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Many things in our lives are designed to solve problems. Whether it
is an app on our cellphones, the construction of a new building, or
the development of a new drug, solving problems is a big motivator.
Did you know that there is a fascinating type of mathematics behind
many of the complex problems we face in our daily lives? This
mathematics is called computational complexity theory, and it is a
field of computer science. This is an active, constantly developing
field that is attracting many talented young people—like you! In
this article, we will describe computational complexity theory and
the kinds of problems it is designed to help with. We hope that by
the time you finish reading this article, you will be convinced that
computational complexity theory is one of the most exciting fields
of science.

Noa Segev is a scientific writer and project coordinator at Frontiers

for Young Minds. She has a B.Sc. in physics and an M.E. in renewable
energy engineering.
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Prof. Avi Wigderson won the 2021 Abel Prize, jointly with Laszlé
Lovasz, for their foundational contributions to theoretical computer
science and discrete mathematics, and their leading role in shaping
them into central fields of modern mathematics.

COMPUTATIONAL COMPLEXITY THEORY

When you think about the word “computation,” you probably
think about numbers—maybe about the processes of addition
and multiplication that you learned in your school math classes.
Although those math operations are indeed computations, the term
computation is actually much broader and includes many of the
challenges we face in daily life, like the need to compute how to get
from one place to another as quickly as possible, or how to keep
sensitive information safe using encryption. The field of computer
science that deals with many of the complex problems we face in
our everyday lives is called computational complexity theory. Each
computational complexity problem has an input and one or a bunch
of valid solutions—not only one. For example, think about a navigation
app like google maps. This app must solve the computation problem
of how to get from point A to point B the fastest way possible. There
could be a few different routes that take you from point A to point B
in the same amount of time, and therefore this computation theory
has a few equivalent solutions. The inputs in this case are the start and
end points (A and B), and the solutions (also called the output) of the
computations are all the possible routes you could take to get from
point A to point B as quickly as possible.

The solution of a computational problem requires two stages (Figure
1). The first stage is defining the function connecting the input and
output. Once a function is given, the second stage involves finding
an efficient way to solve the problem, to estimate the solution,
or to prove that the problem is hard and cannot be solved in a
reasonable time—that is the job of computer scientists who deal with
computational complexity theory.

An important problem from biology—called the protein folding
problem—can be used to demonstrate the stages of solving a
computational problem. As you may know, our bodies contain tiny
biological machines called proteins that perform many of our vital
functions. Proteins are made of chains of building blocks called
amino acids (like a bunch of beads on a string), and after they are
made, these chains fold into complex, three-dimensional structures
(see Figure 1 in this article). Proteins only function properly if they
fold into the correct three-dimensional shapes. Scientists still do
not know the exact physical and chemical laws that make proteins
fold in the very specific ways that they do, out of all the millions
of possible ways they could fold. This protein folding problem is a
computational problem—for every specific chain of amino acids (the
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Figure 1

A computational
complexity problem.
Computational
complexity problems
have a collection of
valid solutions—not just
one—for every input.
Solving these problems
requires two stages. (A)
In the first stage, we
must define the
problem clearly or, in
other words, describe
the function
connecting the input to
the collection of valid
solutions. This is usually
the work of physicists,
biologists, chemists,
economists, or
engineers. (B) In the
second stage we look
for algorithms—the
series of operations
that can solve the
problem most
efficiently. This is the
stage is generally
performed by
computer scientists.

A Input Valid

Q y 4 Step 1: Find Function Solution
O
b@“

Step 2: Study Solution Algorithms

Solution

P

Figure 1

input), there is one solution of a specific three-dimensional that allows
the protein to function. Scientists have created several models to try
to describe how the amino acid sequence of a protein determines its
final three-dimensional structure. One model uses the idea that the
final structure of the protein is the one that needs the least energy to
hold the shape. This can be calculated by adding up the attraction or
repulsion forces of each pair of atoms that make up the protein [1].
Defining a model is the first stage in the solution process.

