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Groundwater resource management is an increasingly complicated task that is

expected to only get harder and more important with future climate change and

increasing water demands resulting in an increasing need for fast and accurate

decision support systems. Numerical flow simulations are accurate but slow, while

response matrix methods are fast but only accurate in near-linear problems. This

paper presents a method based on a probabilistic neural network that predicts

hydraulic head changes from groundwater abstraction with uncertainty estimates,

that is both fast and useful for non-linear problems. A generalized method of

constructing and training such a network is demonstrated and applied to a

groundwater model case of the San Pedro River Basin. The accuracy and speed of

the neural network are compared to results using MODFLOW and a constructed

response matrix of the model. The network has fast predictions with results similar

to the full numerical solution. The network can adapt to non-linearities in the

numericalmodel that the responsematrixmethod fails at resolving.We discuss the

application of the neural network in a decision support framework and describe

how the uncertainty estimate accurately describes the uncertainty related to the

construction of the training data set.

KEYWORDS

groundwater modeling, neural network, decision support system, response matrix,
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1. Introduction

Resolving the complexity of flow in a groundwater reservoir is a challenging but

important task for securing water supply around the world. Societies utilize groundwater

for drinking water supply, agriculture, and environmental control on a large scale. Proper

groundwater management prevents depletion or pollution of the resource and saves societies

millions of dollars in the remediation of contaminated areas (Sun and Zheng, 1999).

Therefore, practitioners often use numerical models as decision support tools for planning

and managing groundwater (Hadded et al., 2013). Numerical models can simulate flow

dynamics and forecast the effects of management strategies. They can act as decision support

tools for tasks such as finding the optimal location for a new well or estimating the effects

on wetland and stream depletion. Setting up accurate numerical models requires high

numerical grid resolution which comes at the price of long computation times for flow

calculations and high memory demand (Cheng et al., 2014). As an example, Bakker et al.

(2016) perform a capture fraction analysis of a groundwater model using the flow simulation

code MODFLOW (Harbaugh, 2005). Here, 1,530 model runs took approximately 10 h,

which is impractical for rapid decision support.
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Because of the long computation time, management models

can be approximated using the response matrix (RM) approach

(Gorelick, 1983). The approach is based on the assumption of

space superposition and uses single simulations of wells to calculate

coefficient values that linearly relate a pumping rate at one point

to drawdown at different locations in the model (Psilovikos, 2006).

Once the RM is constructed, it can replace the simulation code

and perform fast forward calculations. The implicit assumption of

linearity between pumping rate and drawdown in the RM approach

is valid in simpler cases, but as model non-linearities increase the

assumption of this linear relation diminishes (Niswonger et al.,

2011) and the linear assumption becomes less accurate. In practice,

this limits the practical use of the RM system and calls for different

approaches that run fast and can resolve non-linear problems.

Neural networks started gaining traction in water resources in

the 1990s as described in the review by Maier and Dandy (2000).

Within water resources management, Rogers and Dowla (1994)

applied a neural network as a tool to search for optimal pumping

strategies for aquifer remediation. The study used model-simulated

data to train the network and found results consistent with

conventional methods. They point out the lower computational

burden of the Artificial Neural Network (ANN) approach as an

advantage to the conventional technique. A different approach is

to use historical data as training inputs (Yoon et al., 2011; Chen

et al., 2020). Research has shown, that these networks, in some

cases, outperform numerical flow models in predictive accuracy

and are easier to develop (Coppola et al., 2003; Mohanty et al.,

2013). Recently, applications of deep neural networks are advancing

in hydrology. A study by Dagasan et al. (2020) makes use of a

newer and advanced type of network called Generative Adversarial

Networks (GANs) as a replacement for a forward operator

in a hydrogeological inverse problem. The trained network

shows capabilities of mapping hydraulic conductivity fields to

corresponding flow simulations with significant time savings as

opposed to MODFLOW. Lykkegaard et al. (2021) show that the

combination of Markov chain Monte Carlo (MCMC) and deep

neural networks can reduce the cost of uncertainty quantification

for groundwater flow models by up to 50% compared to using a

regular Metropolis algorithm. Reductions in computational costs

are also mentioned as a great advantage of deep networks (Marais

and de Dreuzy, 2017). However, deep networks require large

amounts of training data to obtain high accuracy, and networks

such as GANs can require significant training times.

Other options within supervised learning for water resources

include e.g., support vector machines, random forest methods,

and regression trees. These methods also prove capable of

understanding non-linear relationships between water quality

parameters and complicated measurements such as nitrate

distribution in groundwater or oxygen demands for a healthy

biological system (Knoll et al., 2019; Najafzadeh and Niazmardi,

2021). With all these possibilities, it can be difficult to select

the optimal method for a given problem without performing

a comparison analysis. However, if the goal is to simply

investigate whether the problem is solvable or not using supervised

learning, a Multilayer Perceptron Neural Network (MLP-NN) can

approximate any function to an arbitrary accuracy (Hornik et al.,

1990). This makes the MLP-NN ideal as the first choice for new

investigations, where success is not guaranteed.

Previous studies have already implemented model-simulation

trained neural networks to handle groundwater management tasks

in non-linear problems that can replace the RM approach (Chu and

Chang, 2009; Chen et al., 2013). They focus on predicting the non-

linear temporal change caused by well-systems in an aquifer and

apply the trained neural network in optimization policy algorithms.

