) Finalization of graphical

component of BN

Improvement of model’s ability to account for indirect feedbacks between

subcomponents of risk.

Additional simplification: Marcot et al. (2006) suggest that no variable in the

network should have more than three parents to keep the

interactions manageable.

First, causal linkages between submodels were

introduced e.g., to improve reflection on dynamic

processes between flood severity and exposure.

Second, the network was simplified where necessary by

introducing auxiliary nodes (parent divorcing).

(4) First parameterization For each CPT of the model first parameters were elicited. Generally, all

assigned probabilities during the first parameterization were evaluated

based on the authors’ prior knowledge obtained during the impact chain

development and validation phase.

A probability value was assigned to each potential state

of the variables based on interactions of its parents

(Supplementary Document 3). Some parameters

automatically assigned by the GeNIe software were kept

for initial parameterization where individual refinement

was not considered relevant for a first impression of

model behavior.

(5) Qualitative evaluation

and calibration of model

Initial parameters are refined based on qualitative assessment of interactions

and model behavior. The refinement process was guided by three key

requirements. First, probability values reflect the most likely state when all

parent states are observed. Second, a no-regret rationale, resulting in a bias

toward higher levels of risk was considered (Walker et al., 2003). Third, risk

drivers that have been identified by stakeholders to be comparatively more

relevant have higher influence on child nodes. The resulting calibrated

model corresponds to an alpha-level model (Marcot et al., 2006).

First, all possible combinations of observable states were

applied. The outcome considered most likely was

assigned the highest probability value. Second, higher

probability values were assigned to variables’ states

indicating higher risk. Third, parameters were adjusted to

force higher influence of key drivers. The refinement was

supported by a sensitivity analysis function incorporated

into the GeNIe software (Balbi et al., 2016; BayesFusion,

2020).

(6) Simulation of an

illustrative what-if scenario

The model was applied to an exemplary scenario illustrating how the

methodology may support the assessment of risk dynamics and visualize

the influence of changes in a selected driver on the system. The variable

’dependence on flood-sensitive crops’ was selected due the importance

attributed by stakeholders.

First it was assumed that dependence on flood-sensitive

crops is observed to be high. Based on this observation,

the BN updates the initial probabilities that were assigned

for complete uncertainty (no driver is observed to be in a

particular state). For the second scenario, dependence

on flood-sensitive crops was assumed to be low.

applied to assess dynamic interactions of risk drivers and their
changes using an exemplary what-if scenario.

During the workshops, stakeholders adjusted and validated
the content and structure of the impact chain and further
highlighted factors that are considered particularly relevant for
explaining flood risk for agricultural livelihoods in the region.
The authors used this information to simplify the impact chain
focusing on particularly relevant risk drivers and interactions
(Supplementary Figure 1). This simplified impact chain was
then translated into the graphical component of a BN model.
The underlying probability values which are stored for each
variable in their conditional probability tables (CPTs) have
been qualitatively selected and refined based on the authors’
judgment. This process was strongly informed by the authors’
experiences made during the impact chain development and
validation process. As the process of parameterization was strictly
qualitative, the assigned probability values shall depict a general
logic of interaction rather than exact quantitative calculations of
likelihood (further information on the methodology is provided
in Supplementary Data Sheet 2; full list of CPT parameters is
provided in Supplementary Document 3).

Our approach to BN modeling is partially informed by the
suggested methodology in Marcot et al. (2006) and consists

of six consequent steps (Table 1). For BN modeling we used
the GeNIe software (BayesFusion, 2020). The first three steps
include adjustments to the graphical and logical structure of the
final impact chain and subsequent modifications of the directed
acyclic graph (DAG) which refers to the graphical component of
the BN. Steps 4 and 5 account for the quantitative part of the BN
contained in the CPTs of the network’s variables and encompass
a first parameterization, qualitative evaluation, and successive
qualitative re-parameterization of the model, generating an
operational alpha-level model in the sense of Marcot et al.
(2006). Ultimately, step 6 comprises the development of an
exemplary scenario based on the alpha-level model (Table 1;
Supplementary Data Sheet 2).

