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The water content in the soil regulates exchanges between soil and

atmosphere, impacts plant livelihood, and determines the antecedent

condition for several natural hazards. Accurate soil moisture estimates are

key to applications such as natural hazard prediction, agriculture, and water

management. We explore how to best predict soil moisture at a high resolution

in the context of a changing climate. Physics-based hydrological models

are promising as they provide distributed soil moisture estimates and allow

prediction outside the range of prior observations. This is particularly important

considering that the climate is changing, and the available historical records

are often too short to capture extreme events. Unfortunately, these models

are extremely computationally expensive, which makes their use challenging,

especially when dealing with strong uncertainties. These characteristics make

them complementary to machine learning approaches, which rely on training

data quality/quantity but are typically computationally e�cient. We first

demonstrate the ability of Convolutional Neural Networks (CNNs) to reproduce

soil moisture fields simulated by the hydrological model ParFlow-CLM. Then,

we show how these two approaches can be successfully combined to predict

future droughts not seen in the historical timeseries. We do this by generating

additional ParFlow-CLM simulations with altered forcing mimicking future

drought scenarios. Comparing the performance of CNN models trained on

historical forcing and CNN models trained also on simulations with altered

forcing reveals the potential of combining these two approaches. The CNN

can not only reproduce the moisture response to a given forcing but also learn

and predict the impact of altered forcing. Given the uncertainties in projected

climate change, we can create a limited number of representative ParFlow-

CLM simulations (ca. 25 min/water year on 9 CPUs for our case study), train

our CNNs, and use them to e�ciently (seconds/water-year on 1 CPU) predict

additional water years/scenarios and improve our understanding of future

drought potential. This framework allows users to explore scenarios beyond

Frontiers inWater 01 frontiersin.org

https://www.frontiersin.org/journals/water
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://doi.org/10.3389/frwa.2022.927113
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2022.927113&domain=pdf&date_stamp=2022-10-11
mailto:leonarduzzi@princeton.edu
https://doi.org/10.3389/frwa.2022.927113
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frwa.2022.927113/full
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Leonarduzzi et al. 10.3389/frwa.2022.927113

past observation and tailor the training data to their application of interest (e.g.,

wet conditions for flooding, dry conditions for drought, etc…). With the trained

ML model they can rely on high resolution soil moisture estimates and explore

the impact of uncertainties.

KEYWORDS

machine learning, physics-based hydrological model, ParFlow-CLM, 2D soil moisture

field, convolutional neural networks, meteorological forcing scenarios

1. Introduction

Soil moisture, defined as the water content in the

unsaturated soil top layer, is an essential dynamic hydrological

property (e.g., Ochsner et al., 2013). Being at the interface

between land and atmosphere, it plays an important role in

the water and energy balance processes (e.g., Pauwels et al.,

2001). It impacts the energy partitioning between latent and

sensible heat at the surface (e.g., Seneviratne et al., 2010) but

also affects the generation of surface runoff (e.g., Merz and

Plate, 1997) and several biogeochemical cycles (e.g., Seneviratne

et al., 2010). Knowledge of the soil moisture state is essential

for diverse applications which require high-resolution estimates

over large areas, in the field of natural hazards, but also for

management decisions (e.g., Dobriyal et al., 2012). For instance,

soil moisture estimates are frequently used for agricultural

drought monitoring (e.g., Narasimhan and Srinivasan, 2005;

Bolten et al., 2010; Martínez-Fernández et al., 2016) or for the

prediction of natural hazards such as floods (e.g., Norbiato et al.,

2008; Massari et al., 2014) and landslides (e.g., Bogaard and

Greco, 2018; Mirus et al., 2018; Leonarduzzi et al., 2021).

Estimates of soil moisture retrieved from in-situ

measurements or remote-sensing (e.g., Sharma et al., 2018)

tend to be sparse or at a coarse resolution. Hydrological models

are often used to improve spatial coverage and resolution.

Furthermore, physics-based models allow us to go beyond past

observations, which is becoming more and more important

as we face unprecedented climatic conditions (e.g., IPCC,

2021) and can no longer rely only on past observations as

a reliable guide for the future. Improvements in computing

capabilities, and in particular, parallel computing, over

the past decades (e.g., Kollet and Maxwell, 2008; Bierkens

et al., 2015; Kurtz et al., 2016; Kuffour et al., 2019) have

enabled the use of these hydrological models even over large

domains at high resolutions (e.g., Maxwell et al., 2015; O’Neill

et al., 2021). However, running them multiple times (e.g.,

in sensitivity, uncertainty, or for future climate scenario

analysis) is still computationally challenging. At the same

time, Machine-Learning (ML) approaches are becoming more

widely used to address hydrological problems. ML models

are generally very computationally efficient, at least once they

are set-up and trained, which makes them very attractive

to solve computationally expensive hydrological problems.