The results are very promising in accuracy and speed, but are

case specific to one well-system from where time-series data are

simulated for training. These networks can to some extent replicate

numerical computations, but lack the flexibility to e.g., simulate

different well-systems in new locations. Furthermore, it can be

difficult to verify the network predictions without comparing these

to numerical simulations or real world observations. We see a need

for more spatially flexible neural networks that can understand

the impact from groundwater abstraction in user specified well

locations and presents a way of validating the trustworthiness of

the results.

This study aims to provide fast and highly accurate predictions

of hydraulic head changes using a neural network that has

applications in a decision support system. Initially, we explain

the method behind acquiring data, training, and predicting using

the network. We propose to use a few selected attributes in the

groundwater model as input features and construct an MLP-

NN (Gardner and Dorling, 1998) as a mapper between these

features and changes in hydraulic head in a groundwater model.

The MLP-NN is trained with model-simulated results of head

changes obtained using MODFLOW for a specific test case. As

the use of a low-dimensional feature space, leads to a non-unique

relation between features and hydraulic head, the network output

is a probability distribution (a mean and variance of a normal

distribution) describing the head change, as opposed to a single best

estimate. The focus of this study is not to design and train a neural

network that can be applied in any groundwater model, but instead

to document a methodology, where an MLP-NN can replace the

heavy groundwater flow calculations or the linear RM, for in

principle any groundwater model. The speed and accuracy of the

MLP-NN predictions are compared to results using MODFLOW

and the RM approach and the abilities of the MLP-NN in a decision

support framework are investigated. We further elaborate on the

possibilities when predicting a distribution of outcomes in terms of

validation of predictions and the completeness of the training set.

2. Methods

This paper focuses on the problem of estimating the change in

hydraulic head from groundwater abstraction in a well. Assuming

that the groundwater system is anisotropic and that the Cartesian

coordinate system is aligned in the direction of anisotropy, this

problem can be solved using the 3-dimensional groundwater flow

equation given in equation (1) as implemented in the groundwater

flow simulator MODFLOW.
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Here Kx, Ky, and Kz are the hydraulic conductivity values

along the Cartesian x, y, and z-axis, Q
′
s is volumetric flux per unit

volume representing flow in and out of the groundwater system
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from e.g., wells. Some contributions to Q
′
s can be non-linear, and

thus be dependent on h, where h is the potentiometric head, and S is

the storage coefficient (Harbaugh, 2005). Provided that the aquifer

system is unconfined, the storage coefficient will be dependent on h

and thus introduce non-linearity into the system. This can also be

described as the mapping g from the model space M (representing

K, Q, and S) to data spaceD (representing 1h), such that

D= g (M) . (2)

The mapping operator g is unique and provides precise

predictions but is time-consuming to run and often not feasible to

apply in a tool for fast decisionmaking. Therefore, decision-makers

typically base their analysis on faster, approximative methods, e.g.,

the RM method, or reduce the complexity in the decision support

design, for example by reducing the number of model scenarios

included in the analysis.

2.1. The response matrix method

The response matrix approach (Gorelick, 1983) is based on

the assumption of space superposition and uses single simulations

of wells to calculate coefficient values α that relate a pumping

rate Q at one point to drawdown 1h at different locations in

the model (Psilovikos, 2006). 1h at some location i affected

by j wells with pumping rates Q can be described on matrix

form as













1h1
1h2
...

1hi













=













α1,1 α1,2 · · · α1,j

α2,1 α2,2 · · · α2,j

...
... · · ·

...

αi,1 αi,2 · · · αi,j













·













Q1

Q2

...

Qj













. (3)

The relationship is a linear addition of all affecting pumping

rates, also known as superposition. Once the matrix coefficients α

are determined, equation (3) can be solved very fast for different

values of Q. This makes the RMmethod ideal in a decision support

system, where high speed and flexibility are necessary to evaluate

multiple situations within a short timeframe. The speed of the RM

method comes at the cost of assuming linearity between pumping

rates and drawdown. In the case of non-linearities, the method will

prove inaccurate, meaning that the method is often constrained to

a fixed range of pumping rates (Psilovikos, 2006). This limits the

possibilities of the RM method and it might not make sense to

implement the method in highly non-linear groundwater models.

The method leaves space for a new type of approach that can

work in both the linear and non-linear domains with the forward

runtime as the RM method. As an alternative to using numerically

expensive but accurate MODFLOW simulations, and the fast but

linear RM method, we suggest designing and training an ANN to

provide both fast, accurate, and non-linear estimates of changes in

hydraulic head as a response to groundwater pumping.

2.2. A probabilistic neural network
approach

This study proposes to use a neural network to predict the

hydraulic head changes (with uncertainty) from groundwater

abstraction, with the goal to provide a significant reduction in run

time compared to numerical flow modeling, while at the same

time reproducing non-linear effects that cannot be handled by the

RMmethod.