The next stage is the computational stage, which tries to determine
how hard it is to calculate the solution to the problem, and to figure
out the most efficient way to compute the solution—which in this
case is to find the final three-dimensional structure of the protein.
For example, if the protein only has a small number of atoms, it is
easy to compute all the forces acting between every pair of atoms
and add them up to figure out the three-dimensional structure that
requires the least energy. But, if the protein is composed of many
atoms (as most proteins are), it is much harder and sometimes even
Impossible to compute the exact folding that results in the minimal
energy, even if we use very powerful computers. Maybe, in these cases,
there is a better calculation that would allow a solution to be found?
That is the kind of challenge that computational complexity theory
deals with.

Computational complexity theory can deal with many practical
questions that are related to our daily lives. In addition to helping
us build models of systems we want to understand, like the protein
folding problem, computational complexity theory can also be used
to figure out what kinds of problems can and cannot be solved,
to determine how efficient computations are at solving problems,
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ALGORITHM

A collection of actions
that are performed on
the input to get to the
computation result in a
finite number of steps.

Figure 2

Computational
complexity. (A) An easy
algorithm for adding
numbers. The number
of required operations
is proportional to the
length of numbers
being added. If we
increase the numbers
from 2 to 4 digits, then
twice as many
operations are needed.
(B) An algorithm to
compute all the
possible combinations
of pizza toppings is
exponential. The
number of operations is
proportional to 2 to the
power of the input’s
length. If there are
three possible toppings
(inputs), the number of
required operations is
23, meaning that there
are eight possible
topping combinations.
For exponential
algorithms, the number
of required operations
grows very quickly as
the input length
increases, so the
computation times
needed for these
algorithms are only
reasonable for small
inputs.

and to develop practical tools for solving problems. This may sound
complicated, but you will see that it is a beautiful and fascinating field
of research.

ALGORITHMS AND EFFICIENCY

One of the most important problems in computational complexity
theory deals with the efficiency of computations [2]. Every computation
is defined by a collection of operations that are performed on the input
to get to the result. This collection of operations is called an algorithm.
We all use algorithms in our daily lives. For example, we all learn to
add numbers in school. You may have learned to add according to
the algorithm shown in Figure 2A. Any two numbers can be added,
which means there are an unlimited number of inputs into the addition
algorithm. Inputs could be one digit, a million digits, or a billion digits,
for example. The most efficient computations are like adding numbers:
the number of operations required in the algorithm is proportional to
the length of the input numbers. This means that, using the algorithm
described in Figure 2A, if we had to add numbers that were twice as
long as the numbers shown, we would have to perform twice as many
operations to get the final result.

Figure 2

But let us think about a slightly more difficult problem: multiplying
numbers. In school, you were probably taught an algorithm for this,
too. If you use the algorithm shown in this video, if you want to
multiply numbers that are twice as long, the number of operations
you must perform will be 4-fold greater. For example, if we multiply
two two-digit numbers, we perform four multiplication operations and
a few more addition operations. However, if the numbers have ten
digits, we must perform 100 multiplication operations! If we use the
algorithm shown for addition, only 10 operations would be required for
10-digit numbers. If the numbers have 100 digits, we need to perform

kids Volume 11 | Article 1284284 | 4


https://www.youtube.com/watch?v=PZjIT9CH6bM
https://kids.frontiersin.org/
https://kids.frontiersin.org/article/10.3389/frym.2023.1284284
https://kids.frontiersin.org/article/10.3389/frym.2023.1284284
https://kids.frontiersin.org/article/10.3389/frym.2023.1284284

about 10,000 operations for multiplication as opposed to about 100
operations for addition. So, in the case of multiplication, the number of
operations is proportional to the square of the numbers’ lengths.

The efficiency of computations is very important because it defines
which problems we can solve within a reasonable time and which
we cannot, and the cost (in effort and time) required for each
computation. There are many problems we must solve quickly so that
the answer can be available to us almost immediately (for example,
like Waze, which should instantly tell us which route to choose), and
there are some problems we want to solve within a reasonable time
(not necessarily immediately) to find answers to important questions
in science or engineering, for instance. As you saw in the addition and
multiplication examples, the difference between the efficiency of an
algorithm that is proportional to the length of the input and one that
is proportional to the squared length of the input is large. Let us now
think about a case in which the algorithm is proportional not to the
squared length of the input, but to an even higher exponent—maybe
to the fifth or sixth power. Or we could think about a case in which the
algorithm'’s efficiency is exponential, meaning proportional to two in
the power of the input’s length, or even a larger number in the power
of the input’s length. These cases require many computations to get
to the solution.

