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Introduction: Closed-circuit video (CCTV) inspection has been the most popular

technique for visually evaluating the interior status of pipelines in recent decades.

Certified inspectors prepare the pipe repair document based on the CCTV

inspection. The traditional manual method of assessing structural wastewater

conditions from pipe repair documents takes a long time and is prone to

humanmistakes. The automatic identification of necessary texts has received little

attention. Computer Vision based Machine Learning models failed to estimate

structural damage because they are not entirely understood and have di�culty

providing high data needs. Hence, they have problems providing physically

consistent findings due to their high data needs. Currently, a very small curated

annotated image and video data set withwell-defined, precisely labeled categories

to test Computer Vision based Machine Learning models.

Methods: This study provides a valuable method to determine the pipe defect

rating of the pipe repair documents by developing an automated framework using

Natural Language Processing (NLP) on very small, curated annotated images, video

data, and more text data. The text used in this study is broken into grammatical

units using NLP technologies. The next step in the analysis entails using words to

find the frequency of pipe defects and then classify them into respective defect

ratings for pipe maintenance.

Results and discussions: The proposed model achieved 95.0% accuracy, 94.9%

recall, 95% specificity, 95.9% precision score, and 95.7% F1 score, showing the

potential of the proposed model to be used in large-scale pipe repair documents

for accurate and e�cient pipeline failure detection to improve the quality of the

pipeline.

KEYWORDS

defect detection, wastewater pipe inspection, natural language processing (NLP), text

recognition, trenchless technology

1. Introduction

The underground pipeline system forms a significant part of the infrastructure

because it includes thousands of miles in the United States. Sanitary wastewater

collects wastewater from public and private users as part of wastewater infrastructure

systems (Mohammadi et al., 2019; Moradi et al., 2020). About 500,000 miles of

private wastewater laterals and 800,000 miles of municipal wastewater lines (Malek

Mohammadi et al., 2019). By 2032, 56 million people are expected to use centralized

treatment plants (Nicklow et al., 2010; Vladeanu and Matthews, 2019a,b; Betgeri and

Smith, 2021; Betgeri et al., 2023b). Water supply and wastewater water pipelines are

essential for society’s survival, and their security and efficiency are critical for human
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health and economic growth (Yugandhar and Nethra, 2014; Li

et al., 2016, 2019; Cheng and Wang, 2018; Hassan et al., 2019;

Vladeanu and Matthews, 2019a; Betgeri, 2022; Boskabadi et al.,

2022; Betgeri et al., 2023a). Using risk-based asset management, the

most critical assets to take the most efficient course of action are

identified by prioritizing the highest risk of failure by considering

all the parameters.

Using the traditional manual method, the number of

failures received by wastewater management can increase

rapidly, making pipe failure handling imperative because

the inspectors manually produce them by checking through

CCTV films, manually recognizing and classifying such

failures through pipe repair paperwork, and extracting the

information connected to those pipe failures is difficult. As a

result, the manual extraction procedure has a high potential

for human mistakes, time consumption, and information

loss. This issue can be resolved by substituting autonomous

computational extraction for these manual procedures. The

difficulty of computationally extracting information from

free-text narratives is addressed by the field of study known

as information extraction (IE), a subfield of natural language

processing (NLP).

NLP can be an efficient way of automatically extracting

information from large-scale pipe repair documents. NLP is

a computer-assisted approach for facilitating the processing

of human (natural) language. NLP may be a research area

developing techniques accustomed to analyzing and extracting

valuable data from text and speech in natural languages. Several

NLP applications include information extraction, language

translation, and opinion mining (Cambria and White, 2014;

Vadyala and Betgeri, 2021; Vadyala and Sherer, 2021; Vadyala

et al., 2022a,b). Text classification using NLP has been used

for many problems within pipeline construction: To classify

construction documentation based on priority (Yugandhar and

Nethra, 2014; Vadyala et al., 2021). To support field inspection

and data extraction of the inspection (Zhong et al., 2019).