RESULTS

Impact Chain: Key Drivers of Risk and
Their Interlinkages
Figure 3 shows the final, validated impact chain. It comprises
drivers and their interlinkages related to hazard, exposure,
and vulnerability as well as external drivers and how they all
contribute to the impact-specific risk.
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FIGURE 3 | Validated impact chain. Bold arrows: high causal influence; thin arrows: medium causal influence; dashed arrows: low causal influence. For high

resolution image refer to Supplementary Figure 2.

The hazard component is influenced by excessive
precipitation (climate signal), which in turn is influenced by
climate change (Niang et al., 2014). During expert consultation,
participants mentioned that especially changing seasonality of
extreme rainfall contributes to increased uncertainty regarding
the temporal distribution of Mono River floods. The dynamic
combination of excessive precipitation with the external drivers
of soil type and topography are considered strong explanatory
variables for determining the duration of flooding, flood depth,
flow velocity and maximum spatial coverage of the flood by
workshop participants. Workshop participants also perceived a
high influence of discharge at Nangbeto Dam on flood duration,
depth, velocity, and spatial extent. The influence of loss of natural
retention capacity for explaining the related drivers of duration,
flood depth, flow velocity and flood extent was considered less
relevant by stakeholders. In contrast, participants identified
flood duration, frequency, depth, velocity, and spatial extent
as relevant characteristics of river flooding as well as drivers of
erosion. Erosion was highlighted as a crucial factor explaining
alluvial deposition (or sedimentation), but alluvial deposition
was identified as a less relevant driver for the overall flood
hazard. The ecosystem’s sensitivity to erosion was considered
particularly relevant in the context of intermediate impacts.

Due to the focus on agricultural livelihoods, livestock,
agricultural areas, and agriculture-dependent populations
located in potentially flood-prone areas were considered as
exposed elements. Further, critical infrastructures were also
identified as a relevant exposed element, including streets,

buildings used as flood shelters as well as storage facilities
(mainly for agricultural produce).

In the context of vulnerability, drivers which were considered
particularly relevant by stakeholders are “destruction of
ecosystems and soil degradation,” “size of agricultural land,”
“dependence on flood sensitive crops,” “economic dependence
on agriculture,” “poverty,” and “minors as head of household.”
Economic dependence on agriculture (see section Study
Area) was identified as a crucial driver of vulnerability which
is influenced by the lack of non-agricultural employment
opportunities. The economic dependence on agriculture is
considered a cause for the dependence on flood-sensitive
crops. Furthermore, stakeholders highlighted that most
cultivated products (see section Impact Chain Development
and Participatory Impact Chain Validation) are flood sensitive.
Though rice paddies and young palm trees are considered less
sensitive to flooding by stakeholders, workshop participants
mentioned that flood intensity regularly exceeds even their
tolerance level, frequently resulting in crop failure. This
dependency on flood-sensitive crops leads to a reduction of
agricultural income following flood events.

Additionally, strong causality between economic dependence
on agriculture and the destruction of ecosystems and soil
degradation was identified. The destruction of ecosystems and
soil degradation is also driven by the type of agriculture and
the agricultural techniques. Following stakeholder opinion, a
large size of agricultural land has high causal relevance for
ecosystem destruction and soil degradation since more land
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is converted from its original vegetation to farmland. The
destruction of ecosystems and soil degradation is further driven
by a lack of land-use planning that may lead to e.g., inappropriate
agricultural practices. Moreover, stakeholders identified reduced
fodder supply [loss of provisioning ecosystem services (ESS)] as
an effect of the destruction of ecosystems and soil degradation,
but also as a cause for insufficient income generated through
agriculture. Furthermore, insufficient income generated through
agriculture is influenced by the size of agricultural land available
for farming households and by limited access to markets based
on road and transport infrastructure.

Further, poverty was identified as a particularly relevant
driver of vulnerability; strongly influenced by insufficient income
generated through agriculture. Furthermore, poverty is driven by
the gender and age of the head of household. It was highlighted
that households headed by minors are especially susceptible to
poverty. Moreover, poverty is evaluated by stakeholders as an
important explanatory variable for the lack of access to financial
safety nets. Poverty is considered a strong causal driver for the
lack of storage for emergency response at the household level.
This refers to the provision of food and other essential goods after
a flood event. In addition, the lack of storage at the household
level is strongly driven by a lack of awareness and knowledge
about flood risks and risk reduction.