Nevertheless, their performances depend heavily on the quality

of the data used to train them. Historically hydrological ML

models have been trained on point observations (refer to

overview in Lange and Sippel, 2020; Shen et al., 2021). The

most widespread application of machine learning in hydrology

is for the prediction of streamflow with Long-Short Term

memory (LSTM) models (e.g., Kratzert et al., 2019; Chen

et al., 2020). However, few recent studies have shown the

potential of machine learning approaches also in the prediction

of distributed hydrological variables (ElSaadani et al., 2021;

Maxwell et al., 2021; Tran et al., 2021), and advanced techniques

have also been explored in the field of the weather forecast (e.g.,

Weyn et al., 2019) and in particular precipitation nowcasting

(e.g., Shi et al., 2008; Chen et al., 2020; Su et al., 2020).

Here, we take advantage of the complementary nature of

physics-based models, which are informative and suited for

experimenting beyond past observations but computationally

expensive, and ML models, which are very efficient but

dependent on training data quality and quantity. We use a

physics-based hydrological model to run simulations using both

historical forcing and forcing scenarios created by modifying

precipitation or temperature. We then train ML-models to

address the following questions:

• Can an ML model reproduce the soil moisture fields (2D)

and dynamics as simulated by a physics-based hydrological

model? If so, how accurately?

• Can such a tool be used to predict soil moisture fields with

lead times of up to 1 year?

• Can we successfully combine physics-based modeling and

machine learning to predict efficiently the hydrological

response to an unprecedented climate (i.e., different from

historical forcing)?

2. Methods

In this study, we focus on the headwater catchment

Upper Taylor to study whether physics-based hydrological
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FIGURE 1

In (A) the mask of the Upper Colorado River Basin and the Taylor river catchment used in this analysis, as well as the USGS gage 09110000

(Taylor River at Almont) used for the definition of the domain. In (B), the elevation map at 1 km resolution (resolution of the analysis), and in (C),

the three static inputs used in the training of the machine learning models which are consistent with the corresponding ParFlow-CLM inputs:

Slopes in x and y directions, surface porosity, and surface permeability.

modeling and machine learning can be successfully

combined to predict 2D fields of surface soil moisture.

Here, we introduce the study area (Section 2.1) and the

different components: the physics-based hydrological

model (ParFlow-CLM, Section 2.2) and the 2D and 3D

convolutional neural network (Section 2.3), their respective

set-ups and workflows, as well as the different experiments

carried out.

2.1. Case study: Taylor, CO

The chosen study area is the headwater catchment Taylor,

in the Upper Colorado River Basin (Figure 1). This catchment

is at an elevation of 2,451–3,958 m and has a surface area

of ca. 1,144 km2. It was defined by using the Taylor at

Almont USGS gage (id gage: 09110000) as the outlet. This

catchment is snowmelt dominated. The lowest average monthly

discharges are recorded in January/February, with values of

ca. 3 m3/s, after which there is a steady increase of discharge

and generally wetness in the catchment up until June when an

average discharge of ca. 25 m3/s is recorded. The Taylors is an

important mountain headwater system for flood control and

water supply.

2.2. Physics-based model: ParFlow-CLM

To generate the reference simulations, we use the integrated

hydrological model ParFlow. It simultaneously solves 3D

Richards’ equations in the subsurface and the 2D shallow water

equation (kinematic wave approximation) for surface flow. It

is coupled with the Common Land Model (CLM), which is

responsible for simulating the land surface processes (i.e., water

and energy balance), as described in Maxwell and Miller (2005)

and Kollet and Maxwell (2008): CLM obtains the soil moisture

distribution over the top 4 soil layers from ParFlow as well as the

hydrological forcing and returns to ParFlow the net infiltration

into the soil.

All the required input files, i.e., soil properties, landcover,

and meteorological forcing, are a subset of those used for Upper

Colorado River Basin ParFlow-CLM simulations in Tran et al.

(2020). The boundary conditions are set to no flow for all lateral

domain edges as well as the bottom of the domain, while the

overland flow is computed on the domain’s surface. The spatial

resolution of the different inputs and the solver grid is 1× 1 km,

with 5 vertical layers of increasing thickness for a total depth of

102 m. The simulation is run with hourly timesteps for 36 water

years, from 1983 to 2018.