To achieve this, we suggest reducing the problem using a sparse

representation of M, in form of a set of local attributes in an

attribute space A to approximate the head change in a single cell

and not the full model. A is representative of the hydrological

model in a single location, i, and the hydraulic properties between

location and well (which will be considered in detail later). Let

gA refer to the mapping between the feature space A, and the

data space D. In general, gA will refer to a non-unique operator,

as opposed to g in equation (2), as the feature space A will

only approximate the full model M. Hence, several different data

can be the result of the same set of features. Therefore, one

should represent the outcome of using the features space as model

parameters as a probability distribution:

fD (D) = gA(A) (4)

If an infinitely large training data [A,D] existed, then

realizations of fD(D) could be obtained directly from the training

data set, simply by finding all the data that corresponds to a specific

set of features. This is naturally not feasible in practice. Therefore,

we suggest to construct a neural network that learns the gA(A)

and use it to directly estimate fD(D) that refer to all possible data

responses for a specific set of features. We wish to estimate the

non-unique operator gA(A) with a neural network based operator

we refer to as gnn(A). As an example we make the assumption

that fD(D) can be describe by a normal distribution, such that

fD(D) → N(dmean, dstd).

The task is then to design a neural network that solves equation

(4), that by taking as input a set of features A, can estimate dmean

and dstd that describes fD(D) as a normal distribution.

To replace the operator gnn, we consider as an example

a fully connected feed-forward neural network, as it has been

demonstrated that a neural network with as little as a single hidden

layer can approximate any continuous function with arbitrary

accuracy (Hornik et al., 1990).

In order to apply the method one thus needs to:

• select a set of low-dimensional attributes, A, representing

hydrological variability around and in-between two locations

• generate a large training data set, [A,D], of corresponding sets

of input features and hydraulic head changes [a, d] obtained

using MODFLOW [Equation (1)]

• design a neural network whose input is a single set of

attributes, a, and whose output is two parameters, the mean

and standard deviation of a 1D normal distribution describing

the change in hydraulic head, d

• train the network.
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The hope is that the trained neural network model, gnn, can be

used as an efficient substitute for g(M) in equation (2), when run

for all cells in a model. The choice of attributes, and construction of

the training data set will be considered later as part of the test case.

2.3. Neural network design

A fully connected Artificial Neural Network (ANN) consist of

a number of neurons, ordered in layers. Each neuron has two free

parameters, a weight and a bias, that transforms an input into an

output using an activation function (Gardner and Dorling, 1998).

Training of an ANN consists of adjusting the weights and biases of

all neurons in order to minimize a chosen loss function that defines

what the ANN is trained to predict.

The fully connected neural network can be split into an

input layer, some hidden layers, and an output layer. The design

of the input layer, the output layer, and the choice of loss

function, is largely independent of the particular groundwater

model considered. The input layer simply consist of nA neurons,

referring to the number of features A, where A = [a1, a2, . . . , anA ].

The output layer consists of two neurons, one neuron for the

mean and one for the standard deviation of a normal distribution

representing the change in hydraulic head (Specht, 1990; Mohebali

et al., 2019). The full probability density function of such a 1D

normal distribution is given by

P
(

y
∣

∣µ,σ
)

=
1

σ
√
2π

e
− 1

2

(

y−µ

σ

)2

(5)

In order to be able to interpret the outcome of the ANN as a

mean, µ, and standard deviation, σ , we would like to maximize

equation (5), when evaluated on all sets of data, in the training

data set, d, compared to the [dmean, dstd] estimated from the

corresponding set of attributes, a, given gnn(a). This is similar to

minimizing the log-likelihood of equation (5), which is used as the

loss function to be minimized when training the ANN, as

LOSS=−logP
(

y
∣

∣µ,σ
)

= log
(

σ
√
2π

)

+
1

2σ 2

(

y− µ
)2
. (6)

By minimizing the loss function defined in Equation (6) the two

outputs of the ANN represent a mean, u, and standard deviation,

σ , of a 1D normal probability distribution describing the change in

head, due to a specific set of attributes. The validity of this claimwill

be discussed further as part of the test case.

The design of the hidden layers depends on the specific

groundwater model and training data considered. The number of

hidden layers, and the number of nodes in each layer must be

chosen high enough to be able to represent the mapping of interest,

and preferably low enough to avoid overfitting. The design of the

inner part of the network, as well as details on training the ANN,

will be considered in more detail as part of the test case.

2.4. Test case

The methodology described above is demonstrated on a test

case based on the San Pedro River Basin MODFLOW groundwater

FIGURE 1

Hydraulic head map of the San Pedro River Basin

groundwater model.

model (Leake et al., 2010) from Arizona, USA, that has also been

applied in other studies (Bakker et al., 2016). It consists of 5 layers,

440 rows, and 320 columns with 250m × 250m grid spacing and a

river running north-south through the model. Streams, drains, and

evapotranspiration are included as head-dependent boundaries.

Recharge and constant head-boundaries are applied, and upstream

reaches at the top of the stream network are given a constant

inflow. The hydraulic head map of layer four is visualized in

Figure 1. In this layer, wells are simulated to abstract groundwater

in order to investigate the resulting change in hydraulic head. A

single simulation consists of simulating a well using MODFLOW-

2005 (Harbaugh, 2005) to calculate the change in hydraulic head

in all active grid cells. To construct a target training data set,

1,000 of these simulations are performed, using randomly located

well placement, across the model in areas that have a hydraulic

conductivity of more than 1m
d
with pumping rates drawn uniformly

from the range 100 − 5000m3

d
. Head changes are saved and will be

used as the data spaceD referred to in Section 2.2 and Equation (4).

The simulations are performed using the frontend python package

FloPy on a computer with an Intel Core i7 2.90 GHz processor and

32 GB RAM.

2.4.1. Input features and training data set
The selection of a few, influencing input features (feature space

A) is important for the simplicity of the network and its ability to

understand the problem. Here, both static features (features that

do not depend on well location) and location-dependent features

(features that depend on the location of the well) are of interest.