In this context, risk perception and religion, especially
traditional beliefs, need to be accounted for. Experts and
stakeholders mentioned that traditional beliefs are dominant in
the study area and the Mono River is commonly considered
divine. Hence, numerous places adjacent to the river are of high
spiritual importance for the local population leading to a strong
attachment to the ancestral land. Based on these traditional
views, river floods and their impacts are frequently believed to
be an act of gods rather than a socio-environmental process that
can be governed. Regarding risk governance, various drivers are
mentioned, such as the lack of access to early warning systems as
well as the lack of measures for flood protection and response at
the community level. However, stakeholders have not attributed
higher relevance to drivers related to risk governance.

What-If Scenarios in Alpha-Level Bayesian
Network
The exemplary BN scenario visualizes the dynamic interactions
between the high dependence on flood-sensitive crops and other
drivers of vulnerability as well as the resulting flood risk for
agricultural livelihoods.

The first scenario illustrates an assumed baseline condition
(due to the lack of quantitative data) regarding economic
dependence on agriculture and dependence on flood-sensitive
crops in the region. Based on the authors knowledge of
the study areas the economic dependence on agriculture is
considered high. This was also further confirmed in the
stakeholder workshops.

Figure 4 visualizes the drivers influenced both directly and
indirectly by high dependence of the population on flood-
sensitive crops. The dependence on flood-sensitive crops directly
affects the auxiliary node “combined effects: vulnerability based

on farm size, dependence on flood-sensitive crops, and market
access.” The auxiliary node indicates a change toward higher
vulnerability. Given the assumption that the cause of change
in the auxiliary node is known (high dependence on flood-
sensitive crops) the other potential causes (market access and
farm size) remain unaffected. This increase in the probability
of the presence of adverse conditions is further passed through
the network. Consequently, leading to a higher probability of
insufficient income generated through agriculture. As a result, the
likelihood of high poverty levels increases as well.

As a result of high poverty levels, a lack of access to financial
safety nets as well as lack of storage at the household level
for emergency response become more likely. Both, access to
safety nets and household-based storage feed into the auxiliary
node “combined effects: vulnerability based on safety nets and
household-based storage.” Ultimately, the auxiliary node directly
affects the overall level of vulnerability, suggesting an increased
probability of observing higher vulnerability of agricultural
livelihoods. While the overall level of vulnerability is altered
through the high dependency on flood-sensitive crops, the
change is not strong enough to increase overall risk (Figure 4).

The second scenario illustrates a simplified example of how
the effects of adaptation options (here: reducing dependency
on flood-sensitive crops while not changing high economic
dependency on agriculture, e.g., through the introduction of
new, more resilient crop types) can be simulated using a what-
if scenario.

Figure 5 shows that the same drivers within the vulnerability
submodel are affected, yet, in the opposite direction. Reduced
dependency on flood sensitive crops (from high to low) leads to
reduced loss of income in times of floods and therefore a reduced
likelihood to encounter high levels of poverty. A decrease in the
potential for high poverty increases the probability that financial
safety nets are accessible and household-based storage for
emergency response may be available. Ultimately, the change in
dependence on flood-sensitive crops translates into a decreased
likelihood of high overall vulnerability. In contrast to the first
scenario, a change in the overall risk is observed for the second
scenario. Knowing that the dependence on agriculture is high,
certainty regarding the dependence on flood-sensitive crops is
not sufficient to assume an increased overall risk, certainty
regarding the independence of flood-sensitive crops, however,
leads to a higher probability of lower overall risk.

DISCUSSION

Strengths and Weaknesses of the
Methodological Approach
The study shows that the chosen approach of combining impact
chains and BN modeling enables identifying key drivers of flood
risk as well as their interlinkages. The validated impact chain
has proven to be a valuable model approach to represent the
complexity of flood risk and associated relationships between
risk drivers in the study area. The participatory integration
of stakeholders is a widely acknowledged approach to create
more robust results through the inclusion of multiple points of
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FIGURE 4 | First illustrative scenario depicting the system behavior if dependence on flood-sensitive crops is observed to be high.

view and experiences (Döll and Romero-Lankao, 2017; Nyumba
et al., 2018; Hagenlocher et al., 2020). Especially in environments
where quantitative data is scarce, such as in Benin, stakeholder
participation is a valuable source of information. In fact, during
the stakeholder workshops, no explicit questions were asked
regarding spatio-temporal dynamics associated with risk drivers.
However, upon discussing inter-driver relationships stakeholders
reflected on spatio-temporal dynamics, such as e.g., temporary
migratory movements into the region. These movements have
been associated by workshop participants to a temporal axis
based on the occurrence of flood events and increased soil fertility
as a result thereof as well as intra-annual seasonality. The impact
chain reflects on these dynamics by indicating interlinkages but
does not explicitly specify time-steps.