In addition to the historical simulations (Historical Forcing,

HF), we also generate 12 synthetic drought scenarios. We

decrease historical precipitation by a random multiplicative
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TABLE 1 The first 3 columns summarize the forcing scenarios run with ParFlow-CLM and used for the training and testing of the machine learning

models.

HF All

Scenario Temperature correction Precipitation correction Train Test Train Test

HF 0 1 x x

D1 0.5 0.8 x

D2 0.44 0.58 x

D3 0.51 0.63 x

D4 0.56 0.52 x

D5 0.62 0.83 x

D6 0.68 0.93 x

D7 0.45 0.81 x

D8 0.51 0.81 x

D9 0.25 0.9 x

D10 0.65 0.65 x

D11 0.8 0.65 x

D12 0.6 0.58 x x

The temperature correction is additive relative to historical forcing (HF) temperature, precipitation correction is a multiplicative factor relative to historical forcing. The forcing scenarios

are named Drought scenario 1–12 (D1-D12). The last 2 columns show which of the scenarios are used for the training and testing in the case in which only historical forcing is used for

training (HF), or also the additional forcing scenarios (all).

correction factor between 0.5 and 1 (Pscenario = cP ∗

Phistoricalforcing) and increase the historical temperature by an

additive factor between 0 and 1◦ (Tscenario = Thistoricalforcing +

cT) for each of the historical water years. These corrections

are homogeneous in space and time and are, therefore,

the simplest way to have forcing which is still realistic (as

intermittency and spatial variability changes are kept consistent

with historical observations), but different from what was

previously observed. The corrections are designed to mimic a

drought climate scenario (scenarios and respective correction

factors are indicated in Table 1). All the other meteorological

inputs required by ParFlow-CLM (radiation, specific humidity,

wind speed, and atmospheric pressure) are kept as in the

corresponding historical water year.

ParFlow-CLM is run with all of the forcing scenarios for 10

water years, selected as the driest between 1983 and 2018 (lowest

annual precipitation and highest mean temperature, refer to

Figure 9). Additionally, the 12 additional forcing scenarios are

generated for each of those water years (i.e., 10 water years *

12 scenarios = 120 additional sets of forcing). In addition to

the input slopes, permeability, and porosity (Figure 1C), three

ParFlow-CLM outputs are utilized here for the training and

testing of the ML models: soil infiltration (qflx_infl in ParFlow-

CM), vegetation transpiration (qflx_tran_veg in ParFlow-CM),

and surface soil moisture. The latter is obtained by multiplying

the 2D fields of surface saturation simulated by ParFlow-CLM

by the surface porosity (top right in Figure 1C). We choose to

consider surface soil moisture as it controls exchanges to the

atmosphere, it is very dynamic, and it is comparable to the

available product such as remote sensing measurements. For

most of the results, unless otherwise specified, only the 10 driest

years are considered.

2.3. Convolutional neural networks

We use the simulations introduced in Section 2.2 to train

and test two machine learning models designed to predict 2D

soil moisture fields. We choose to use Convolutional Neural

Network to take advantage of the strong spatial structures in

the soil moisture fields and the different variables affecting

its distribution. In fact, we choose the inputs to capture

the main drivers of soil moisture temporal changes (net

infiltration and transpiration) and the spatial variable properties

controlling water redistribution both vertically and laterally

(surface permeability and porosity, and slopes).

Building upon the model exploration carried out in Maxwell

et al. (2021), we select two CNNs: a 2D CNN consisting of

2 Convolution+ReLu layers, each followed by a Max Pooling

layer, and two fully connected linear layers (refer to Table

A3 in Maxwell et al., 2021), and a 3D CNN which has

the same architecture as the 2D model, but an additional

Convolution+ReLu first layer (refer to Table A1 inMaxwell et al.,

2021).

The inputs for both CNNs are porosity, permeability, slopes

and net infiltration, transpiration, and soil moisture. For 3D

ParFlow-CLM variables (static variables and soil moisture), the

surface layer is considered. All dynamic variables are resampled
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FIGURE 2

Workflow for the training and testing of the 2D (left) and 3D (right) Convolutional Neural Network. For the 2D architecture at every timestep, the

static and dynamic inputs as well as the soil moisture simulated by ParFlow-CLM are fed to the model, while the soil moisture of the next day is

provided as the label (or predicted in testing mode). This operation is repeated on all days of the year. For the 3D architecture, the 3rd dimension

is time, and all static inputs (including soil moisture at day 0) and dynamic ones are fed to the model, while the label is the 3D moisture field. 2D

(static) inputs are repeated for the 3rd (time) dimension.

to daily resolution, by averaging the values in the hours within

each day. Furthermore, all inputs are scaled into 0:1 or –1:1

ranges to facilitate training of the CNNs.