Information from work hazard analyses is processed using

an ontology-based text categorization approach (Caldas and

Soibelman, 2003). NLP methods are often divided into two

main categories: (1) Rule-based and (2) Machine learning

(ML) (Chi et al., 2014). Systems that rely only on hand-coded

syntactic rules are known as rule-based systems (Le and David

Jeong, 2017). As a result, their performance is underwhelming.

Languages and linguistic grammar are unimportant in the

Machine Learning-based approach (Marcus, 1995) because

patterns are often quickly learned from unclear training

examples because they outperform the state-of-the-art model

like K-NN.

Nevertheless, NLP is a valuable technique for extracting

and processing information from natural language into a more

organized format for study. Natural Language Toolkit (NLTK)

systems may be automated to parse textual content and search for

keywords and phrases to extract data using predefined computer

algorithms. The following is how key phrase extraction may be

expressed as a sequence labeling task. Predict a sequence of

labels, one label for each word in the input, where each label

key phrase word) or non-KP, given an input sequence x, where

each x represents the input vector of the keyphrase word). The

task formulation for sequence labeling considers the correlations

between nearby labels. It enables the joint decoding of the optimal

sequence of labels for the input sequence rather than decoding each

label individually.

Inspired by advancements in natural language processing,

some researchers have more recently applied recurrent neural

networks (RNNs) to wastewater pipe assessment documents for

extraction and classification (Cosham and Hopkins, 2004; Graves

et al., 2013; Dang et al., 2018; Jallan, 2020; Chahinian et al.,

2021). Recurrent neural networks (RNNs) include Long Short-

TermMemory Networks (LSTMs) that solve the problem of RNNs’

gradient disappearing. Additional memory cells in LSTMs are used

to store memories from long-distance phrases. Because LSTMsmay

store information from past sequence inputs in the current input

state, they have proven a natural option for data applications such

as speech recognition, language modeling, and trial option (Niu

and Srivastava, 2022). An LSTM has a hidden layer, an input layer,

and an output layer (Endalie et al., 2022). The hidden state in

a forward LSTM network only saves information from the past.

With the regular LSTM, input flows either in backward or forward

directions. In bidirectional, input flows in two directions, creating a

Bi-LSTM different from the regular LSTM. A bi-directional LSTM

network with a forward hidden layer and a backward hidden

layer to capture information flow in both directions is utilized

(Yildirim, 2018; Yang and Zhao, 2020; Shafiei Alavijeh et al.,

2021). The first model learns the sequence of the input provided,

and the second model learns the reverse of that sequence. Data

in the model is unstructured data to extract information from

both sides at the entity level. The nodes in the hidden layer are

linked, which is how long-distance information is kept in the

matrix weights.

A comparison is performed between an LSTM and Bi-LSTM

in pipe defect rating applications. LSTM and Bi-LSTM used

many-to-many configurations for flaw detection and localization

on simulated ultrasonic A-scans of holes and cracks. In their

case, each exhibited perfect performance in the outputs of an

LSTM in a many-to-many configuration as input to a dense

decision-making layer for defect extraction, and assigning defect

ratings on wastewater pipe assessment documents has historically

proven to be challenging. It is unknown how these models

generate particular decisions of defect classification and rating

assignment because it is tough to interpret these data-driven

models and how the rating is assigned to each defect characteristic.

In addition, these methods are trained on small, curated data,

and their generalization ability on unseen data is often limited

(Tscheikner-Gratl et al., 2019; Wang, 2021). This paper proposed

an ontology-based framework to improve efficiency and support

decision-making regarding extraction and assign defect rating

by automating the text classification by considering a complete

set of defect Lexicon. The proposed pipe defect rating model

uses the deep representation of entities using a knowledge base

to reduce human efforts for labeled data creation and feature

engineering. To illustrate the effectiveness of the proposed model,

empirical experiments are conducted on a real dataset from

the Department of Engineering and Environmental Services in

Shreveport, Louisiana.
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TABLE 1 Description of pipe inspection document.