Such complex problems do exist in our daily lives. To demonstrate the
meaning of an exponential function, here is a tasty example—think
about your favorite pizza. Let us say that the pizza restaurant had
one possible topping—green olives. Then, you could choose between
two options: a plain pizza or a pizza with green olives. Now, let us
assume that the pizza place also has a corn topping. Then, you could
choose between four options: plain, with green olives, with corn, or
with green olives and corn. If there were three toppings (for example,
mushrooms, olives, and tomatoes) you would have eight possibilities
(Figure 2B). So, in this case, there are two to the power of possible
topping options (2% = 8). Therefore, the number of options for pizza
topping combinations is exponential with respect to the number of
toppings, which is basically the input length in the calculation. For
larger inputs, like tens or hundreds of pizza toppings, the number of
topping combinations quickly becomes enormous.

EXPONENTIAL ALGORITHMS

The same exponential type of growth applies also for exponential
algorithms. Now, instead of the length of input growing exponentially
(like we saw with the number of possible pizza toppings), it is the
number of operations in the algorithm can grow exponentially and
is proportional to some number (say two, like in the pizza example)
in the power of the input’s length. Since the number of operations
a computer can perform is finite—a billion operations per second,
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PROBLEMS IN P

Computational
problems whose
solution is easy
(polynomial with
respect to the
inputs’ length).

PROBLEMS IN NP

Computational
problems for which
checking their solution
is a problem in P. Such
algorithm does not
provide the solution
but only makes sure
that a suggested
solution is correct.

say—we can translate the number of operation into the time it takes for
computation. For an exponential algorithm and a 20-character-long
input, the computation time for such a computer will be only
one-millionth of a second. For a 50-character input, the computation
will take more than 18 min, and for an 80-character input, it will take
more than 3,800 years!

Since there are many computations we would like to be able to
perform in a reasonable time, one major question in complexity theory
deals with trying to find the most efficient algorithms to perform
certain computations. For example, you may have learned a quicker
way than the one we described for multiplying two numbers (you
can watch an example here). In the same way, it might be possible to
find more efficient ways to perform other computations for which we
have only inefficient solutions. Researchers studying computational
complexity theory search for these efficient algorithms and, to do
so, they must also ask themselves how they know when they have
found the best, most efficient algorithm. Sometimes they can prove
that an algorithm is the best possible one for a particular problem,
and other times they try to prove that there is no efficient way to
solve a particular problem for every input, meaning that the problem
is inherently hard.

EASY AND HARD PROBLEMS TO SOLVE

Now let us think about dividing all problems into two groups
depending on how difficult it is (i.e., how much time it takes) for a
computer to solve them [2]. We will call one group P, for “polynomial”.
Problems in P be solved quickly, because the number of computations
needed to solve them is equal to the input’'s length to some power.
For example, when adding numbers according to our algorithm, the
number of operations required is a polynomial of the first power with
respect to the input’'s length. We can think of problems in P as all the
problems that humanity can solve or has already solved.

The second group of problems is called NP, for "nondeterministic
polynomial”. This is the collection of problems that have not been
solved yet, but that humanity would like to solve. Real-life problems
in NP include, for example, all the problems that scientists think about,
all mathematical proofs that mathematicians are trying to validate, and
engineering problems such as planning a bridge that spans a river
(Figure 3A).

Sometimes a problem might be difficult to solve, but once a solution
is found, checking to see if that solution is correct might be relatively
easy. Imagine a strange navigation app that needs to find the longest
possible route between two points, instead of the shortest. This is a
hard problem—finding the longest possible route between two points
is much more complex than finding the shortest route. However, if we
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Figure 3

Problems in P and
NP—are they equal? (A)
Currently, problems
can be divided into two
sets. P contains
problems that can be
solved efficiently and
NP contains problems
whose solutions can be
checked efficiently. (B)
A very important
question within
complexity theory is
whether for all
problems in NP there is
an efficient solution
algorithm. This would
mean that P and NP are
equal. Alternatively, NP
could include all
problems that are in P
but also include
additional problems
that are not in P, that
cannot be solved
efficiently.