The 2D CNN treats all timesteps (i.e., days in the year) as

independent and uses the soil moisture field on the following

day as the label (left panel in Figure 2). The 3D CNN is built

by considering time as the 3rd dimension. The 2D arrays of

static inputs, as well as the day-one ParFlow-CLM surface soil

moisture (initial conditions), are repeated in the 3rd dimension

to match the size of the dynamic inputs, of shape ny, nx, nt (with

y being South-North direction, x beingWest-East direction, and

t being time). The label for 3D CNN is the (ny, nx, nt) matrix of

soil moisture for the water year. Both thesemodels are trained on

5 water years (1988, 1990, 2015, 2016, and 2018), and 3 different

water years (2000, 2012, and 2013) are used for validation and

early stopping. When the mean loss (smooth L1 loss) over the

last 100 epochs on the validation set is lower than the mean

loss over the antecedent 100 epochs, the training is stopped.

This is done to avoid over-fitting the machine learning model.

Every set-up and model configuration (i.e., model architecture

or training data set) is repeated 10–15 times to verify the

impact that initialization (initial weights) of the CNNs has on

the final results and performances. Unless otherwise stated,

individual lines plotting one specific experiment in the results

represent the median among the ensemble of initialisations for a

given architecture.

First, we train both 2D and 3DCNNswith the ParFlow-CLM

simulations obtained with historical forcing. This allows us to

explore whether these models are capable of reproducing the soil

moisture fields as simulated by ParFlow-CLM and compare the

2D and 3D CNNs. Then, we explore the potential of combining

physics-based modeling and machine learning in the context of

a changing climate by training the CNN either only on historical

forcing simulations or both historical forcing and 11 of the

forcing scenarios (D1-D11 in Table 1) simulations, and testing

on the twelfth scenario (D12).

To compare the performances over the testing year (2002),

we use the Root Mean Square Difference (RMSD), the Nash-

Sutcliff Efficiency (NSE), and the Kling-Gupta efficiency (KGE,

Gupta et al., 2009), computed as follows:

RMSD =

√

√

√

√

1

N

N
∑

i=1

(PFi −MLi)2 (1)

Frontiers inWater 05 frontiersin.org

https://doi.org/10.3389/frwa.2022.927113
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Leonarduzzi et al. 10.3389/frwa.2022.927113

FIGURE 3

In (A), the timeseries of ParFlow-CLM (PF) domain average in time for the water year 2002 (mean SMPF ) and the simulated net infiltration

(qflx_infl-qflx_tran_veg ParFlow-CLM variables). Below, the timeseries of Root Mean Square Di�erence, Nash-Sutcli� E�ciency, and

Kling-Gupta E�ciency comparing each day the PF soil moisture field to that of the 2D Convolutional Neural Network (CNN) when predicting 1

day to the next (1 Day) or the entire water year starting from day 0 (Recursive). The semi-transparent bands represent the 0.2–0.8 interquartile

ranges among repetition of the same ML configuration (i.e., di�erent initialization). In (B), the temporal statistics comparing the timeseries at

each pixel of PF and the 2D CNN in the two configurations, as well as the persistent case in which PF soil moisture is assumed to remain

constant either over the entire water year (Persistent, t = 0, meaning that the soil moisture is assumed to remain as of 1st October of the chosen

water year) or 1 day to the next (Persistent, t-1).

NSE = 1−

∑N
i=1(PFi −MLi)

2

∑N
i=1(PFi − µPF)2

(2)

KGE = 1−
√

(

Cov(PF,ML)

σPFσML
− 1

)2

+

(

σML

σPF
− 1

)2

+

(

µML

µPF
− 1

)2

(3)

where PF andML are respectively the soil moisture as simulated

by ParFlow-CLM and the machine learning model, µ is the

mean, σ the standard deviation, and Cov the covariance.

All these statistics are computed both in space: i.e., the 2D

fields of PF andML are compared at each timestep (i is the spatial

index, in x and y); and in time: i.e., the timeseries of PF andML at

every 1km×1km grid-cell within the catchment are compared (i

is the temporal index). The first operation results in a timeseries

of these statistical metrics while the latter is summarized in a

map (one value for each domain grid-cell).