Section Description

Pipe characteristics Information about the physical pipe
properties (Ex: Diameter, depth, length)

Emergency repair Information about the emergency repair (Ex:
Immediate Leakage fixes)

Smoke testing
assessment

Information about any smoke observed from
pipes (Ex: Medium smoke observed
emanating from cleanout)

Defects Information about the pipes using CCTV
Cameras (Ex: Multiple Defects)

Composite assessment Information about the composite material
around the pipe

Criticality assessment Information about the risk value of the pipe
(Ex: Medium)

Capacity Information about the pipe capacity

Summary Information about total major and minor
defects

2. Methods and materials

2.1. Data set and data preprocessing

A total of 3100 pipe repair documents were extracted from

the Department of Engineering and Environmental Services’

approved database by removing records with insufficient and

missing information for further analysis. There was no complete

information about the defect location, so 130 documents were

removed and finally had 2,970 pipe repair documents. Table 1

shows the information included in the pipe repair document.

A Pipeline Assessment Certification Program (PACP) version

7.0.4, released on October 1, 2020, incorporated a Comprehensive

rating protocol was established to provide a standardized way

of documenting features and assigning defect ratings during the

inspection to schedule maintenance. In addition to the PACP defect

ratings, numerous other factors such as sewer pipe diameter, pipe

material, burial depth, pipe bedding, load transfer, pipe joint type

and material, surface loading, ground conditions, groundwater

level, and soil type, type of waste carried, pipe age, sediment

level, surcharge, and poor maintenance practices were assessed

to provide a more precise assessment and these Rating, and

it is listed as comprehensive rating protocol which is followed

in the maintenance records (Vladeanu and Matthews, 2019a;

Betgeri et al., 2023a). Comprehensive and PACP allows wastewater

professionals to classify, evaluate and manage inspection data. The

most used defect scale is the Comprehensive and PACP Protocol

manual in Table 2.

Next, Data preprocessing for the text from pipe repair

documents is performed. Data preprocessing is crucial when

dealing with text data because text data is unstructured data and

the interpretations of the documents by different inspectors. Next,

all special characters in the pipe repair documents (e.g., commas in

a list) are removed. Misprint in the dataset included typographical

errors (e.g., “Leaks” instead of “Laeks”), and NLTK handles the

correction of the spelling errors. Then, boundary detection using

TABLE 2 PACP incorporated comprehensive rating protocol.

Defect rating Description

Defect rating 1 Reassess in 10 years.

Defect rating 2 Rehabilitate or replace in 6–10 years.

Defect rating 3 Rehabilitate or replace in 3–5 years.

Defect rating 4 Rehabilitate or replace in 0–2 years.

Defect rating 5 Rehabilitate or replace immediately.

Stanford parser’s sentence detection is performed since it is a

reasonably accurate tool in NLP (Malek Mohammadi et al., 2019).

Pipe repair documents containmany negation statements (no leaks,

no defects... etc.). To identify such terms, entities, or sentences, the

Negex algorithm, which is a Python module, is used for negation

term detection (Toutanova et al., 2003).

2.2. Annotation

Next, Standard documents are manually annotated for entities

and pipe defect ratings. Manual annotation of pipe repair

documents provided a gold standard to benchmark the proposed

model for pipe defect rating. Two annotatorsmanually mark the list

of lexical units and assign a defect rating using the Comprehensive

and PACP Protocol to each record. The meaning of sentences

and defect ratings can be interpreted differently by different ways

inspectors. Annotating final size 2970 pipe repair documents at the

entity and record levels and calculating the kappa coefficient for

each document and entity. If there is any disagreement between

the experts, documents must be annotated again, which is a time

taking process. So, a stratified random selection of 500 records is

considered a golden standard, annotating each document at the

entity and document level. A statistical measure of Cohen’s kappa

coefficient is used to find the agreement between the two-annotator

in Inter Annotator Agreement (IAA) (Kiliç, 2015). Inter Annotator

Agreement for our entities is shown in Table 3. Kappa coefficients

are considered for evaluating agreement coefficients between the

expert’s opinions compared for each entity level and record level

annotation. So, a stratified random selection of 500 pipe repair

documents was selected for the proposed model. Most of our pipe

repair documents have defect ratings of 3 and 4. To have an equal

number of defect ratings for train and testing our model, 500

pipe repair documents are only selected. 80% of the pipe repair

documents were used as training data and 20 percent as test data

to evaluate the proposed framework for defect rating, as shown in

Figure 1.