P

Addition and
Subtracion

NP

Sorting
numbers

Shortest path
problem

Scientific
Theories

Mathematical
proofs

\) Factorization

Figure 3

were given all the possible routes between two points, it would be easy
to check which route is the longest, just by comparing them. In other
words, even if the computation of the original problem is complex,
checking a suggested solution is easy. As another example, if we try
to find all the factors of a very large number (meaning, numbers that
can be multiplied together to get that large number) this could be
a hard problem. In contrast, if we just need to check whether two
numbers are factors of a large number, this is an easy problem—we
only need to multiply them together to check if the solution equals
that large number.

One of the biggest open questions in computational complexity
theory is whether the classes of P and NP problems are equal or
whether P is a subgroup of NP (Figure 3B). In other words, if we can
easily check whether a given solution to a problem is correct, does
this definitely mean there is an algorithm that solves that problem
efficiently, even if we have not found it yet? We do have examples of
problems in NP for which we have not found efficient solutions—but
this does not mean that such algorithms do not exist—maybe we just
have not found them. If they do exist and we will be able to find them,
this might be humanity’s biggest dream coming true. On the other
hand, there are some problems that we hope are too hard to solve
(i.,e., notin P). For example, the safety of data-encryption systems and
other electronic safety system like those used for online shopping are
based on extremely complex calculations that we hope are too hard to
ever solve efficiently. If someone finds an efficient algorithm to solve
these calculations, all of our information-protection systems will break
down and the information that is currently safely encrypted will no
longer be safe. So, you can see that there are reaching implications to
the questions whether P and NP are equal classes of problems.
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Figure 4

Recommendations for
Young Minds. Learn a
lot and discover the
kinds of intellectual
problems you like to
face. If these problems
are in mathematics,
remember that many
mysteries you try to
crack will include
moments of “failure,” in
which you will not
solve the problem or
even know whether
you are progressing
toward the solution.
Remember that these
“failures” give you
extremely valuable
insights and experience
that will help you solve
other problems in the
future.

RECOMMENDATIONS FOR YOUNG MINDS

Our main recommendation is to find out what you love—what your
passion is. People do their best and most significant things when they
believe in the importance of what they are doing, and often what is
important for them is also fun for them. You might have a strong
motivation to do things you do not necessarily enjoy all the time
(for example, maybe you want to cure cancer but do not enjoy the
lab work), but we think this option is not quite as good as finding
something you really love.

If you enjoy problem solving, we recommend that you learn as much
as possible and try to understand the kinds of problems that you like to
face. Once you choose an area, try to be the best you can (Figure 4).
An academic career is not for everyone, and some people might have
more fun working in industry in companies that try to solve various
problems. But if you are interested in an academic career, develop
two important characteristics: an unstoppable thirst for knowledge
and a love for sharing that knowledge through teaching and guiding
students. Patience is also important, along with the ability to handle a
competitive environment in a positive way.

Figure 4

If you are specifically interested in mathematical research, remember
that there are connections between sub-fields that supposedly do
not “talk” with each other. These connections are critical, so it is
important to have knowledge of as many fields of math as possible.
In addition, mathematicians often try to solve problems that no one
has solved before, so if you follow that path there is a chance that
you will not solve them, either. That means that you might invest a
lot of time on things that are ultimately unsuccessful. But if you enjoy
the problem-solving process, then even if you have no promise that
your solution will work, or even if your progress seems extremely slow,
you will still be happy. In other words, good math researchers must
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love the process of solving problems, independent of how successful
the process is. Finally, it is important to remember that researchers
are always learning from the ideas that they try, even if they are not
successful in solving the problem. The insights they gain in the process
stay with them and can help them to solve future problems.

AUTHOR'S NOTE

This article is based on an interview between the two authors. It is
written in the artistic expression of NS and is backed up scientifically
by AW.
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