3. Results

3.1. 2D convolutional neural network

We train the 2D CNN with historical forcing simulations

and test it on the water year 2002 (1 Day: blue line in Figure 3A

and left column in Figure 3B). Overall the CNNmodel performs

well, with the RMSD typically lower than 0.025, and NSE

and KGE higher than 0.9. Inspecting the temporal statistics

(Figure 3B, 2D 1 Day), we can see that the trained machine

learning model is performing well in most locations. NSE and

KGE seem to worsen at the river network, especially in upstream

locations (in the North-Western part of the domain, see the

mean soil moisture for the water year 2002 in Figure 7 to identify

the river network). Surprisingly, the performance of this CNN

model is worse than those obtained assuming persistence 1

day to the next, i.e., assuming that the soil moisture does not

change (Persistent (t-1) in Figures 3A,B). The explanation for

this result is that the soil moisture changes are so small within

most timesteps (changes over 1 day), that the CNN model

overestimates them, leading to larger RMSD. Proof of this is in

the performances during the rainfall events in the later part of

the water year, when sharp peaks in net infiltration, mirrored by

sharp peaks in soil moisture, lead to better performances of the

CNNmodel than in the persistent case.

Models for soil moisture predictions are typically used to

simulate over time periods of weeks or months, rather than

just the following day. We test the applicability of the CNN

model to longer-running simulations. We use the same trained

2D CNN model, but carry out the testing in a different way:

instead of using the soil moisture field at t simulated by ParFlow-

CLM to make the t + 1 prediction, we use the CNN output
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FIGURE 4

Comparison of soil moisture predictions with the trained 2D

CNN and persistence from the peak soil moisture. (A) shows the

timeseries of domain average soil moisture as simulated by

ParFlow-CLM since the peak soil moisture of Water Year and the

corresponding net infiltration (qflx_infl - qflx_tran_veg

ParFlow-CLM variables). In (B), the timeseries of Root Mean

Squared Di�erences for the 2D CNN model and the persistent

case, in which the 2D soil moisture at the peak is just assumed

to remain constant throughout the rest of the year. The markers

in (A,B) highlight the time of the snapshot (columns), as reported

on top of the figure. In (C), the snapshots of ParFlow-CLM soil

moisture fields at the di�erent time steps, and in (D,E), the

corresponding RMSD maps for the 2D CNN (2D Recursive) and

assuming soil moisture does not change in time (Persistent

(t=0), soil moisture is assumed to remain constant as on the day

of the peak soil moisture).

field of the previous timestep (Recursive). That means that t

will be predicted by using the soil moisture field predicted

from t − 1 (i.e., on the left side of Figure 2, we replace SMPF

with SMCNN for t>0). This way, we are only using the soil

moisture field from PF on the first day of the year. If we look

at the performances in this experiment (Recursive: red lines in

Figure 3A and second column in Figure 3B), they expectedly

worsen compared to just predicting 1 day to the next. While

they still remain reasonably good (RMSD<0.1), all the statistical

measures decline. Furthermore, the sensitivity of the results

to the initial conditions increases (refer to semi-transparent

regions around the median line in Figure 3A, which corresponds

to the 0.2–0.8 quantile band of the trained 2DCNNmodels). The

corresponding persistence case (Persistent (t=0) in Figures 3A,B)

is now performing much worse, especially during/after the

snowmelt season when soil moisture peaks and then return to

drier conditions, more similar to the beginning of the water

year. The same is true also looking at the spatial statistics map

(Figure 3B), where the RMSD is highest, especially in the Eastern

part of the catchment. The NSE is smaller than 0 over the entire

catchment and KGE is not available (correlation with a constant

cannot be computed).

To further study the performances of the 2D CNN with

increasing lead time, we analyse after how many days the 2D

CNN outperforms the persistence case. We focus on the latter

part of the year, following the peak of domain averaged soil

moisture (Figure 4). We compare the RMSD of the 2D CNN and

the persistent case as a function of the number of days since

the peak soil moisture. The crossover in RMSD occurs after

12 days for the water year 2002 and 7 days for the water year

2017 (other “drought” years not used in training/validation).

For wetter years, which the model has not seen in training as

the focus was on drier/hotter years, the crossover occurs slightly

later, after 20 (water year 1994) and 26 days (water year 2014).

3.2. 3D convolutional neural network

The 2D CNN designed here learns the behavior from one

timestep to the next and while there is some natural encoding

of the temporal behavior in the spatial patterns, this is not

enough to persist over long times. Each day, only the static

and dynamic inputs at the current time are used to predict the

next day’s soil moisture. The reasoning behind this choice is

that also ParFlow-CLM uses only the current meteorological

forcing to simulate each timestep and encodes the model

temporal memory in the 3D subsurface states, but because here

we are only looking at surface soil moisture we are missing

other variables which represent the "memory" of ParFlow-

CLM (deeper soil moisture/water pressure). To account for the

temporal dimension, we decide to train a 3D CNN, where time

is the 3rd dimension. This experiment is comparable to the 2D

CNN recursive case, as only soil moisture on the first day is input

to the neural network.