2.3. Lexicon generation

Knowledge bases for pipe defects are built by collecting

information from documents and structured sources. The creation

of a general list of defect attributes is referred to as a defect lexicon

or seed words. Secondly, a list of defects was hand-picked for

inspectors from traditional sources. After manually selecting defect
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TABLE 3 Annotator agreement table.

Entities and defect rating IAA

Defect 0.78

Size defects 0.82

Locations of defect 0.84

Defect rating 1 0.75

Defect rating 2 0.79

Defect rating 3 0.84

Defect rating 4 0.83

Defect rating 5 0.92

FIGURE 1

Training and testing data selection.

attributes, each attribute was expanded with the appropriate verb,

noun, and adjective where possible, e.g., leak, leaking, leaked. Then,

a knowledge-basedmethod for identifying the new defect attributes

is used. Knowledge-basedmethods exploit available lexicographical

resources such asWordNet or HowNet. A lexicon was developed by

searching WordNet for a term’s synonyms and antonyms (Hu and

Liu, 2004). According to Kamps et al. (2004), the closer two words

means fewer iterations are needed to identify the synonymous

connection between those two words. The relationship between

terms in a knowledge base was employed in both investigations.

As illustrated in Figure 2, these systems’ basic technique is to use

seed sets of pipe fault terms and their orientations to expand this

collection of defect characteristics by searching for synonyms and

antonyms in a knowledge base.

There were a lot of synonyms that needed to be more on-

topic and unconnected. After manual tracking of individual seed

FIGURE 2

Sample knowledge base construction for defect term “Rupture.”

keywords, a problem is discovered. Their synonyms revealed

ambiguous synonyms such as homonyms and antagonyms and

incorrect or fuzzily interpreted synonyms. By making different

blacklists for each synonym, including redundant, misunderstood,

and fuzzily understood terms, the problem is fixed. Unnecessary

processing of undesirable terms is avoided in this way. The

lexicon knowledge file of pipe defect ontology is shown in

Table 4.

2.4. Entity extraction

Entity Extraction aims to identify entities mentioned

in the text and classify them into predefined entity types,

as shown in Table 5. Manual rules are created to fix the

problem of dealing with unstructured pipe repair documents

from multiple inspectors. Sentences and specific items from

the text employed in defect rating calculations are to be

identified; for example, “Leak” should be recognized as a

defect. Entity extraction graphical representation is shown in

Figure 3.

Lastly, a Bi-LSTM neural network is implemented. The output

vector from both forward and backward sequences is adjoined

to obtain the final entity representation vector using the lexicon

file generated in section 3.1. The Bi-LSTM model is composed

of two LSTM networks and is capable of reading input reviews
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in both directions, forward and backward. The forward LSTM

processes information from left to right and its hidden state and

it is shown
−→
h t = LSTM (xt ,

−→
h t−1) and the backward LSTM

processes information by reading from right to left and its hidden

state can be expressed as
←−
h t = LSTM (xt ,

←−
h t−1). Finally,

the output of Bi-LSTM can be summarized by concatenating

TABLE 4 Description of pipe defect ontology.

Location Frequency of
defects

Defects

Mid-point,
Upstream,
Downstream,
Depth category,
Pipe length at
longitudinal,
Spiral,
Circumferential,

Rarely,
Several,
Frequently,
Often,
Moderate,
Very rarely

Fractures,
Sags,
Smoke,
Leaks,
Water level,
Sags,
Deposits,
Joint offset,
Deposits attached
Encrustation,
Deposits settled,
compacted,
Infill runner,
Intruding sealing
hanging,
Intruding sealing
ring loss/poorly
fitting, Tap factory
defective,
Corrosion,
Pitting,
Gap,
Hole,
Stain,
Rough spot,
Foible,
Rupture, No defect

the forward and backward states as ht = [
−→
h t ,
←−
h t] and the

data frame for each sentence consisting of information such as

(defects, size of defect, location of defect, and frequency of defects)

are created, which will be used for defect rating calculation.