The application of an impact chain as a conceptual
model approach provides multiple benefits. Impact chains
can be developed (i) without quantitative data and (ii) in
a participatory approach benefiting from local and expert
knowledge. Additionally, (iii) inter-driver relationships as well as
(iv) relationships among subcomponents of risk can be visualized
which enables a process of (v) weighting and evaluation

of differentiated relevance of drivers and their interlinkages.
Furthermore, (vi) direct feedback loops as well as (vii) root
causes of risk drivers can be incorporated into the impact
chain. Particularly the latter is crucial for effective risk reduction
and adaptation since the understanding of root causes enables
addressing the underlying issue(s) instead of targeting superficial
symptoms (Wisner et al., 2004; Ribot, 2011; Eriksen et al., 2021).
However, impact chains are also subject to limitations. The cause-
effect relationship may suggest (i) linearity and (ii) deterministic
relationships among risk drivers which potentially neglects non-
linear and stochastic interactions. Also, impact chains do not (iii)
specify uncertainty, nor do they account explicitly for (iv) spatial
and temporal configurations of the systemwhich is a considerable
limitation when supporting decision-making for risk reduction
and adaptation.

To test if BN can further improve the understanding
of interlinkages and dynamic interactions of risk drivers, a
qualitative BN was developed based on the impact chain. The BN
was applied to visualize how an exemplary what-if scenario may
reveal hidden dependencies and interactions among risk drivers.
Based on the assumption that a system is more likely to change its
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FIGURE 5 | Second illustrative scenario depicting the system behavior if dependence on flood-sensitive crops is observed to be low.

potential states than its underlying rules of cause-and-effect, the
logical structure of the network is more decisive for model quality
than the actual quantitative value of parameters (Pearl and
Mackenzie, 2018). Thus, particularly in the absence of reliable
quantitative data, a sound conceptual model of the underlying
system is crucial (Marcot et al., 2006; Nyberg et al., 2006; Chen
and Pollino, 2012). Here, the multi-method approach for impact
chain development and participatory validation provided this
sound conceptual model of the relevant system. The assessment
has shown that a BN in combination with an impact chain
provides multiple benefits for assessing risk dynamics in data-
scarce environments. This study supports the argument that
the ability of BNs to integrate qualitative data enables their
application in data-scarce environments and the inclusion of
stakeholder/expert knowledge (Table 2). The similar graphical
structure of cause-and-effect of BNs and the impact chain further
facilitates the integration of the two methods and enables easy
understanding of the logical structure (Table 2).

Moreover, the exemplary scenario has shown that BNs are
able to explore system behavior under varying conditions. This
potential for scenario assessments and the opportunity to quickly

update individual model components is particularly interesting
for decision-making under uncertainty (Table 2). The use of
probability values to reflect on system behavior enables BNs
to account transparently and consistently for uncertainty in
a system (Table 2). Especially, the reflection of uncertainty
in participatory processes e.g., due to ambiguity among
stakeholders regarding specific drivers and their interactions via
probability values is a benefit (Table 2). The general potential
of continuous updating of probabilities to adjust the level of
uncertainty and the ability to evaluate decision-outcomes are
core strengths of BNs. Even though not considered here due
to the scope of this study, options to integrate time-steps in
a BN or to integrate BNs into GIS software exist to improve
spatial and temporal representation (Stritih et al., 2020; Norsys
Software Corp., 2020. Also, model complexity can be reduced
by integrating other models into the BN structure, as shown in
this study with the structural adjustment of the hazard-submodel
to the hydrodynamic model elaborated in the context of the
CLIMAFRI project (Table 2).

Nevertheless, BNs are subject to a variety of limitations.
The validated impact chain contains a high level of detail, e.g.,
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TABLE 2 | Benefits of Bayesian Networks.