In a given model cell the static features do not change as the

well location is moved, while the location-dependent features do

change. Hydraulic conductivity (and the logarithmic conductivity)

and hydraulic head prior to pumping are considered important

static features, with clear connections to changes in hydraulic
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head (Garcia and Shigidi, 2006; Chen et al., 2020). If objects such

as large rivers are present, the distance to them is also selected

as a feature. For the location-dependent features, it is expected

that the distance to the well is an important feature with a high

correlation to the target feature. The travel time of the water to

the well is also considered an important input feature. The feature

is approximated as a scaled velocity field estimated using the fast-

marching method from scikit-fmm (Furtney, 2021). Input features

for the MLP-NN are taken from the individual grid cells in the

model as a vector format of size 1 × 9 including the randomly

drawn pumping rate and well location. Therefore, a single well

simulation generates thousands of input vectors. The input features

of a single well simulation in the San Pedro River Basin model

are shown in Figure 2 in a 2D grid format, here without pumping

rate and well location. Distance from the well and travel time are

shown for a well located in cell [185,175]. This selection of input

features is based on general availability in MODFLOW models,

connection to changes in hydraulic head, modeling choices, and

performance in training and testing of the network. Features should

be available in most MODFLOWmodels to generalize the training

process. In this way, the setup can be applied to new models

with few modifications. All features should have a connection to

change in head as this is expected to improve training. Too many

random input features might prevent the network from learning

the relationship to changes in head. Features should represent the

modeling choices made. These are well location (row and column

number) and pumping rate.

Most of the target data set consists of hydraulic head changes

close to zero because of large distances to the well. This uneven

distribution of observations might prevent the network from

learning the effects of the well both close to and far away. The

data is therefore binned according to the head change values and

a data subset is constructed by sampling from these bins so that

the observations are evenly distributed. Prior to training, the data

subset is randomly split into training, testing, and validation data

sets (Pedregosa et al., 2011). Here, 20% of the set is allocated to the

test set and new random simulations, not included in training or

test sets, are used for the validation set (Raschka, 2018). In this way,

all sets contain random data from random well simulations of the

groundwater model.

To summarize the data set construction, we:

• perform 1,000 steady-state simulations of wells at random

locations with variable pumping rates and save the head

change in each cell from all simulations. These changes are the

target data.

• Construct vectors of input features (features in Figure 2,

pumping rate, and well location) that match the target data.

One input vector of size 9× 1 per target data for training.

• Sample from these vectors of input features and target data

to construct a data subset that contains an even distribution

of observed head changes. This makes the data construction

[A,D] as described in Section 2.2.

• Split the data subset 80/20 into a training set and a test set. A

third data set from new, independent simulations are used for

validation after training.

The full work process is illustrated in Figure 3.

2.4.2. Designing and training the MLP-NN
TensorFlow v2.3 (Abadi et al., 2016) is used for the task of

constructing and training the MLP-NN. As discussed previously

the input layer is configured with a number of neurons equaling

the number of training input features for the considered model

(Table 1), and the output layer consist of two neurons representing

the mean and standard deviation of a 1D normal distribution

representing the change in head value. The loss function, equation

(6), is implemented using the Tensorflow probability package

(Dillon et al., 2017).1

The training data set is used to train the model, while the test

and validation data sets are withheld from training. The test set is

used to give an unbiased evaluation of the model while training.

This is usually referred to as the train-test split approach for model

evaluation. The combination of training and evaluation with the

train-test sets is used for hyperparameter optimization and helps

prevent over-fitting of the network (Cawley and Talbot, 2010).

However, the use of the test set multiple times for hyperparameter

optimization might introduce a bias and affect the generalization

performance of the network. Therefore, a third and independent

validation set is used to evaluate the final model (Raschka, 2018).

We manually examine loss curves and validation set

performance for networks with varying hidden layer sizes,

number of neurons, and activation functions. This is also referred

to as a trial and error method. More structured and exhaustive

optimization methods are presented and discussed in Yang and

Shami (2020). The selected network hyperparameters in Table 1 are

the results of this manual search with a focus on minimizing loss,

a simple network structure, and minimal overfitting. The hidden

layers consists of 3 layers with 75 neurons each (Figure 4) using the

ReLU activation function (Nair and Hinton, 2010; Schmidhuber,

2015). A linear activation function transforms the inputs from

the third hidden layer to the output layer. Additional information

on the configuration and training time of the MLP-NN is further

listed in Table 1.

3. Results

We test the MLP-NN’s abilities to predict hydraulic head

changes from groundwater abstraction in the San Pedro

groundwater model and compare the results to MODFLOW

simulations. The MLP-NN is also applied in an experimental

set-up, where the pumping rates of a well system are varied. The

same set-up is solved using the RM approach and MODFLOW for

comparison in computation time and accuracy.

3.1. Comparison to MODFLOW

As a test, the MLP-NN is used to simulate the hydraulic head

change caused by a well abstracting groundwater in cell [185,190]

in the fourth layer of the San Pedro groundwater model. The

simulation requires the input features, A, corresponding to the

1 Python code available on GitHub https://github.com/MathiasBusk/

HYDROsimpaper. Training data set at Zenodo: https://doi.org/10.5281/

zenodo.6817606.
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FIGURE 2

The input features except pumping rate and well location for the MLP-NN in the San Pedro River Basin model. Distance from the well and travel time

changes as the well is moved while the other features are static, meaning that they do not change as the well is relocated. Here shown with a well

located in row 185 and column 175.