The 3D CNN improves model performance compared to the

2D CNN in both space and time (Figure 5). All the statistics

considered (RMSD, NSE, and KGE) are better for the 3D CNN

model for most of the water year (Figure 5A). Furthermore,

the performances are superior also over a larger part of the

domain (Figure 5B). The 3D CNN model is performing well

over the entire catchment, reproducing the gradual decline in

soil moisture during winter, better capturing both the high soil

moisture during snowmelt (central column in Figure 6, when

2D CNN underestimates wetness, especially in the North-East),

and also the low soil moisture toward the latter part of the

water year (right column in Figure 6; while both models seem

to overestimate wetness, the overestimation is more evident for

the 2D CNNs).

Over the river network (refer to mean soil moisture as

simulated by ParFlow-CLM in Figure 7), the performances drop,

mostly due to the fact that ParFlow-CLM surface soil moisture

is constant, at saturation, over the entire water year. This is

particularly evident looking at the timeseries of ParFlow-CLM

and CNN soil moisture for some selected points within the
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FIGURE 5

In (A) the timeseries of ParFlow-CLM (PF) domain average in time for water year 2002 (mean SMPF ) and the simulated net infiltration

(qflx_infl-qflx_tran_veg ParFlow-CLM variables). Below the timeseries of Root Mean Square Di�erence, Nash-Sutcli� E�ciency, and Kling-Gupta

E�ciency comparing the PF mean to that of the 2D Convolutional Neural Network (CNN) (2D) or the 3D CNN (3D). The semi-transparent bands

represent the 0.2–0.8 interquantile ranges among repetition of the same ML configuration (i.e., di�erent initialization). In (B) the temporal

statistics comparing the timeseries at each pixel of PF and the 2D and 3D CNNs.

FIGURE 6

Comparison of soil moisture fields at 3 di�erent timestamps

(t=100, 240, 340 d) in Water Year 2002 (day 0 is the 1st of

October 2001). On top the timeseries of the ParFlow-CLM soil

moisture field average, with a red marker indicating the

timestamp, then the fields simulated by ParFlow-CLM, those

produced by the 2D trained CNN model, and at the bottom

those produced by the 3D trained CNN model.

catchment (refer to Location B in Figure 7). As the ParFlow-

CLM soil moisture remains stable at its maximum, the NSE

and KGE drop to very low (KGE) or very negative (NSE)

values. Looking at soil moisture timeseries for some chosen

representative locations (Figure 7), it can be seen how the

2D CNN seems to smooth out the soil moisture response,

overestimating soil moisture during the drying phase at the

beginning of the year and underestimating the snowmelt

induced soil moisture peak (consistently with what shown

in Figure 6). The 3D CNN seems to match well all parts of

the water year soil moisture changes, but anticipate the soil

moisture increase (especially at locations A and C in Figure 7).

Furthermore, it also introduces a lot of variability (fluctuations

around a “constant” value) in the locations where soil moisture

is at its maximum (saturation, Location B). The latter period

of the water year, following the soil moisture peak, is very

well captured, especially by the 3D CNN, with the exception

of the river network locations (e.g., Location B), where a

decrease in soil moisture is introduced which is not present

in ParFlow-CLM simulations. Comparing the timeseries of soil

moisture of the CNNmodels with the long termmean timeseries

(computed considering all 36 years, 1983–2018), facilitates the

understanding of the behavior of the two models. The 2D CNN

model treats every day as completely independent and sees

only 1-day timesteps. It, therefore, responds very strongly to

forcing (net infiltration in Figure 7). On the other hand, the 3D

CNN sees all timesteps within the year and learns much better

the seasonal patterns. In other words, the 3D CNN is biased

toward themean and responds less strongly to individual forcing
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FIGURE 7

Soil moisture timeseries at the 4 locations (A, B, C, and D) identified in the map of average Parflow-CLM soil moisture for the water year 2002.

These are arbitrary locations selected to show the model behavior at di�erent locations (e.g., B is on the river network, D is upstream, A is further

from the river network, and C is next to an upstream contributor). The timeseries of ParFlow-CLM (continuous black line) are compared to the

estimates with a 2D convolutional neural network (2D) and a 3D convolutional neural network. The semi-transparent lines represent the

di�erent ML models trained (di�erent weight initialization), while the darker lines show the median of those lines for the 2D and 3D models. The

corresponding performances are reported in the Table. The dashed line represents the long term mean timeseries of soil moisture simulated by

ParFlow-CLM at each location, computed over the 36 years available (i.e., for each day, the mean over the 36 years for that day).

events. This explains the superior performances of the 3D CNN

in the snowmelt season. It also explains the earlier peak for

some of the locations, where soil moisture responds to positive

infiltration with a delay not present in training years, and the

more smoothed behavior toward the end of the water year, where

the 2D CNN responds better to strong rainfall events.