Benefits References Example from our approach Relevance for risk assessments

Integration of qualitative and

quantitative data possible,

including expert-based

parameter selection

(Pearl, 1988; Cain, 2001;

Jakeman et al., 2006; Chen

and Pollino, 2012; Balbi

et al., 2016; Maskrey et al.,

2021)

BN structure is based on impact chain. The

impact chain results from literature review,

expert, and stakeholder consultation.

Qualitative parameter selection for exemplary

BN draws on information obtained from expert

and stakeholder consultation.

Even though this study focusses on qualitative data, BN

generally enable a combination of e.g., quantitative

information from hydrodynamic or demographic models

with qualitative information from participatory processes.

Facilitates integration of hazard, exposure, and

vulnerability components. Enables functional model with

no or limited quantitative data.

Logical graphical

component (DAG) with

strong focus on causality,

easy to grasp

(Pearl, 1988; Cain, 2001;

Pearl and Mackenzie, 2018;

Maskrey et al., 2021)

Graphical component of the exemplary BN

(DAG) shares a similar logical structure with the

impact chain, focusing on causality and

interactions among system components.

Particularly in data-scarce environments, expert and

stakeholder opinion is crucial to identify risk drivers and

their interactions. An easy-to-grasp structure facilitates

this process. Only a strong focus on causality enables

assessments of what-if relationships and

counterfactuals.

Well-suited for analyzing

different what-if scenarios

(Duggan et al., 2015;

Herring et al., 2015; Johns

et al., 2017; Agboola et al.,

2020)

Exemplary what-if scenario for the dependence

on flood-sensitive crops was illustrated based

on BN. Even in absence of quantitative data,

qualitative scenarios can be visualized in the

model. Here, impacts on the system of

observing high and low dependence on

flood-sensitive crops were illustrated.

Enables simulation of policy impacts on the system, or

the effect of adaptation options on risk trends. Allows to

compare different measures and outcomes.

Well-suited for

decision-support: ability to

reveal hidden dependencies

and indirect impacts

(Marcot et al., 2006; Chen

and Pollino, 2012; Rachid

et al., 2021; Sahlin et al.,

2021; Zhou et al., 2021)

What-if scenario for the dependence on

flood-sensitive crops was illustrated based on

exemplary BN. The example suggested that

alterations in the dependence on

flood-sensitive crops (high vs. low) lead to

changes of risk drivers pertaining, vulnerability

and the final risk, including drivers with

considerable causal distance to the observed

driver (dependence on flood-sensitive crops).

The ability to assess what-if scenarios and compare

potential policy or adaptation outcomes supports

decision-makers by indicating particularly relevant

measures and drivers with high influence on the overall

system. Also, potentially adverse impacts of changes to

the system may become visible.

Focus on probability values

allows to account for

uncertainty

(Pearl, 1988; Chen and

Pollino, 2012; Pearl and

Mackenzie, 2018; Neil et al.,

2019; Maskrey et al., 2021)

Qualitative parameterization of BN was

informed by stakeholder workshops. Ambiguity

among stakeholders concerning the role of

specific drivers and their interactions is

reflected in respective lower probability values.

Certainty or the lack of certainty about specific

interactions within the system can be incorporated into

the assessment. Therefore, different levels of uncertainty

are reflected in the model. As soon as additional

information becomes available, the degree of belief in

specific interactions can be updated without changing

the general logic of the model.

Possibility to integrate with

other types of models

(Villa et al., 2014;

Abdulkareem et al., 2019;

Srikrishnan and Keller,

2021)

Here, the DAG was based on the conceptual

model of an impact chain. In addition,

simplification of the hazard submodel was

guided by the potential output information of a

hydrodynamic model.

Particularly in the context of risk, the integration of

information derived from hazard models (e.g.,

hydrodynamic models), exposure models (e.g.,

demographic models), or agent-based models, for

instance, may be beneficial to inform the structure and

probability values in a BN.