FIGURE 3

Road map illustrating the process between going from the base groundwater model to the final, trained MLP-NN.

well set-up and the trained network, gnn, to link these to the

hydraulic head change output distribution. The mean values of the

predicted normal distributions from the MLP-NN are visualized in

Figure 5 along with the results from simulations usingMODFLOW

in the same set-up. Figures 5A, B, show the hydraulic head change

from a well with pumping rate Q1 = 1000m3

d
computed with
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TABLE 1 Configuration and training details on the multilayer perceptron.

MLP-NN details

MODFLOW simulations 1,000

Training sets 107

Input features 9

Output features 1+ 1

Hidden layers 3 (75 neurons each)

Activation function ReLu

Optimizer Adam

Loss function Negative log-likelihood (of a normal distribution)

Learning rate 0.001

Epochs 1,000

Training time 4 h

FIGURE 4

The structure of the multilayer perceptron. The input layer takes in a

number of input features A (Table 1) and connects them to the three

fully connected hidden layers with 75 neurons each. The mean

value u and the standard deviation σ of the outcome distribution are

estimated in the output layer.

MODFLOW and the MLP-NN, respectively. Figures 5E, F show

the change from a pumping rate of Q2 = 2000m3

d
. Noticeably,

the MLP-NN seems to capture both strength in head change and

the spatial extent of change in the model when comparing it to

the considered true MODFLOWmodel. It, furthermore, compares

well to MODFLOW when increasing the pumping rate from Q1

to Q2. Standard deviations on the MLP-NN predictions are shown

in Figures 5C, G. Mean head change predictions are subtracted

from the MODFLOW results in Figures 5D, H for the two different

pumping rates. Themean absolute errors betweenMODFLOWand

the MLP-NN aremaeQ1 = 0.010m andmaeQ2 = 0.015m.

Since the MLP-NN predicts a normal distribution of outcomes

it is possible to evaluate on the accuracy of the network by

checking how many MODFLOW observations lie within the 95%-

confidence interval of the predicted distribution. In the scenario

with pumping rate Q1, 94.6 % of the MODFLOW head change

observations (Figure 5A) lie within the 95%-confidence interval

of the corresponding predicted distributions from the MLP-NN

(Figure 5B). In the second scenario with pumping rate Q2, 95.6%

of the observations (Figure 5E) are within the 95%-confidence

interval of the MLP-NN predictions (Figure 5F). The results show

that the MLP-NN is capable of replicating the MODFLOW results

within the estimated uncertainty band.

3.2. Comparison to the response matrix
case A

For comparison with the RM, two experimental well systems

are constructed and response matrices are built to represent these

systems. After building the matrices, head change can be estimated

from varying pumping rates without running MODFLOW again.

The first set-up consists of three active wells to simulate a multi

well-system around the same area as Figure 5 in cells [182, 177],

[185, 190], and [190, 188]. The head changes in the model from

each of the wells with pumping rates of Q = 1000m3

d
are simulated

using MODFLOW and used to build the RM following equation

(3). Head change from each well is also predicted using the MLP-

NN and summed up for a total hydraulic head change caused by the

well system. The results from MODFLOW, the RM, and the MLP-

NN are shown in Figures 6A–C. Here the results fromMODFLOW

(Figure 6A) and the results from the RM approach (Figure 6B) are

similar since the MODFLOW results are used as a reference to

calculate the response coefficients [Equation (3)]. The pumping

rate of all wells is then increased to Q = 4000m3

d
and the total

hydraulic head change is estimated using the same three methods

in Figures 6D–F. This time, the already built RM is used to connect

the increase in pumping rates to the change in hydraulic head by

solving the linear relationship in Equation (3). In the MODFLOW

example (Figure 6D) the code is rerun with the new pumping rates

of each well, and for the MLP-NN new predictions are made with

the change in pumping rates noted in the input features (Figure 6F).

By comparing the RM and MLP-NN results to the considered

truth from the MODFLOW results (Figures 6A, D) we observe

that both two alternative methods provide good results, for both

low (Figures 6B, C) and high pumping rates (Figures 6E, F). Mean

absolute errors for the response matrix method are maeresp_1000 =
0 m and maeresp_4000 = 2.74 m, while the mean absolute errors

for the MLP-NN are maeMLP_1000 = 0.02 m and maeMLP_4000 =
2.78m. This small difference indicates that the change in hydraulic

head from increasing the pumping rates of the well-system is a

linear relationship.

3.3. Comparison to the response matrix
case B

In the second set-up, a single well is placed in [305, 180] with

a pumping rate of Q = 1000m3

d
. Once again the results from

MODFLOW are used to estimate the response coefficients for the

RM approach. Results using MODFLOW, the RM approach, and

the MLP-NN are shown in Figures 7A–C along with the standard

deviation on the predictions from the MLP-NN (Figure 7D).