3.3. Forcing scenarios

Finally, we test the potential of combining physics-based

modeling and machine learning in the context of a changing

climate by looking at the performances when predicting a

climate outside the range of that observed in training. We

focus on the 3D CNN due to its superior performances but

the same results could also be observed also with the 2D

CNN model. We compare two sets of 3D CNN models, with

the same architecture but trained either only on historical

forcing ParFlow-CLM simulations, or also on those with altered

forcing (11 scenarios, mimicking drought scenarios by randomly

decreasing precipitation and increasing temperature).

Model performances with the additional training scenarios

are superior both in time and space (Figure 8). In fact, the

RMSD is lower, and NSE and KGE are higher over the entire

water year when training not only on historical forcing and

the performances are also improved over a large portion of

the domain. The 3D CNN model trained only on historical

forcing performs worse on the testing scenario used here (D12

in Table 1) rather than on the historical forcing, both for the

water year 2002 (comparing the yellow line in Figures 5, 8).

This means that indeed when experiencing a climate outside

the range of the training data, the performances worsen. The

same is not true if the CNN model is also exposed to drought

scenario simulations in the training. In fact, the performances
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FIGURE 8

In (A), the timeseries of ParFlow-CLM (PF) domain average in time for the water year 2002 and the testing forcing scenario (mean SMPF ) and the

simulated net infiltration (qflx_infl-qflx_tran_veg ParFlow-CLM variables). Below, the timeseries of Root Mean Square Di�erence, Nash-Sutcli�

E�ciency, and Kling-Gupta E�ciency comparing the PF mean to that of the 3D Convolutional Neural Network (CNN) trained only on the

historical forcing simulations (Historical Forcing, HF) or also on the additional forcing scenarios (all). The semi-transparent bands represent the

0.2-0.8 interquartile ranges among repetitions of the same ML configuration (i.e., di�erent initialization). In (B), the temporal statistics comparing

the timeseries at each pixel of PF and the 3D CNN trained just on historical forcing simulations or also on those with additional forcing scenarios.

are better in the testing even if the specific testing scenario is not

used in training (training is done with scenarios D1-D11 and

historical forcing).

4. Discussion

In this work, we explore how machine learning and physics-

based hydrological modeling can be successfully combined

to predict efficiently 2D moisture fields. The former being

strongly dependent on the training/input data quality and

quantity but extremely computationally efficient makes it very

compatible with a physics-based model which is informative

but computationally expensive. For the case study presented

here, ParFlow-CLM runs one water year simulation in ca. 25

min when using 9 CPUS. We demonstrate how a CNN can be

trained by using the simulations generated with ParFlow-CLM

and reproducing its soil moisture estimates. Making a 1 water

year prediction with the trained ML models takes few seconds

on one CPU. As a reference, the performances of a very simple

water balance model based on the same inputs as the CNN,

are much worse than the ones obtained here with the machine

learning models (RMSD>0.2 and negative NSE and KGE).

Having an informative physics-based model, allows us to

go beyond past observations and create simulations that are

generated using forcing altered to resemble expectations of

the future climate. With this training set, the CNN model

not only learns how to emulate ParFlow-CLM response to

forcing but also how changes in forcing manifest in the soil

moisture response. In fact, the model has learned what the

effect of an increase in temperature and decrease in precipitation

have on soil moisture. The CNN model can then be used

to better predict the soil moisture response to climate which

has similar properties (in this case, reduced precipitation and

increased temperature), but it is different from what was seen in

training. This tool can be used to explore many different possible

scenarios, in the context of an uncertain future, which would

be computationally unfeasible with ParFlow-CLM directly. It

is interesting to notice that the two models (trained on just

historical forcing or also on the additional forcing scenarios)

perform very similarly if tested on a validation year (i.e., water

year that has not been used in training) but with historical

forcing (refer to Supplementary Figure S2). This confirms that

indeed exposing the model to a “different climate” is not simply

improving the model because it is trained on more data (5 water

years * 11 forcing scenarios = 55 extra water years to train on),

but it’s also learning the impact of increasing temperature and

decreasing precipitation. In the testing scenario (D12) which

neither model has seen in training, the superiority of the one

that has seen altered forcing is evident.
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FIGURE 9

The mean root mean square error (RMSD, first row of plots), Nash-Sutcli�e E�ciency (NSE, middle row of plots), and Klige-Gupta E�ciency

(KGE, lower row of plots) as a function of the total precipitation (left column of plots) or the mean hourly temperature (right column of plots)

computed for each water year. The color identifies water years used in training, validation, or testing. The water year 2002, used for all the

results reported here is marked blue. Black lines represent the trends of a linear fit.