The structure of a Bi-LSTM network is shown in Figure 4. The

parameter settings for the entity extraction model are shown in

Table 6.

2.5. Defect rating

The proposed defect rating calculation employs three aspects

of within pipe repair document defect term frequency (wfrequencies),

the importance of a defect term (wdefects), and the location of the

defect (wlocation) within the pipe, which is developed using term

frequency algorithm (Azam, 2012).

The location of the defect plays an important role in defect

rating, which mentions if the defect mentioned is in one particular

location or multiple locations. For locations, the weights are

assigned based on the scores mentioned in Pipeline Assessment -

NASSCO (Cosham and Hopkins, 2004; Lepot et al., 2017; Wang,

2021). Table 7 shows the randomly assigned weights based on

the pipe defect location. When no location is found wlocation =

TABLE 5 Description of the entities.

Entities Description

Defect Keywords (e.g., Leakage, Rupture, etc.)

Location of defect Keywords (e.g., junction, end, etc.) or
distance from the end of the pipe

Frequency of defects Keywords (e.g, Rarely, Frequently, etc.)

FIGURE 3

Graphical representation of the overview of entity extraction.
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FIGURE 4

Layers in a Bi-LSTM neural network.

TABLE 6 Parameter setting of the entity extraction model.

Parameter Value

Word vector embedding size 200

Dictionary feature vector embedding size 100

# Hidden neurons for each hidden layer 300

Batch size 100

Tag Indices 4

Learning Rate 0.005

Number of epochs 10

Optimizer Adam optimizer

TABLE 7 Weights assignment based on the location of the defect.

Location Assigned weight

One location wlocation = 0.9

Multiple locations wlocation = 1.0

No location wlocation = 1.0

TABLE 8 Weights assignment based on the frequency of the defects

outcome.

Frequency outcome Assigned weight

Very rarely or none w0 = 0.1

Rarely w1 = 0.25

Moderate w2 = 0.50

Moderate to Frequently w3 = 0.75

Frequently, More or very Frequently/
Several/ Oftenly

w4 = 0.99

1.0 random weight is assigned because the exact location of the

defect was not mentioned. Table 8 shows the randomly assigned

weights based on the defect occurrence frequency. Similarly, the

defects factor is randomly chosen based on the pipe failure. Table 9

shows the random weights assignment based on defect lexicon

units found. Table 10 shows the defect ratings assigned based on

wfrequencies, wlocation, wdefect .

TABLE 9 Weights assignment based on lexicon units found.

Lexicon or defect found Assigned weight

No lexicon unit wdefect = 0.5

One lexicon unit wdefect = 0.8

Multiple lexicon unit wdefect = 1.0

TABLE 10 Defect rating assignment based onwfrequencies, wlocation,wdefect.

Defect rating wfrequencies, wlocation,
wdefect

Defect rating 1 wfrequencies = 0.1, wlocation = 0.9 or 1.0,
wdefect = 0.5

Defect rating 2 wfrequencies = 0.25,wlocation = 0.9 or 1.0,
wdefect = 0.8 or 1.0

Defect rating 3 wfrequencies = 0.5,wlocation = 0.9 or 1.0,
wdefect = 0.8 or 1.0

Defect rating 4 wfrequencies = 0.75,wlocation = 0.9 or 1.0,
wdefect = 0.8 or 1.0

Defect rating 5 wfrequencies = 0.99,wlocation = 0.9 or 1.0,
wdefect = 0.8 or 1.0

Defect Rating Score example, 05CCD pipe inspection

document contains the following information, as shown in Box 1.

It consists of only one sentence, and the location factor is 0.9

because it has only one location. The wfrequencies term weights 0.99

for w4, which matches very frequently. The defect term (leakage)

matches with the lexicon unit and has a 1.0 (seed term) weight, so

the wdefect is 0.8

So, for the example shown, the rating assigned for Pipe

05CCD is 5, which means it needs an immediate replacement

or rehabilitation.

Figure 5 illustrates the entire schema of the proposed

framework.