The pumping rate is later increased to Q = 5000m3

d
and
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FIGURE 5

Hydraulic head changes from a simulated well in cell [185, 190] in the test case model. (A, E) MODFLOW simulations with pumping rate Q1=1000m3

d

and Q2=2000m3

d
, respectively. (B, F) MLP-NN mean predictions with pumping rates Q1 and Q2, respectively. (C, G): MLP-NN standard deviations. (D,

H): Di�erence between MODFLOW results and MLP-NN predictions.

hydraulic head changes are calculated again (Figures 7E–H). From

the MODFLOW results (Figures 7A, E), we observe a significant

difference in the head change as the pumping rate is increased. A

second area around cell [250, 200] in the model experiences high

head change and the affected area from the increased groundwater

abstraction is significantly increased. This effect is a consequence

of the numerical model set-up, where a threshold pumping rate

is exceeded and water is abstracted from the upper layers. These

upper layers have no-flow cells in the rows and columns near the

well causing the model to abstract water from nearest active cells

around cell [250, 200] resulting in a second area of high head

change in all layers. This non-linear effect in the MODFLOW

results is not detected with the RM approach (Figures 7B, F)

because of the assumption of linearity. The RM method has some

success in replicating the MODFLOW results close to the well, but

underestimates the change in head in a large part of the model.

This is not the case with the MLP-NN (Figures 7C, G) which

can reproduce the non-linear effect in the MODFLOW results.

The MLP-NN predicts the extent of the change well, but slightly

underestimates the strength of change in the area around cell [250,

200]. However, the standard deviation map (Figure 7H) shows that

the MLP-NN is more uncertain in the predicted change in this area

correlating nicely with the underestimation of change. The mean

absolute errors for the response matrix are maeresp_1000 = 0 m

andmaeresp_5000 = 0.085m, while the mean absolute errors for the

MLP-NN aremaeMLP_1000 = 0.004m andmaeMLP_5000 = 0.033m.

For this, more difficult case the MLP-NN provides an efficient

alternative to MODFLOW, whereas the use of the RM can be very

problematic to use for decision making, due to the ignoring of non-

linear effects. This is also confirmed by the mean absolute errors,

where the response matrix error is almost three times higher than

the MLP-NN.

3.4. Non-linear head change

The non-linear abilities of the MLP-NN is further exploited in

Figure 8, where the relationship between head change and pumping

rate is investigated in a single observation cell using the same well

set-up as in Figure 7. Here, the estimated head change in cell [250,

190] is plotted for increasing pumping rates. The red line is the

calculated head change from MODFLOW that looks piece-wise

linear with a breaking point around a pumping rate of 2800m3

d
.

The dashed blue line is the RM that continues to estimate head

change as the first linear part of the MODFLOW line with no

breakpoint. This means that the method works well up to a certain

pumping rate and then starts to underestimate the head change in

the observation point.

The light blue line with error bars is the MLP-NN’s

predictions of head changes with one standard deviation. It

shows a similar piece-wise linear relationship as MODFLOW

and correctly identifies the breakpoint. At around 3900m3

d
the
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FIGURE 6

An experimental set-up of three active wells in two scenarios with di�erent pumping rates, where the head changes are computed using MODFLOW,

the response matrix approach, and the trained MLP-NN. (A–C) Computed head changes with the three methods where Q=1000m3

d
for all wells.

(D–F) Computed head changes with the three methods where the pumping rate is increased to Q=4000m3

d
for all wells. r and c are the row and

column locations of the wells.

MLP-NN line starts to deviate from the MODFLOW line resulting

in underestimated mean head changes. However, this deviation

correlates well with an increase in uncertainty on the predictions

and allMODFLOWobservations are within one standard deviation

of the MLP-NN results.

The black dots show head changes of input feature vectors with

values close to the input feature vector of the observation point.

Features are selected by searching for distances to well, time, and

distance to river within 5 percent of the standard deviation of the

features in the whole training data set. Initial head values are within

10 percent of the standard deviation to get enough observations.

The responses from the selected feature vectors show almost no

spread before the change in linearity. Afterward, the spread in

responses increases around the MLP-NN line together with the

increasing standard deviation of the MLP-NN predictions.

The black dots in Figure 8, is representative of examples of

different data responses one could get by evaluating the gA(A) in

Equation (4), using only data in the training data set. As discussed

in Section 2.2, gA represent a non-unique mapping, as can be seen

by the black dots representing data from the training data set. It

is exactly this spread of data, that the MLP-NN is designed to

estimate. The uncertainty estimates (blue vertical lines) in Figure 8

suggest that the estimated uncertainty using gnn corresponds well

to the uncertainty given the use of the feature space, in gA. This

is also supported by the confidence interval analysis provided in

Section 3.1.

3.5. Network output and speed

We use the 50 simulation runs from Figure 8 to give an estimate

of the speed up between MODFLOW and the MLP-NN. The

mean runtime including one standard deviation of a MODFLOW

simulation in the San Pedro model is tmod = 24.78 ± 0.78 s.

The mean prediction time of an MLP-NN simulation including

running the fast marching algorithm for input feature creation is

tMLP = 0.19 ± 0.01 s. Nearly 85% of this time is dedicated to

the fast-marching algorithm and the rest to the prediction time.

This gives an estimated speed up when using the MLP-NN of
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FIGURE 7

An experimental set-up of an active well in two scenarios with di�erent pumping rates, where the head changes are computed using MODFLOW, the

response matrix approach, and the trained MLP-NN. (A–D) Computed head changes with the three methods where Q=1000m3

d
. (E–H) Computed

head changes with the three methods where the pumping rate is increased to Q=5000m3

d
. r and c are the row and column location of the well.