One of the biggest limitations of this study is the

choice of forcing scenarios. These are chosen to reproduce a

plausible (intra-annual variability) field of forcing variables with

altered statistics (changing the precipitation and temperature

homogeneously in space and time). This choice allows for

a controlled experiment, where only a small perturbation is

applied, but the resulting scenarios are not actually realistic

as future climates. More complex changes are expected in the

future, with temporally and spatially heterogeneous impacts on

precipitation and temperature, but also the other considered

meteorological inputs (e.g., Trenberth, 2005). This could

be considered in future work, by using weather generators

(e.g., Semenov and Barrow, 1997; Kilsby et al., 2007; Peleg

et al., 2017), which produce realistic fields of the different

meteorological variables, provided (some) statistical properties.

Using more realistic future climate scenarios, that are not just

homogeneously modified, would probably harden the training

of the CNNs to the impact that changing the climate has

on soil moisture and require more training simulations with

altered forcing.

The same conclusions of the scenarios experiment are also

true for wetter or drier water years. The focus here is on droughts

and therefore we select drier years (higher mean temperature

and lower mean precipitation) between 1983 and 2018. If the

trained model is used to predict wetter years, the performances

worsen. To show this, while it was not the purpose of the study

presented here, we look at the performances of the trained 3D

CNN when we predict all 36 water years available (Figure 9,

refer to Supplementary Figure S1). While a lot of scattering can

be observed the trends are clear across all statistical metrics:

the performances worsen with increasing total precipitation

and decreasing mean hourly temperature. This confirms once

again the importance of the training data quality and specifically

whether they are representative (ergodicity). Similar conclusions

can be drawn by looking at the comparison of the performances

using the 3D CNN or the long term mean (LTM) timeseries

(Figure 10). The 3D CNN is outperforming the LTM for drier

years (lower yearly precipitation) but is performing worse on

wetter ones. Where CNN is really outperforming is on the

scenarios, which are much drier than the "average year". These

conclusions are consistent with the out-of-sample testing results

in Maxwell et al. (2021). When developing a framework such

as the one presented here, it is important not only to ensure

that enough training data are generated with the physics-based

model, but also that those are tailored to the specific application

of interest and intended use.

The benefits of the combination of physics based modeling

and machine learning have been shown here in the context of a

changing climate but they extend to other potential applications

which require a large number of simulations such as improving

physics based models parametrisation (refer to e.g., Maxwell

et al., 2021).
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FIGURE 10

The mean root mean square error (RMSD, first row of plots),

Nash-Sutcli�e E�ciency (NSE, middle row of plots), and

Klige-Gupta E�ciency (KGE, lower row of plots) as a function of

the total precipitation (left column of plots) or the mean hourly

temperature (right column of plots) computed for each water

year. The color identifies water years used in training, validation,

and testing. The water year 2002, used for all the results

reported here is marked blue. Black lines represent the trends of

a linear fit.

5. Conclusion

In this manuscript, we show how convolutional neural

networks can be trained to efficiently predict soil moisture fields

as simulated by the physics-based hydrological model ParFlow-

CLM. Furthermore, we show how these complementary

approaches can be successfully combined to compensate for

the computational costs of the physics-based model and the

need for tailored training data to properly train a machine

learning approach to predict an unprecedented climate. The

main findings of this study are:

• Convolutional Neural Networks (CNNs) can be trained

and used to predict the soil moisture fields simulated by

ParFlow-CLM,

• 3D CNNs, which consider time as the third dimension,

outperform 2DCNNboth in space in time, better capturing

the soil moisture dynamics in space and time, but the 2D

CNN reproduced better the soil moisture peaks following

strong rainfall events (i.e., rapid soil moisture changes),

• Using the physics-based model to generate additional

simulations representative of the expected future changes,

can improve the prediction of a “new” forcing scenario

(unseen in the training),

• CNNs can predict 2D soil moisture fields very efficiently,

within just few seconds for an entire water year (ca. 500

times faster than running ParFlow-CLM),

• The representativeness of the training data is key for the

success of the CNNs and ParFlow-CLM simulations should

be tailored to the specific application of interest (here

drought conditions).

Although future climate scenarios considered in this study

are not realistic, the results are proof of how complementary

these two approaches are and provide a framework that could

be further developed by improving forcing scenarios e.g., with

weather generators, and tailoring the training simulations to any

application of interest.
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