3. Results and discussions

The proposed framework defect rating model was trained on
the training subset. Finally, the trained models were evaluated on
the test subset. To test the defect rating model, precision, recall,
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BOX 1 Sample pipe repair document.

Very Frequently, there is a leakage in pipe 10 feet away from the pipe installation

FIGURE 5

A framework for the proposed defect rating.

accuracy, specificity, and F1 score presented in Equations 1–5 were
utilized (Sokolova et al., 2006).

Accuracy

=
True positive+ True Negative

True positive+ True Negative+ False Positive+ False Negative

(1)

Precision =
True positive + True Negative

True positive + False Positive
(2)

Recall =
True positive

True positive + False Negative
(3)

Specificity =
True Negative

True positive + False Negative
(4)

F1 Score = 2×
Recall × Precision

Precision + Recall
(5)

To accurately assess the quality of pipes for scheduling

maintenance, it is essential to extract detailed information from

pipe repair documents using entity extraction. The entity extraction

model identifies pipe repair attribute entities from the pipe repair

documents. The entity extraction model’s overall average accuracy

for all entities is 95.1%. The F1 scores of defects, defect size,

location of the defect, and frequency of defect terms/entities are

93.6%, 92.4%, 93.6%, and 95.2%, as shown in Table 11. The entity

extraction calculates the defect scores and assigns the defect rating.

The defect statements’ representation varied from inspection

to inspection. Pipes, for example, can be represented in a variety

of ways, such as a “pipeline,” a “sewer Line,” or a “waterline.”

The entity extraction model adapted well to different inspector

reporting styles and languages. Findings show that accuracy,

precision, F1-score, and recall have all improved significantly.

The entity extraction accuracy of the Bi-LSTM entity model was

consistently higher. Experiments revealed that using sentence

boundary detection, entities, and a domain dictionary in the tasks

improved accuracy considerably, demonstrating the use of merging

techniques and domain dictionaries in entity extraction tasks.

A defect rating must be correct for it to be considered

accurate. Precision, recall, accuracy, and F1 score were calculated

to evaluate the models’ performance. The proposed defect rating

model achieved higher accuracy by 97.0%, 92.0%, 93.0%, 95.0%,

and 98.0% for the defect rating 1, defect rating 2, defect rating

3, defect rating 4, and defect rating 5, respectively, as shown in

Table 9. After a deep analysis of the results, a conclusion was made

that misclassified records have complicated sentences, which are

very hard for the model to understand and classify, For example.

multiple is used for both defects and locations. Table 12 shows the

results of the defect rating assignment.

The results indicate that defect rating can be accurately

calculated with the help of the entity extraction model.

However, the defect rating model struggled to accurately

calculate defect rating pipe repair documents due to fewer

defect attributes in pipe repair documents, high disagreement

between inspectors who annotated pipe repair documents,

and not mentioning the frequency of the defect in a few pipe

repair documents.
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TABLE 11 Results of entity extraction model units (%).

Entity tags Accuracy Recall Specificity Precision F1

Defects 92.0 94.1 92.3 95.0 93.6

Location of defect 95.0 91.1 96.9 97.5 93.6

Frequency of defects 96.2 95.6 93.0 94.2 95.2

TABLE 12 Results for defect rating model units (%).

Defect rating score Accuracy Recall Specificity Precision F1

Defect rating 1 97.0 97.5 97.0 97.0 97.5

Defect rating 2 92.0 93.0 92.5 94.0 93.0

Defect rating 3 93.0 94.0 95.5 95.5 95.5

Defect rating 4 95.0 93.0 92.5 95.0 94.5

Defect rating 5 98.0 97.0 97.5 98.0 98.0

Waste water pipe maintenance is a critical issue faced by many

utilities in the United States. PACP protocol, PACP incorporated

Comprehensive rating protocol was developed a few years back to

resolve the issue by the utilities. Both developed methods follow

manual inspection. The defect occurrence frequency is a vital

determinant in determining the severity of the pipe failure. The

variety of defects essentially invalidates the assumptions of text

mining approaches such as decision trees because a single defect

could be divided into multiple categories.