including root causes of vulnerability and climate change. On
the one hand, this degree of detail enables a comprehensive
understanding of the system under scrutiny. On the other hand,
a high level of complexity poses specific challenges for the
transition from impact chain to BN. To deal with complexity,
a structured approach for simplification was applied. Yet, the
BN still consisted of a large number of individual parameters
increasing the potential for wrong assumptions and decreasing
the feasibility to manually assign parameter values (Table 3).
Another critical factor is the depth of submodels and their
asymmetry. The term “model depth” refers to the number of
causal connections between input and end node. If the submodels
differ in depth, the models are asymmetric regarding the length
of their causal chains. In this case, a considerable level of
asymmetry can be noted between the subcomponents of risk

and vulnerability. This results in a higher sensitivity of the final
risk to hazard components, restricting the potential to compare
e.g., the influence of vulnerability and hazard drivers on the final
risk outcome (Table 3). These limitations become evident in the
context of root causes e.g., as depicted for vulnerability in the
impact chain. Due to the causal distance of root causes, their
impact on the final risk is very limited in this exemplary BN.
Therefore, combined with the need to simplify the model to
keep parameter elicitation feasible, root causes were discarded.
In fact, this is a considerable limitation given that root causes
(e.g., of vulnerability) are a key to sustainable adaptation and
risk reduction.

Unlike dealing with uncertainty, accounting for dynamics is
not at the core of BN capacities. Even though integrating indirect
feedback between different subcomponents of risk is possible
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TABLE 3 | Limitations of Bayesian Networks.

Limitations References Example from our approach Relevance for risk assessments

Computational implications

of DAG do not allow for

direct feedback loops

(Pearl, 1988; Maskrey et al.,

2021)

Here, potential direct feedbacks such as

interactions between access to financial safety

nets and poverty cannot be depicted as direct

feedbacks, which is a considerable limitation.

In the context of risk and risk dynamics, not only indirect

feedback mechanisms but also direct feedback

mechanisms as in self-enforcing circular dynamics are

relevant (e.g., the relation between poverty and access

to social services). Therefore, the focus on a causal

hierarchy may neglect bi-directional relations.

Parameterization of complex

interactions becomes

quickly unmanageable due

to size of CPT

(Cain, 2001; Zagorecki and

Druzdzel, 2004; Maskrey

et al., 2021)

Due to data scarcity, the exemplary model was

parameterized manually. Even though multiple

simplification steps were applied, more than

1,400 individual parameters are contained in

the model and were qualitatively evaluated.

This significantly limits applicability and

increases uncertainty in case of potentially

erroneous parameterization.

Particularly for the modeling of complex interactions

including multiple causes for the same effect the size of

CPTs becomes a decisive factor for feasibility. This limits

the potential of BN to account for complexity of risk.

Integration of spatial and

temporal dynamics are not

a core strength

(Kragt, 2009; Terzi et al.,

2019; Zhou et al., 2021)

Given the already large number of parameters,

this study has not explicitly integrated temporal

and spatial dynamics by using GIS or time-step

approaches. The integration of such

approaches would have exceeded the

feasibility and scope of this BN.

Even though it is possible to integrate BN with GIS or

account for time-steps via dynamic BN approaches, the

potential to integrate multiple dynamics in one BN is

limited. An important factor for this limitation is the rapid

growth of CPT tables.

Sensitivity bias in case of

submodels with different

levels of depths

(Marcot et al., 2006; Chen

and Pollino, 2012)

In the exemplary BN, the exposure and hazard

submodels are significantly less complex and

contain a lower “depth” than the vulnerability

submodel. Depth refers here to the distance

between first and last node in a causal chain.

Therefore, in this case the final risk is more

sensitive toward drivers of hazard and

exposure.

In the case of flood risk assessments integrating hazard,

exposure, and vulnerability this is a significant limitation.

Particularly, socio-economic, and ecologic vulnerability of

a given system to a flood event is more complex

regarding its drivers and their interactions as e.g., the

formation of the physical flood event itself. Therefore,

root causes of vulnerability, even though highly important

to address the overall risk, appear to be irrelevant in the

network due to their causal distance to the final risk.

and beneficial for exploring dynamic interactions between e.g.,
vulnerability and hazard components, direct feedback loops
cannot be incorporated into a BN. Due to the graphical structure
of a DAG and the computational implications of Bayesian
updating, dynamics associated with direct feedback loops cannot
be processed by a BN which is a major limitation when dealing
with bi-directional dynamics (Table 3). Additionally, there are
limits to the amount of spatial and temporal dynamics that can
be depicted in one BN. This is also due to the rapid growth of
CPTs in complex models and the resulting large size of possible
interactions restricting the ease of updating parameters (Table 3).
Thus, the time-consuming manual evaluation and refinement
of CPTs may potentially limit the usability of complex BNs for
qualitative and participatory model building (Table 3).