FIGURE 8

Head change as a function of pumping rate in observation point [250, 190] (red dot) from an activate well in [305, 180] (blue triangle). The relationship

is estimated using MODFLOW (red line), the response matrix approach (blue dashed line), and the MLP-NN (light blue line with error bars, one

standard deviation). Included are also the training data observations (black dots) with input feature vectors close to the input features for the

observation point.
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130.1 ± 6.2 times faster than MODFLOW. The fast prediction

time and high accuracy make the MLP-NN a feasible option in a

decision support framework.

4. Discussion

In this paper, we have implemented a Multilayer Perceptron

Neural Network to estimate the hydraulic head change from

groundwater abstraction in a numerical groundwater model.

The MLP-NN was trained with responses from a MODFLOW

groundwater model as target data together with local hydrological

attributes and spatial information as input features. The

architecture of the MLP-NN was constructed to predict a

distribution with a mean and standard deviation instead of a

single value in the output layer. The performance of the MLP-NN

was tested against MODFLOW and the alternative RM approach

in different experimental well system set-ups to investigate the

relevance of the MLP-NN in a decision support framework.

The drawdown predictions using the MLP-NN are comparable

to the MODFLOW simulations for different pumping rates.

Moreover, the estimated uncertainty on the predictions are

consistent with the magnitude of the actual errors between the

MLP-NN and MODFLOW simulations (Figure 8). This gives the

MLP-NN an advantage compared to the RM approach, as it is

possible to address the trustworthiness of the prediction using the

standard deviation of the predicted distribution. Furthermore, the

MLP-NN predictions proves to be on average 130 times faster than

MODFLOW for the problems presented, making the network a

better alternative in a decision support framework, where scenario

analysis and speed are key properties.

Examples are presented (Figures 6, 7) where the MLP-NN

are compared the RM method. The results of the first scenario

(Figure 6) are very similar for both MODFLOW, the RM, and the

MLP-NN, as also revealed by the similar and low mean absolute

errors (MAE). In this case, it can be argued, that constructing and

training an MLP-NN is redundant since it is essentially solving a

linear problem that can easily be solved using the RM. However,

the MLP-NN is, unlike a constructed RM, not only applicable to

a specific well system set-up. In the second scenario (Figure 7),

a new RM is constructed from a MODFLOW simulation, while

the existing MLP-NN can be readily applied. In this scenario, the

RM underestimates the hydraulic head change for high pumping

rates due to a non-linearity in the groundwater model response

(Figures 7E, 8). The non-linearity is well resolved with the MLP-

NN and predicted head changes are similar to MODFLOW

calculations. This translates into a significant difference in MAE.

The ability to resolve non-linearity, consistent within the estimated

uncertainty range, is the primary advantage of our trainedMLP-NN

compared to the RM approach. This is especially seen in Figure 8,

where the error for both methods increases for higher pumping

rates, but MODFLOW results are still within the predict range of

the MLP-NN. In more complex groundwater models the risk of

getting non-linear responses increases rendering the RM method

less applicable. Moreover, since the RM approach does not estimate

predictive uncertainty, such non-linearities will remain unknown,

potentially resulting in biased decisions. The speed and accuracy

of the MLP-NN make it valuable in decision-making for problems

where many possible scenarios are considered. Simulating all

scenarios in MODFLOW is often not feasible within the asserted

timeframe and better management decisions might be overlooked.

The MLP-NN can in such cases act as an approximative screening

tool that quickly identifies which scenarios are worth further

investigating and which are likely to fail. The MLP-NN could also

function in a decision support tool as a warning system that alarms

users in the case of non-linearities. A decision support tool acting

on results from an RM is fast, but limited to the near-linear regime

for accurate calculations. Deviations from linearity are difficult to

detect without running the MODFLOW model, thereby losing the

effect of the RM. With the MLP-NN’s understanding of non-linear

responses (Figure 8), a fast comparison of results from the RM and

the MLP-NN could be performed to check for linear deviation. If

results are noticeably different, the decision support tool could issue

a warning.

This research shows that the MLP-NN can function in both

linear and non-linear domains and only needs to be trained once

to work in a wide range of well system set-ups. The MLP-NN is in

this way very flexible but should still be limited to the groundwater

model and range of simulations, it is trained from. This limitation

ensures that the network is not extrapolating to predict results

from input features outside the trained range. A network trained

on one groundwater flow model could not be applied to predict

on a different model setup without extrapolating. However,

the simplicity of the chosen input features and straightforward

construction of training data ensure that the process of training the

MLP-NN using another groundwater model can be done with only

a few considerations and modifications to the presented method.

In a decision support framework, we would require one trained

MLP-NN per groundwater model, and it would be responsible to

introduce a limit on e.g., the maximum pumping rate so that it

matches the value from the training set. Future work could focus

on evaluating the transferability (Bjerre et al., 2022) of the MLP-

NN to outside the trained area and use this information to develop

networks with increased flexibility to further reduce the limitations

of this study.

Future work could also compare the MLP-NN to other types

of regression methods. There may exist other methods that can

outperform the MLP-NN in accuracy and with less uncertainty.