Frequency as an indicator of severity helps to favor the

automation process such as tf-idf (Robertson, 2004; Zhang et al.,

2011). tf-idf determines the uniqueness of a text through frequently

or rarely. tf-idf would detect the pipe failure but not the severity

of the pipe failure and tf-idf. In our approach, the words often,

frequently, rarely, etc capture the frequency of the defect. Negation

and Location play a vital role not considering them could create

data noise.

A disadvantage of the Machine Learning method approach

is focusing on correlations, which means results are based on

statistics. An inspector may have difficulty understanding the

correlations; however, a grammatical approach used in this work

can be more understandable.

Compared to Multi-Criteria Decision Analysis (MCDA)

methods, our proposed approach has multiple advantages. MCDA

method is very sensitive to data; interdependence between criteria

and alternatives can lead to inconsistent judgments, whereas

NLP deals with 6000 languages and can identify any data. The

MCDA method requires employing human staff, which is costly.

In contrast, our proposed model is less costly because it employs no

human staff.

4. Strength and limitations

This study is groundbreaking in several ways. This is the

first study to look at the validity of NLP for numerous defect

entities while investigating pipe repair papers for defecting ratings.

Secondly, NLP research in pipe repair documents concentrates

exclusively on a single defect condition, such as leaks. With the help

of lexicon generation using WordNet, a completed set of defect

Lexicon is created and used in defect rating. There are multiple

drawbacks also to the proposed model. Firstly, To address accurate

defect detection and recognition of wastewater defects that deal

with pipe assessment document data, an approach for detecting

and recognizing defects, including pipe geographical location, is

essential and is not considered in the proposedmodel. Secondly, the

present level of wastewater system management differs from city to

city. The algorithm must be trained to improve by collecting more

pipe-related lexicon terms from different cities and must be applied

to different cities’ data. Thirdly, the dataset had less defect ratings

related to 1, 2, and 5, so to improve the model, a larger data set with

an equal number of defect ratings are needed.

5. Conclusions and future work

Since the health state of the wastewater pipe is assessed

and recorded as the basis for decision-making in this process,

wastewater pipe assessment is the foundation for creating an

effective maintenance plan. The proposed model is a reliable

and accurate approach to detecting pipe repair documents and

assigning defect ratings. The proposed model is suitable for actual

pipe repair documents —in terms of performance, inference speed,

and simplicity in output interpretation, which can accurately

characterize a particular location and defect. This model is tailored

to solve the challenges in the wastewater infrastructure. The lexicon

generation step is the core for data integration to the proposed

model, where the defect ontology entities and semantic rules are

developed for representing different types of information related to

the specific location, which helps the user to customize the defect

lexicon according to location. However, more study is needed

to assess the applicability and validity of NLP approaches for

trenchless or building projects. In the future, there is a chance

to improve the proposed algorithm by collecting more pipe-

related lexicon terms from data from different cities and adding

pipe-specific geographical locations. Secondly, a framework that

consists of data extractions of CCTV videos using Deep Learning

Algorithms and feeds the data for assessing the Suitability of
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Trenchless Technologies by the Decision Support System for

installing, replacing, or rehabilitating each pipe and reducing the

methods of costs and evaluating all the 70 technologies and helps in

selecting the appropriate techniques would be developed.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

SB led this paper and others contributed to the outcomes.

All authors contributed to the article and approved the

submitted version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Azam, N. (2012). and J. Yao, Comparison of term frequency and document
frequency based feature selection metrics in text categorization. Exp. Syst. Appl. 39,
4760–4768. doi: 10.1016/j.eswa.2011.09.160

Betgeri, S. N. (2022). Analytic Hierarchy Process is not a Suitable method for the
Comprehensive Rating (Doctoral dissertation, Louisiana Tech University).