Implications of Findings
The integration of impact chain and BN methods are a
promising starting point for assessing risk dynamics in data-
scarce environments. Even though reliable data in the research
area regarding dynamics of flood risk for agricultural livelihoods
is limited, key drivers and their interactions were identified.
The qualitative BN and its application to an illustrative what-
if scenario enabled a visual evaluation of related system
components and their behavior if case-specific information
becomes available. However, integrating an impact chain (even
though simplified) into a BN without quantitative data has
limitations. A high level of detail and asymmetric structure

in the impact chain and BN may lead to a time-consuming
process of manual parameter elicitation and distortion regarding
the sensitivity of individual submodels. This adversely affects
the feasibility of model creation and reliability of information
concerning the final risk. The application of multiple smaller BN
models could be a solution when dealing with large complex
systems, or for assessing adaptation impacts e.g., on root
causes. Still, without quantitative validation the robustness of
assigned parameters is limited. For future work, we suggest a
validation process similar to Marcot et al. (2006) consisting
of an iterative process of testing and validating the model
against quantitative data, if available. In addition, we recommend
evaluating the impact chain again, after BN modeling, to identify
potential inconsistencies in the system representation and logical
interaction of risk drivers. However, first qualitative assessments
regarding potential directions of change within the system
are possible without explicitly quantifying the level of change.
The ability to detect changes and hidden interdependencies
within the system is a valuable advantage to identify further
research and data priorities as well as potential entry points for
adaptation planning.

Moreover, the methodology may be used in combination with
more traditional data driven risk assessments. As this article
uses a similar set of risk drivers as used for the indicator-based
assessment provided by Schudel et al. (forthcoming), insights
on dynamic interactions within the system can be translated
to the risk index developed by Schudel et al. (forthcoming).
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Particularly, hidden interdependencies and directions of change
become visible in the BN and can be integrated into index
development. Traditionally, upon receiving information for a
particular indicator, only the specific indicator would be adjusted
for the index. Now, a whole set of directly or indirectly dependent
indicators can be adjusted toward a certain direction, potentially
enabling a more precise representation of the actual system’s risk.

Even though this study has focused on flood risk for
agricultural livelihoods, the approach can be transferred to other
contexts as well. Hence, the integration of the two approaches
should further be tested to assess risk dynamics and adaptation
outcomes for different perils (e.g., droughts or hurricanes) and
contexts, such as, for example, urban or coastal environments.

CONCLUSION

Risk assessment approaches that focus on understanding and
displaying the dynamic nature of flood risk and its underlying
drivers are limited. This article addresses this gap of specific
flood risk drivers and their interactions related to agricultural
livelihoods in the Lower Mono River Basin. Moreover, the study
contributes to the broader scientific discourse by illustrating
a structured approach of integrating an impact chain with
BN modeling as well as discussing the potential benefits
and limitations of the methodology. In summary, the impact
chain provides valuable insights on the key drivers and their
interlinkages that co-produce the specific risk in the study
area. Additionally, the exemplary BN was able to illustrate
the potential of assessing what-if scenarios related to flood
risk dynamics. The results obtained through the exemplary
scenario modeling may inform a first assessment of how drivers
of risk are modified under changing conditions, including an
overview of affected components of risk as well as the potential
direction of change. Hence, the impact chain can provide a
starting point for further assessments of relevant key drivers
and their interlinkages e.g., for the transboundary Mono River
Basin, including Togo. Moreover, the impact chain may also
be a useful tool to identify and locate adaptation options to
reduce flood risk for agricultural livelihoods within the system.
The combination of the impact chain with the exemplary BN
suggests a considerable potential to inform indicator-based risk
assessments as well. As new information regarding the state of
one driver becomes available, the BN allows identifying other
potentially affected components of risk and their direction of
change. This information may be applied to update a risk
index, allowing to account for dynamics in an otherwise static

representation of risk. Ultimately, the article suggests that the
integration of the impact chain methodology with BN modeling
is a promising approach toward an improved representation
of flood risk dynamics, especially in the absence of reliable
quantitative data. However, its particular potential for informing
more static, e.g., indicator-based assessments needs further
research, evidence and validation.
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