This type of “best fit” exercise has been performed in multiple

studies for a wide range of problems (Barzegar et al., 2017; Sahoo

et al., 2017; Knoll et al., 2019; Sameen et al., 2019; Najafzadeh and

Niazmardi, 2021). Such comparison is left to future work as it is

expected not to add much scientific value and might take away the

focus of this paper. We argue that the real value of our work is

in the input feature selection and the probabilistic output of the

MLP-NN. The development of Tensorflow (Abadi et al., 2016) and

Scikit-learn (Pedregosa et al., 2011) has made it easier to implement

many types of machine learningmethods. Together with this work’s

available code repository, such a comparison should be feasible to

perform for the interested reader.

The presented approach distinguishes itself from earlier studies

in especially two main ways. Firstly, our trained MLP-NN offers

a high degree of flexibility by the user, not considered in earlier

studies replacing traditional numerical groundwater models with

neural networks (Chu and Chang, 2009; Chen et al., 2013). The

MLP-NN is neither bound to a specific well system configuration
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nor to a constant pumping rate. Secondly, predicting head changes

as distributions instead of single values with a neural network is,

to our knowledge, unique to this study. Neural networks have been

used to accelerate uncertainty estimates in groundwater modeling

(Lykkegaard et al., 2021), but not as direct outputs of the network.

We have presented a network which is trained using

responses from a numerical model and which estimates prediction

uncertainty. As discussed in Section 2.2. this uncertainty is related

to using the specific choice of low-dimensional feature space,

leading to an implicit ideal forward model gA, that is non-unique,

in that the same set of features, can lead to different change in head.

Figure 8 suggests that the trained MLP-NN, gnn, provides results

consistent with gA. This suggest that gnn mimics gA well. It also

suggests that other choices of neural network architecture, should

not lead to substantially different results, but could well lead to

more efficient training. Instead, if one would like to reduce the

uncertainty of the predictions using network gnn, and hence gA,

then one should focus on finding a feature dataA that represent the

model parametersM, even better than in the case, we present here.

The presented results rely on the existence of a deterministic

groundwater model, i.e., without any uncertainty regarding the

hydrological model parameters. If a stochastic groundwater model

is available, from which multiple hydrological models can be

realized, such uncertainty could potentially, and straightforwardly,

be used by the proposed methodology. Multiple simulations,

based on different groundwater model realizations, with the same

well location and pumping rate would result in a distribution

of outcomes from the MODFLOW model that, applying the

methodology of this paper, could be used in a training data set

to represent the uncertainty from varying model parameters. The

training data set and time spent to train the MLP-NN would

increase, but the trained MLP-NN would predict with the same

speed as before since no architectural changes are made. This also

means that the MLP-NN has the potential to become even faster

than MODFLOW, which would now have to be run multiple times

to obtain a distribution of possible outcomes instead of just ones.

Table 2 sums up the results from the comparison of the

three methods. Here results obtained using MODFLOW are

considered the optimal solution. Since the MLP-NN is trained

using simulations from MODFLOW, the accuracy of the MLP-

NN cannot outperform the underlying numerical model and

remains an approximative approach that, in the presented cases,

performs with high accuracy and speed. The MLP-NN’s ability

to resolve non-linear problems is a clear advantage over the

presented RM and shows that it is a better approximative method

as a decision support tool in the presented case. The methods’

feasibility in decision support (Table 2) is based on their speed

and ability to present accurate results in both linear and non-

linear cases. As MODFLOW simulations can take a long time

to run, it is not suited as a decision support tool for users

requiring fast solutions. The RM is very fast but constrained

to linear approximations. Therefore, its application in decision

support is feasible but limited. The MLP-NN is not constrained

by linear assumptions, predicts with high accuracy, and has a

high computational speed. In this sense, decision support is

feasible once training of the MLP-NN is complete. The distribution

TABLE 2 Abilities of the three simulation methods.

MODFLOW Response
matrix

MLP-NN

Accuracy Considered

truth

Medium High

Time consumption Slow (24.78 s) Very fast

(∼0.002 s)

Fast (0.19 s)

Output format Single value Single value Distribution

Uncertainty

estimate

NA No Yes

Non-linear Yes No Yes

Feasible in decision

support

No Yes (linear

limitation)

Yes

output format and uncertainty estimate presents some future

opportunities of including uncertainties from the actual numerical

model in the network predictions. Following the same approach as

presented in this paper, training such a network would requiremore

numerical simulations and training time, but after training, the

network is expected to perform just as fast as before and nowmuch

faster than the stochastic numerical model. TheMLP-NN approach

functions as a replacement for the RM method especially for non-

linear problems, and outperforms the RM approach by estimating

prediction uncertainties and thereby validity of the approximative

solution.

5. Conclusion

This paper presents a method of training a Multilayer

Perceptron Neural Network to predict hydraulic head change

from groundwater abstraction using only a few, selected input

features. The high accuracy and speed makes it a valuable

methodology in a decision support tool framework, where

forward runtime is important and approximate calculations are

sufficient. With an experimental well system set-up, we show

that the MLP-NN can reproduce non-linear responses that

the RM method fails to resolve, and that it, once trained, is

more flexible to changes in the location of well-systems. The

architecture of the MLP-NN is designed to output a normal

probability distribution, with a mean and standard deviation per

prediction. This allows estimation of the uncertainty in the forward

model due to the use of a low-dimensional feature space. The

standard deviation shows increasing uncertainty when prediction

error increase, indicating that it could be a good measure of

prediction trustworthiness. The uncertainties estimated in the

present study are a measure of the MLP-NN to reproduce the

original model.
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