Betgeri, S. N., Matthews, J. C., and Vladeanu, G. (2023a). Development of
comprehensive rating for the evaluation of sewer pipelines. J. Pipeline Sys. Eng. Practice
14, 04023001. doi: 10.1061/JPSEA2.PSENG-1208

Betgeri, S. N., and Smith, D. B. (2021). Comparison of Sewer Conditions Ratings with
Repair Recommendation Reports. North American Society for Trenchless Technology
(NASTT). Available online at: https://member.nastt.org/products/product/2021-TM1-
T6-01

Betgeri, S. N., Vadyala, S. R., Matthews, J. C., Madadi, M., and Vladeanu, G. (2023b).
Wastewater pipe condition rating model using K-nearest neighbors. Tunnell. Underg.
Space Technol. 132, 104921. doi: 10.1016/j.tust.2022.104921

Boskabadi, A., Mirmozaffari, M., Yazdani, R., and Farahani, A. (2022). Design of a
distribution network in amulti-product, multi-period green supply chain system under
demand uncertainty. Sust. Oper. Comput. 3, 226–237. doi: 10.1016/j.susoc.2022.01.005

Caldas, C. H., and Soibelman, L. (2003). Automating hierarchical document
classification for construction management information systems. Autom. Constr. 12,
395–406. doi: 10.1016/S0926-5805(03)00004-9

Cambria, E., and White, B. (2014). Jumping NLP curves: A review of
natural language processing research. IEEE Comput. Int. Mag. 9, 48–57.
doi: 10.1109/MCI.2014.2307227

Chahinian, N., Bonnabaud La Bruyère, T., Frontini, F., Delenne, C., Julien, M.,
Panckhurst, R., et al. (2021). WEIR-P: An information extraction pipeline for the
wastewater domain. In International Conference on Research Challenges in Information
Science. Cham: Springer International Publishing, 171–188

Cheng, J. C., and Wang, M. (2018). Automated detection of sewer pipe defects in
closed-circuit television images using deep learning techniques. Autom. Constr. 95,
155–171. doi: 10.1016/j.autcon.2018.08.006

Chi, N. W., Lin, K. Y., and Hsieh, S. H. (2014). Using ontology-based
text classification to assist Job Hazard Analysis. Adv. Eng. Inf. 28, 381–394.
doi: 10.1016/j.aei.2014.05.001

Cosham, A., and Hopkins, P. (2004). An overview of the pipeline defect assessment
manual (PDAM). Int. Pipeline Technol. Conf. 29, 720–745.

Dang, L. M., Hassan, S. I., Im, S., Mehmood, I., and Moon, H. (2018). Utilizing text
recognition for the defects extraction in sewers CCTV inspection videos. Comput. Ind.
99, 96–109. doi: 10.1016/j.compind.2018.03.020

Endalie, D., Haile, G., and Taye, W. (2022). Bi-directional long short term memory-
gated recurrent unit model for Amharic next word prediction. PloS ONE 17, e0273156.
doi: 10.1371/journal.pone.0273156

Graves, A., Mohamed, A. R., and Hinton, G. (2013). “Speech recognition with deep
recurrent neural networks,” in 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, Manhattan, NY: IEEE, 664−6649.

Hassan, S. I., Dang, L. M., Mehmood, I., Im, S., Choi, C., Kang, J., et al.
(2019). Underground sewer pipe condition assessment based on convolutional neural
networks. Autom. Constr. 106, 102849. doi: 10.1016/j.autcon.2019.102849

Hu, M., and Liu, B. (2004). Mining and summarizing customer reviews. ACM
SIGKDD 12, 168–177. doi: 10.1145/1014052.1014073

Jallan, Y. (2020). Text Mining of the Securities and Exchange Commission Financial
Filings of Publicly Traded Construction Firms Using Deep Learning to Identify and Assess
Risk. Georgia: Institute of Technology. doi: 10.1061/(ASCE)CO.1943-7862.0001932

Kamps, J., Marx, M., Mokken, R. J., and Rijke, D. M. (2004). Using WordNet to
measure semantic orientations of adjectives. LREC 4, 1115–1118.

Kiliç, S. (2015). Kappa testi. J. Mood Disorders 5, 142–144.
doi: 10.5455/jmood.20150920115439

Le, T., and David Jeong, H. (2017). NLP-based approach to semantic classification
of heterogeneous transportation asset data terminology. J. Comput. Civil Eng. 31,
04017057. doi: 10.1061/(ASCE)CP.1943-5487.0000701
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